dxvk/src/d3d11/d3d11_swapchain.cpp
netborg 91c6793b55 [dxvk] Disallow flush for beginLatencyTracking's emitCs
Not sure if this does anything, but better be safe to correctly track when the first succeeding Cs will get executed.
2025-02-28 08:51:31 +01:00

722 lines
22 KiB
C++

#include "d3d11_context_imm.h"
#include "d3d11_device.h"
#include "d3d11_swapchain.h"
#include "../dxvk/dxvk_latency_builtin.h"
#include "../dxvk/framepacer/dxvk_framepacer.h"
#include "../util/util_win32_compat.h"
namespace dxvk {
static uint16_t MapGammaControlPoint(float x) {
if (x < 0.0f) x = 0.0f;
if (x > 1.0f) x = 1.0f;
return uint16_t(65535.0f * x);
}
static VkColorSpaceKHR ConvertColorSpace(DXGI_COLOR_SPACE_TYPE colorspace) {
switch (colorspace) {
case DXGI_COLOR_SPACE_RGB_FULL_G22_NONE_P709: return VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
case DXGI_COLOR_SPACE_RGB_FULL_G2084_NONE_P2020: return VK_COLOR_SPACE_HDR10_ST2084_EXT;
case DXGI_COLOR_SPACE_RGB_FULL_G10_NONE_P709: return VK_COLOR_SPACE_EXTENDED_SRGB_LINEAR_EXT;
default:
Logger::warn(str::format("DXGI: ConvertColorSpace: Unknown colorspace ", colorspace));
return VK_COLOR_SPACE_SRGB_NONLINEAR_KHR;
}
}
static VkXYColorEXT ConvertXYColor(const UINT16 (&dxgiColor)[2]) {
return VkXYColorEXT{ float(dxgiColor[0]) / 50000.0f, float(dxgiColor[1]) / 50000.0f };
}
static float ConvertMaxLuminance(UINT dxgiLuminance) {
return float(dxgiLuminance);
}
static float ConvertMinLuminance(UINT dxgiLuminance) {
return float(dxgiLuminance) * 0.0001f;
}
static float ConvertLevel(UINT16 dxgiLevel) {
return float(dxgiLevel);
}
static VkHdrMetadataEXT ConvertHDRMetadata(const DXGI_HDR_METADATA_HDR10& dxgiMetadata) {
VkHdrMetadataEXT vkMetadata = { VK_STRUCTURE_TYPE_HDR_METADATA_EXT };
vkMetadata.displayPrimaryRed = ConvertXYColor(dxgiMetadata.RedPrimary);
vkMetadata.displayPrimaryGreen = ConvertXYColor(dxgiMetadata.GreenPrimary);
vkMetadata.displayPrimaryBlue = ConvertXYColor(dxgiMetadata.BluePrimary);
vkMetadata.whitePoint = ConvertXYColor(dxgiMetadata.WhitePoint);
vkMetadata.maxLuminance = ConvertMaxLuminance(dxgiMetadata.MaxMasteringLuminance);
vkMetadata.minLuminance = ConvertMinLuminance(dxgiMetadata.MinMasteringLuminance);
vkMetadata.maxContentLightLevel = ConvertLevel(dxgiMetadata.MaxContentLightLevel);
vkMetadata.maxFrameAverageLightLevel = ConvertLevel(dxgiMetadata.MaxFrameAverageLightLevel);
return vkMetadata;
}
D3D11SwapChain::D3D11SwapChain(
D3D11DXGIDevice* pContainer,
D3D11Device* pDevice,
IDXGIVkSurfaceFactory* pSurfaceFactory,
const DXGI_SWAP_CHAIN_DESC1* pDesc)
: m_dxgiDevice(pContainer),
m_parent(pDevice),
m_surfaceFactory(pSurfaceFactory),
m_desc(*pDesc),
m_device(pDevice->GetDXVKDevice()),
m_frameLatencyCap(pDevice->GetOptions()->maxFrameLatency) {
CreateFrameLatencyEvent();
CreatePresenter();
CreateBackBuffers();
CreateBlitter();
}
D3D11SwapChain::~D3D11SwapChain() {
// Avoids hanging when in this state, see comment
// in DxvkDevice::~DxvkDevice.
