aarch64/fpu: Add vector variants of pow

Plus a small amount of moving includes around in order to be able to
remove duplicate definition of asuint64.

Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This commit is contained in:
Joe Ramsay 2024-05-16 09:21:24 +01:00 committed by Szabolcs Nagy
parent c39cf53702
commit 0fed0b250f
21 changed files with 2236 additions and 12 deletions

View file

@ -19,6 +19,7 @@ libmvec-supported-funcs = acos \
log10 \
log1p \
log2 \
pow \
sin \
sinh \
tan \
@ -44,7 +45,10 @@ libmvec-support = $(addsuffix f_advsimd,$(float-advsimd-funcs)) \
sv_erff_data \
v_exp_tail_data \
erfc_data \
erfcf_data
erfcf_data \
v_pow_exp_data \
v_pow_log_data \
v_powf_data
endif
sve-cflags = -march=armv8-a+sve

View file

@ -119,6 +119,11 @@ libmvec {
_ZGVnN2vv_hypot;
_ZGVsMxvv_hypotf;
_ZGVsMxvv_hypot;
_ZGVnN4vv_powf;
_ZGVnN2vv_powf;
_ZGVnN2vv_pow;
_ZGVsMxvv_powf;
_ZGVsMxvv_pow;
_ZGVnN2v_sinh;
_ZGVnN2v_sinhf;
_ZGVnN4v_sinhf;

View file

@ -37,6 +37,7 @@ libmvec_hidden_proto (V_NAME_F1(log10));
libmvec_hidden_proto (V_NAME_F1(log1p));
libmvec_hidden_proto (V_NAME_F1(log2));
libmvec_hidden_proto (V_NAME_F1(log));
libmvec_hidden_proto (V_NAME_F2(pow));
libmvec_hidden_proto (V_NAME_F1(sin));
libmvec_hidden_proto (V_NAME_F1(sinh));
libmvec_hidden_proto (V_NAME_F1(tan));

View file

@ -17,6 +17,7 @@
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
#include "v_math.h"
#include "poly_advsimd_f64.h"

View file

@ -17,6 +17,7 @@
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
#include "sv_math.h"
#include "poly_sve_f64.h"

View file

@ -113,6 +113,10 @@
# define __DECL_SIMD_log2 __DECL_SIMD_aarch64
# undef __DECL_SIMD_log2f
# define __DECL_SIMD_log2f __DECL_SIMD_aarch64
# undef __DECL_SIMD_pow
# define __DECL_SIMD_pow __DECL_SIMD_aarch64
# undef __DECL_SIMD_powf
# define __DECL_SIMD_powf __DECL_SIMD_aarch64
# undef __DECL_SIMD_sin
# define __DECL_SIMD_sin __DECL_SIMD_aarch64
# undef __DECL_SIMD_sinf
@ -176,6 +180,7 @@ __vpcs __f32x4_t _ZGVnN4v_logf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_log10f (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_log1pf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_log2f (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4vv_powf (__f32x4_t, __f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_sinhf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_tanf (__f32x4_t);
@ -202,6 +207,7 @@ __vpcs __f64x2_t _ZGVnN2v_log (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_log10 (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_log1p (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_log2 (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2vv_pow (__f64x2_t, __f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_sin (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_sinh (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_tan (__f64x2_t);
@ -233,6 +239,7 @@ __sv_f32_t _ZGVsMxv_logf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_log10f (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_log1pf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_log2f (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxvv_powf (__sv_f32_t, __sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_sinhf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_tanf (__sv_f32_t, __sv_bool_t);
@ -259,6 +266,7 @@ __sv_f64_t _ZGVsMxv_log (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_log10 (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_log1p (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_log2 (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxvv_pow (__sv_f64_t, __sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_sin (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_sinh (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_tan (__sv_f64_t, __sv_bool_t);