if (this_thread::isInModuleDetachment())
return;
m_presenter->destroyResources();
DestroyFrameLatencyEvent();
DestroyLatencyTracker();
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::QueryInterface(
REFIID riid,
void** ppvObject) {
if (ppvObject == nullptr)
return E_POINTER;
InitReturnPtr(ppvObject);
if (riid == __uuidof(IUnknown)
|| riid == __uuidof(IDXGIVkSwapChain)
|| riid == __uuidof(IDXGIVkSwapChain1)
|| riid == __uuidof(IDXGIVkSwapChain2)) {
*ppvObject = ref(this);
return S_OK;
}
if (logQueryInterfaceError(__uuidof(IDXGIVkSwapChain), riid)) {
Logger::warn("D3D11SwapChain::QueryInterface: Unknown interface query");
Logger::warn(str::format(riid));
}
return E_NOINTERFACE;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::GetDesc(
DXGI_SWAP_CHAIN_DESC1* pDesc) {
*pDesc = m_desc;
return S_OK;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::GetAdapter(
REFIID riid,
void** ppvObject) {
return m_dxgiDevice->GetParent(riid, ppvObject);
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::GetDevice(
REFIID riid,
void** ppDevice) {
return m_dxgiDevice->QueryInterface(riid, ppDevice);
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::GetImage(
UINT BufferId,
REFIID riid,
void** ppBuffer) {
InitReturnPtr(ppBuffer);
if (BufferId >= m_backBuffers.size()) {
Logger::err("D3D11: GetImage: Invalid buffer ID");
return DXGI_ERROR_UNSUPPORTED;
}
return m_backBuffers[BufferId]->QueryInterface(riid, ppBuffer);
}
UINT STDMETHODCALLTYPE D3D11SwapChain::GetImageIndex() {
return 0;
}
UINT STDMETHODCALLTYPE D3D11SwapChain::GetFrameLatency() {
return m_frameLatency;
}
HANDLE STDMETHODCALLTYPE D3D11SwapChain::GetFrameLatencyEvent() {
HANDLE result = nullptr;
HANDLE processHandle = GetCurrentProcess();
if (!DuplicateHandle(processHandle, m_frameLatencyEvent,
processHandle, &result, 0, FALSE, DUPLICATE_SAME_ACCESS)) {
Logger::err("DxgiSwapChain::GetFrameLatencyWaitableObject: DuplicateHandle failed");
return nullptr;
}
return result;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::ChangeProperties(
const DXGI_SWAP_CHAIN_DESC1* pDesc,
const UINT* pNodeMasks,
IUnknown* const* ppPresentQueues) {
if (m_desc.Format != pDesc->Format)
m_presenter->setSurfaceFormat(GetSurfaceFormat(pDesc->Format));
if (m_desc.Width != pDesc->Width || m_desc.Height != pDesc->Height)
m_presenter->setSurfaceExtent({ m_desc.Width, m_desc.Height });
m_desc = *pDesc;
CreateBackBuffers();
return S_OK;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::SetPresentRegion(
const RECT* pRegion) {
// TODO implement
return E_NOTIMPL;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::SetGammaControl(
UINT NumControlPoints,
const DXGI_RGB* pControlPoints) {
bool isIdentity = true;
if (NumControlPoints > 1) {
std::array<DxvkGammaCp, 1025> cp;
if (NumControlPoints > cp.size())
return E_INVALIDARG;
for (uint32_t i = 0; i < NumControlPoints; i++) {
uint16_t identity = MapGammaControlPoint(float(i) / float(NumControlPoints - 1));
cp[i].r = MapGammaControlPoint(pControlPoints[i].Red);
cp[i].g = MapGammaControlPoint(pControlPoints[i].Green);
cp[i].b = MapGammaControlPoint(pControlPoints[i].Blue);
cp[i].a = 0;
isIdentity &= cp[i].r == identity
&& cp[i].g == identity
&& cp[i].b == identity;
}
if (!isIdentity)
m_blitter->setGammaRamp(NumControlPoints, cp.data());
}
if (isIdentity)
m_blitter->setGammaRamp(0, nullptr);
return S_OK;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::SetFrameLatency(
UINT MaxLatency) {
if (MaxLatency == 0 || MaxLatency > DXGI_MAX_SWAP_CHAIN_BUFFERS)
return DXGI_ERROR_INVALID_CALL;
if (m_frameLatencyEvent) {
// Windows DXGI does not seem to handle the case where the new maximum
// latency is less than the current value, and some games relying on
// this behaviour will hang if we attempt to decrement the semaphore.
// Thus, only increment the semaphore as necessary.
if (MaxLatency > m_frameLatency)
ReleaseSemaphore(m_frameLatencyEvent, MaxLatency - m_frameLatency, nullptr);
}
m_frameLatency = MaxLatency;
return S_OK;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::Present(
UINT SyncInterval,
UINT PresentFlags,
const DXGI_PRESENT_PARAMETERS* pPresentParameters) {
HRESULT hr = S_OK;
if (m_device->getDeviceStatus() != VK_SUCCESS)
hr = DXGI_ERROR_DEVICE_RESET;
if (PresentFlags & DXGI_PRESENT_TEST) {
if (hr != S_OK)
return hr;
VkResult status = m_presenter->checkSwapChainStatus();
return status == VK_SUCCESS ? S_OK : DXGI_STATUS_OCCLUDED;
}
if (hr != S_OK) {
SyncFrameLatency();
return hr;
}
try {
hr = PresentImage(SyncInterval);
} catch (const DxvkError& e) {
Logger::err(e.message());
hr = E_FAIL;
}
// Ensure to synchronize and release the frame latency semaphore
// even if presentation failed with STATUS_OCCLUDED, or otherwise
// applications using the semaphore may deadlock. This works because
// we do not increment the frame ID in those situations.
SyncFrameLatency();
// Ignore latency stuff if presentation failed
DxvkLatencyStats latencyStats = { };
if (hr == S_OK && m_latency) {
latencyStats = m_latency->getStatistics(m_frameId);
m_latency->sleepAndBeginFrame(m_frameId + 1, std::abs(m_targetFrameRate));
}
if (m_latencyHud)
m_latencyHud->accumulateStats(latencyStats);
if (m_renderLatencyHud)
m_renderLatencyHud->updateLatencyTracker(m_latency);
return hr;
}
UINT STDMETHODCALLTYPE D3D11SwapChain::CheckColorSpaceSupport(
DXGI_COLOR_SPACE_TYPE ColorSpace) {
UINT supportFlags = 0;
VkColorSpaceKHR vkColorSpace = ConvertColorSpace(ColorSpace);
if (m_presenter->supportsColorSpace(vkColorSpace))
supportFlags |= DXGI_SWAP_CHAIN_COLOR_SPACE_SUPPORT_FLAG_PRESENT;
return supportFlags;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::SetColorSpace(
DXGI_COLOR_SPACE_TYPE ColorSpace) {
VkColorSpaceKHR colorSpace = ConvertColorSpace(ColorSpace);
if (!m_presenter->supportsColorSpace(colorSpace))
return E_INVALIDARG;
m_colorSpace = colorSpace;
m_presenter->setSurfaceFormat(GetSurfaceFormat(m_desc.Format));
return S_OK;
}
HRESULT STDMETHODCALLTYPE D3D11SwapChain::SetHDRMetaData(
const DXGI_VK_HDR_METADATA* pMetaData) {
// For some reason this call always seems to succeed on Windows
if (pMetaData->Type == DXGI_HDR_METADATA_TYPE_HDR10)
m_presenter->setHdrMetadata(ConvertHDRMetadata(pMetaData->HDR10));
return S_OK;
}
void STDMETHODCALLTYPE D3D11SwapChain::GetLastPresentCount(
UINT64* pLastPresentCount) {
*pLastPresentCount = UINT64(m_frameId - DXGI_MAX_SWAP_CHAIN_BUFFERS);
}
void STDMETHODCALLTYPE D3D11SwapChain::GetFrameStatistics(
DXGI_VK_FRAME_STATISTICS* pFrameStatistics) {
std::lock_guard<dxvk::mutex> lock(m_frameStatisticsLock);
*pFrameStatistics = m_frameStatistics;
}
void STDMETHODCALLTYPE D3D11SwapChain::SetTargetFrameRate(
double FrameRate) {
m_targetFrameRate = FrameRate;
if (m_presenter != nullptr)
m_presenter->setFrameRateLimit(m_targetFrameRate, GetActualFrameLatency());
FramePacer* framePacer = dynamic_cast<FramePacer*>(m_latency.ptr());
if (framePacer != nullptr)
framePacer->setTargetFrameRate(FrameRate);
}
Rc<DxvkImageView> D3D11SwapChain::GetBackBufferView() {
Rc<DxvkImage> image = GetCommonTexture(m_backBuffers[0].ptr())->GetImage();
DxvkImageViewKey key;
key.viewType = VK_IMAGE_VIEW_TYPE_2D;
key.usage = VK_IMAGE_USAGE_SAMPLED_BIT;
key.format = image->info().format;
key.aspects = VK_IMAGE_ASPECT_COLOR_BIT;
key.mipIndex = 0u;
key.mipCount = 1u;
key.layerIndex = 0u;
key.layerCount = 1u;
return image->createView(key);
}
HRESULT D3D11SwapChain::PresentImage(UINT SyncInterval) {
// Flush pending rendering commands before
auto immediateContext = m_parent->GetContext();
auto immediateContextLock = immediateContext->LockContext();
immediateContext->EndFrame(m_latency);
immediateContext->ExecuteFlush(GpuFlushType::ExplicitFlush, nullptr, true);
m_presenter->setSyncInterval(SyncInterval);
// Presentation semaphores and WSI swap chain image
if (m_latency)
m_latency->notifyCpuPresentBegin(m_frameId + 1u);
PresenterSync sync;
Rc<DxvkImage> backBuffer;
VkResult status = m_presenter->acquireNextImage(sync, backBuffer);
if (status != VK_SUCCESS && m_latency)
m_latency->discardTimings();
if (status < 0)
return E_FAIL;
if (status == VK_NOT_READY)
return DXGI_STATUS_OCCLUDED;
m_frameId += 1;
// Present from CS thread so that we don't
// have to synchronize with it first.