View file

@ -0,0 +1,373 @@
/* Double-precision x^y function.
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
/* Scalar version of pow used for fallbacks in vector implementations. */
/* Data is defined in v_pow_log_data.c. */
#define N_LOG (1 << V_POW_LOG_TABLE_BITS)
#define Off 0x3fe6955500000000
#define As __v_pow_log_data.poly
/* Data is defined in v_pow_exp_data.c. */
#define N_EXP (1 << V_POW_EXP_TABLE_BITS)
#define SignBias (0x800 << V_POW_EXP_TABLE_BITS)
#define SmallExp 0x3c9 /* top12(0x1p-54). */
#define BigExp 0x408 /* top12(512.0). */
#define ThresExp 0x03f /* BigExp - SmallExp. */
#define InvLn2N __v_pow_exp_data.n_over_ln2
#define Ln2HiN __v_pow_exp_data.ln2_over_n_hi
#define Ln2LoN __v_pow_exp_data.ln2_over_n_lo
#define SBits __v_pow_exp_data.sbits
#define Cs __v_pow_exp_data.poly
/* Constants associated with pow. */
#define SmallPowX 0x001 /* top12(0x1p-126). */
#define BigPowX 0x7ff /* top12(INFINITY). */
#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */
#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */
#define BigPowY 0x43e /* top12(0x1.749p62). */
#define ThresPowY 0x080 /* BigPowY - SmallPowY. */
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline double
log_inline (uint64_t ix, double *tail)
{
/* x = 2^k z; where z is in range [Off,2*Off) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
uint64_t tmp = ix - Off;
int i = (tmp >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1);
int k = (int64_t) tmp >> 52; /* arithmetic shift. */
uint64_t iz = ix - (tmp & 0xfffULL << 52);
double z = asdouble (iz);
double kd = (double) k;
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
double invc = __v_pow_log_data.invc[i];
double logc = __v_pow_log_data.logc[i];
double logctail = __v_pow_log_data.logctail[i];
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
double r = fma (z, invc, -1.0);
/* k*Ln2 + log(c) + r. */
double t1 = kd * __v_pow_log_data.ln2_hi + logc;
double t2 = t1 + r;
double lo1 = kd * __v_pow_log_data.ln2_lo + logctail;
double lo2 = t1 - t2 + r;
/* Evaluation is optimized assuming superscalar pipelined execution. */
double ar = As[0] * r;
double ar2 = r * ar;
double ar3 = r * ar2;
/* k*Ln2 + log(c) + r + A[0]*r*r. */
double hi = t2 + ar2;
double lo3 = fma (ar, r, -ar2);
double lo4 = t2 - hi + ar2;
/* p = log1p(r) - r - A[0]*r*r. */
double p = (ar3
* (As[1] + r * As[2]
+ ar2 * (As[3] + r * As[4] + ar2 * (As[5] + r * As[6]))));
double lo = lo1 + lo2 + lo3 + lo4 + p;
double y = hi + lo;
*tail = hi - y + lo;
return y;
}
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
special_case (double tmp, uint64_t sbits, uint64_t ki)
{
double scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = asdouble (sbits);
y = 0x1p1009 * (scale + scale * tmp);
return y;
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
/* Note: sbits is signed scale. */
scale = asdouble (sbits);
y = scale + scale * tmp;
#if WANT_SIMD_EXCEPT
if (fabs (y) < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double hi, lo, one = 1.0;
if (y < 0.0)
one = -1.0;
lo = scale - y + scale * tmp;
hi = one + y;
lo = one - hi + y + lo;
y = (hi + lo) - one;
/* Fix the sign of 0. */
if (y == 0.0)
y = asdouble (sbits & 0x8000000000000000);
/* The underflow exception needs to be signaled explicitly. */
force_eval_double (opt_barrier_double (0x1p-1022) * 0x1p-1022);
}
#endif
y = 0x1p-1022 * y;
return y;
}
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */
static inline double
exp_inline (double x, double xtail, uint32_t sign_bias)
{
uint32_t abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - SmallExp >= ThresExp))
{
if (abstop - SmallExp >= 0x80000000)
{
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return sign_bias ? -1.0 : 1.0;
}
if (abstop >= top12 (1024.0))
{