DxvkImageViewKey viewInfo = { };
viewInfo.viewType = VK_IMAGE_VIEW_TYPE_2D;
viewInfo.usage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
viewInfo.format = backBuffer->info().format;
viewInfo.aspects = VK_IMAGE_ASPECT_COLOR_BIT;
viewInfo.mipIndex = 0u;
viewInfo.mipCount = 1u;
viewInfo.layerIndex = 0u;
viewInfo.layerCount = 1u;
immediateContext->EmitCs([
cDevice = m_device,
cBlitter = m_blitter,
cBackBuffer = backBuffer->createView(viewInfo),
cSwapImage = GetBackBufferView(),
cSync = sync,
cPresenter = m_presenter,
cLatency = m_latency,
cColorSpace = m_colorSpace,
cFrameId = m_frameId
] (DxvkContext* ctx) {
// Update back buffer color space as necessary
if (cSwapImage->image()->info().colorSpace != cColorSpace) {
DxvkImageUsageInfo usage = { };
usage.colorSpace = cColorSpace;
ctx->ensureImageCompatibility(cSwapImage->image(), usage);
}
// Blit the D3D back buffer onto the actual Vulkan
// swap chain and render the HUD if we have one.
auto contextObjects = ctx->beginExternalRendering();
cBlitter->present(contextObjects,
cBackBuffer, VkRect2D(),
cSwapImage, VkRect2D());
// Submit current command list and present
ctx->synchronizeWsi(cSync);
ctx->flushCommandList(nullptr);
cDevice->presentImage(cPresenter, cLatency, cFrameId, nullptr);
});
if (m_backBuffers.size() > 1u)
RotateBackBuffers(immediateContext);
immediateContext->FlushCsChunk();
if (m_latency) {
m_latency->notifyCpuPresentEnd(m_frameId);
if (m_latency->needsAutoMarkers()) {
immediateContext->EmitCs([
cLatency = m_latency,
cFrameId = m_frameId
] (DxvkContext* ctx) {
ctx->beginLatencyTracking(cLatency, cFrameId + 1u);
}, true);
}
}
return S_OK;
}
void D3D11SwapChain::RotateBackBuffers(D3D11ImmediateContext* ctx) {
small_vector<Rc<DxvkImage>, 4> images;
for (uint32_t i = 0; i < m_backBuffers.size(); i++)
images.push_back(GetCommonTexture(m_backBuffers[i].ptr())->GetImage());
ctx->EmitCs([
cImages = std::move(images)
] (DxvkContext* ctx) {
auto allocation = cImages[0]->storage();
for (size_t i = 0u; i + 1 < cImages.size(); i++)
ctx->invalidateImage(cImages[i], cImages[i + 1]->storage());
ctx->invalidateImage(cImages[cImages.size() - 1u], std::move(allocation));
});
}
void D3D11SwapChain::CreateFrameLatencyEvent() {
m_frameLatencySignal = new sync::CallbackFence(m_frameId);
if (m_desc.Flags & DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT)
m_frameLatencyEvent = CreateSemaphore(nullptr, m_frameLatency, DXGI_MAX_SWAP_CHAIN_BUFFERS, nullptr);
}
void D3D11SwapChain::CreatePresenter() {
PresenterDesc presenterDesc = { };
presenterDesc.deferSurfaceCreation = m_parent->GetOptions()->deferSurfaceCreation;
m_presenter = new Presenter(m_device, m_frameLatencySignal, presenterDesc, [
cAdapter = m_device->adapter(),
cFactory = m_surfaceFactory
] (VkSurfaceKHR* surface) {
return cFactory->CreateSurface(
cAdapter->vki()->instance(),
cAdapter->handle(), surface);
});
m_presenter->setSurfaceFormat(GetSurfaceFormat(m_desc.Format));
m_presenter->setSurfaceExtent({ m_desc.Width, m_desc.Height });
m_presenter->setFrameRateLimit(m_targetFrameRate, GetActualFrameLatency());
m_latency = m_device->createLatencyTracker(m_presenter);
Com<D3D11ReflexDevice> reflex = GetReflexDevice();
reflex->RegisterLatencyTracker(m_latency);
}
void D3D11SwapChain::CreateBackBuffers() {
// Explicitly destroy current swap image before
// creating a new one to free up resources
m_backBuffers.clear();
bool sequential = m_desc.SwapEffect == DXGI_SWAP_EFFECT_SEQUENTIAL ||
m_desc.SwapEffect == DXGI_SWAP_EFFECT_FLIP_SEQUENTIAL;
uint32_t backBufferCount = sequential ? m_desc.BufferCount : 1u;
// Create new back buffer
D3D11_COMMON_TEXTURE_DESC desc;
desc.Width = std::max(m_desc.Width, 1u);
desc.Height = std::max(m_desc.Height, 1u);
desc.Depth = 1;
desc.MipLevels = 1;
desc.ArraySize = 1;
desc.Format = m_desc.Format;
desc.SampleDesc = m_desc.SampleDesc;
desc.Usage = D3D11_USAGE_DEFAULT;
desc.BindFlags = 0;
desc.CPUAccessFlags = 0;
desc.MiscFlags = 0;
desc.TextureLayout = D3D11_TEXTURE_LAYOUT_UNDEFINED;
if (m_desc.BufferUsage & DXGI_USAGE_RENDER_TARGET_OUTPUT)
desc.BindFlags |= D3D11_BIND_RENDER_TARGET;
if (m_desc.BufferUsage & DXGI_USAGE_SHADER_INPUT)
desc.BindFlags |= D3D11_BIND_SHADER_RESOURCE;
if (m_desc.BufferUsage & DXGI_USAGE_UNORDERED_ACCESS)
desc.BindFlags |= D3D11_BIND_UNORDERED_ACCESS;
if (m_desc.Flags & DXGI_SWAP_CHAIN_FLAG_GDI_COMPATIBLE)
desc.MiscFlags |= D3D11_RESOURCE_MISC_GDI_COMPATIBLE;
DXGI_USAGE dxgiUsage = DXGI_USAGE_BACK_BUFFER;
for (uint32_t i = 0; i < backBufferCount; i++) {
if (m_desc.SwapEffect == DXGI_SWAP_EFFECT_DISCARD
|| m_desc.SwapEffect == DXGI_SWAP_EFFECT_FLIP_DISCARD)
dxgiUsage |= DXGI_USAGE_DISCARD_ON_PRESENT;
m_backBuffers.push_back(new D3D11Texture2D(
m_parent, this, &desc, dxgiUsage));
dxgiUsage |= DXGI_USAGE_READ_ONLY;
}
small_vector<Rc<DxvkImage>, 4> images;
for (uint32_t i = 0; i < backBufferCount; i++)
images.push_back(GetCommonTexture(m_backBuffers[i].ptr())->GetImage());
// Initialize images so that we can use them. Clearing
// to black prevents garbled output for the first frame.
m_parent->GetContext()->InjectCs(DxvkCsQueue::HighPriority, [
cImages = std::move(images)
] (DxvkContext* ctx) {
for (size_t i = 0; i < cImages.size(); i++) {
ctx->setDebugName(cImages[i], str::format("Back buffer ", i).c_str());
ctx->initImage(cImages[i],
cImages[i]->getAvailableSubresources(),
VK_IMAGE_LAYOUT_UNDEFINED);
}
});
}
void D3D11SwapChain::CreateBlitter() {
Rc<hud::Hud> hud = hud::Hud::createHud(m_device);
if (hud) {
hud->addItem<hud::HudClientApiItem>("api", 1, GetApiName());
if (m_latency) {
m_latencyHud = hud->addItem<hud::HudLatencyItem>("latency", 4);
FramePacer* framePacer = dynamic_cast<FramePacer*>(m_latency.ptr());
if (framePacer) {
int32_t fpsItemPos = hud->getItemPos<hud::HudFpsItem>();
m_renderLatencyHud = hud->addItem<hud::HudRenderLatencyItem>("renderlatency", fpsItemPos+1);
}
}
}
m_blitter = new DxvkSwapchainBlitter(m_device, std::move(hud));
}
void D3D11SwapChain::DestroyFrameLatencyEvent() {
CloseHandle(m_frameLatencyEvent);
}
void D3D11SwapChain::DestroyLatencyTracker() {
// Need to make sure the context stops using
// the tracker for submissions
m_parent->GetContext()->InjectCs(DxvkCsQueue::Ordered, [
cLatency = m_latency
] (DxvkContext* ctx) {
ctx->endLatencyTracking(cLatency);
});
Com<D3D11ReflexDevice> reflex = GetReflexDevice();
reflex->UnregisterLatencyTracker(m_latency);
}
void D3D11SwapChain::SyncFrameLatency() {
// Wait for the sync event so that we respect the maximum frame latency
m_frameLatencySignal->wait(m_frameId - GetActualFrameLatency());
m_frameLatencySignal->setCallback(m_frameId, [this,
cFrameId = m_frameId,
cFrameLatencyEvent = m_frameLatencyEvent
] () {
if (cFrameLatencyEvent)
ReleaseSemaphore(cFrameLatencyEvent, 1, nullptr);
std::lock_guard<dxvk::mutex> lock(m_frameStatisticsLock);
m_frameStatistics.PresentCount = cFrameId - DXGI_MAX_SWAP_CHAIN_BUFFERS;
m_frameStatistics.PresentQPCTime = dxvk::high_resolution_clock::get_counter();
});
}
uint32_t D3D11SwapChain::GetActualFrameLatency() {
// DXGI does not seem to implicitly synchronize waitable swap chains,
// so in that case we should just respect the user config. For regular
// swap chains, pick the latency from the DXGI device.
uint32_t maxFrameLatency = DXGI_MAX_SWAP_CHAIN_BUFFERS;
if (!(m_desc.Flags & DXGI_SWAP_CHAIN_FLAG_FRAME_LATENCY_WAITABLE_OBJECT))
m_dxgiDevice->GetMaximumFrameLatency(&maxFrameLatency);
if (m_frameLatencyCap)
maxFrameLatency = std::min(maxFrameLatency, m_frameLatencyCap);
maxFrameLatency = std::min(maxFrameLatency, m_desc.BufferCount);
return maxFrameLatency;
}
VkSurfaceFormatKHR D3D11SwapChain::GetSurfaceFormat(DXGI_FORMAT Format) {
switch (Format) {
default:
Logger::warn(str::format("D3D11SwapChain: Unexpected format: ", m_desc.Format));
[[fallthrough]];
case DXGI_FORMAT_R8G8B8A8_UNORM:
case DXGI_FORMAT_B8G8R8A8_UNORM:
return { VK_FORMAT_R8G8B8A8_UNORM, m_colorSpace };
case DXGI_FORMAT_R8G8B8A8_UNORM_SRGB:
case DXGI_FORMAT_B8G8R8A8_UNORM_SRGB:
return { VK_FORMAT_R8G8B8A8_SRGB, m_colorSpace };
case DXGI_FORMAT_R10G10B10A2_UNORM:
return { VK_FORMAT_A2B10G10R10_UNORM_PACK32, m_colorSpace };
case DXGI_FORMAT_R16G16B16A16_FLOAT:
return { VK_FORMAT_R16G16B16A16_SFLOAT, m_colorSpace };
}
}
Com<D3D11ReflexDevice> D3D11SwapChain::GetReflexDevice() {
Com<ID3DLowLatencyDevice> llDevice;
m_parent->QueryInterface(__uuidof(ID3DLowLatencyDevice), reinterpret_cast<void**>(&llDevice));
return static_cast<D3D11ReflexDevice*>(llDevice.ptr());
}
std::string D3D11SwapChain::GetApiName() const {
Com<IDXGIDXVKDevice> device;
m_parent->QueryInterface(__uuidof(IDXGIDXVKDevice), reinterpret_cast<void**>(&device));
uint32_t apiVersion = device->GetAPIVersion();
uint32_t featureLevel = m_parent->GetFeatureLevel();
uint32_t flHi = (featureLevel >> 12);
uint32_t flLo = (featureLevel >> 8) & 0x7;
return str::format("D3D", apiVersion, " FL", flHi, "_", flLo);
}
}