/* Note: inf and nan are already handled. */
/* Skip errno handling. */
#if WANT_SIMD_EXCEPT
return asuint64 (x) >> 63 ? __math_uflow (sign_bias)
: __math_oflow (sign_bias);
#else
double res_uoflow = asuint64 (x) >> 63 ? 0.0 : INFINITY;
return sign_bias ? -res_uoflow : res_uoflow;
#endif
}
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
double z = InvLn2N * x;
double kd = round (z);
uint64_t ki = lround (z);
double r = x - kd * Ln2HiN - kd * Ln2LoN;
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r += xtail;
/* 2^(k/N) ~= scale. */
uint64_t idx = ki & (N_EXP - 1);
uint64_t top = (ki + sign_bias) << (52 - V_POW_EXP_TABLE_BITS);
/* This is only a valid scale when -1023*N < k < 1024*N. */
uint64_t sbits = SBits[idx] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
double r2 = r * r;
double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
if (__glibc_unlikely (abstop == 0))
return special_case (tmp, sbits, ki);
double scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
/* Computes exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
A version of exp_inline that is not inlined and for which sign_bias is
equal to 0. */
static double NOINLINE
exp_nosignbias (double x, double xtail)
{
uint32_t abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - SmallExp >= ThresExp))
{
/* Avoid spurious underflow for tiny x. */
if (abstop - SmallExp >= 0x80000000)
return 1.0;
/* Note: inf and nan are already handled. */
if (abstop >= top12 (1024.0))
#if WANT_SIMD_EXCEPT
return asuint64 (x) >> 63 ? __math_uflow (0) : __math_oflow (0);
#else
return asuint64 (x) >> 63 ? 0.0 : INFINITY;
#endif
/* Large x is special cased below. */
abstop = 0;
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */
double z = InvLn2N * x;
double kd = round (z);
uint64_t ki = lround (z);
double r = x - kd * Ln2HiN - kd * Ln2LoN;
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r += xtail;
/* 2^(k/N) ~= scale. */
uint64_t idx = ki & (N_EXP - 1);
uint64_t top = ki << (52 - V_POW_EXP_TABLE_BITS);
/* This is only a valid scale when -1023*N < k < 1024*N. */
uint64_t sbits = SBits[idx] + top;
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (tail + exp(r) - 1). */
double r2 = r * r;
double tmp = r + r2 * Cs[0] + r * r2 * (Cs[1] + r * Cs[2]);
if (__glibc_unlikely (abstop == 0))
return special_case (tmp, sbits, ki);
double scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int
checkint (uint64_t iy)
{
int e = iy >> 52 & 0x7ff;
if (e < 0x3ff)
return 0;
if (e > 0x3ff + 52)
return 2;
if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
return 0;
if (iy & (1ULL << (0x3ff + 52 - e)))
return 1;
return 2;
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline int
zeroinfnan (uint64_t i)
{
return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
}
static double NOINLINE
pow_scalar_special_case (double x, double y)
{
uint32_t sign_bias = 0;
uint64_t ix, iy;
uint32_t topx, topy;
ix = asuint64 (x);
iy = asuint64 (y);
topx = top12 (x);
topy = top12 (y);
if (__glibc_unlikely (topx - SmallPowX >= ThresPowX
|| (topy & 0x7ff) - SmallPowY >= ThresPowY))
{
/* Note: if |y| > 1075 * ln2 * 2^53 ~= 0x1.749p62 then pow(x,y) = inf/0
and if |y| < 2^-54 / 1075 ~= 0x1.e7b6p-65 then pow(x,y) = +-1. */
/* Special cases: (x < 0x1p-126 or inf or nan) or
(|y| < 0x1p-65 or |y| >= 0x1p63 or nan). */
if (__glibc_unlikely (zeroinfnan (iy)))
{
if (2 * iy == 0)
return issignaling_inline (x) ? x + y : 1.0;
if (ix == asuint64 (1.0))
return issignaling_inline (y) ? x + y : 1.0;
if (2 * ix > 2 * asuint64 (INFINITY)
|| 2 * iy > 2 * asuint64 (INFINITY))
return x + y;
if (2 * ix == 2 * asuint64 (1.0))
return 1.0;
if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (__glibc_unlikely (zeroinfnan (ix)))
{
double x2 = x * x;
if (ix >> 63 && checkint (iy) == 1)
{
x2 = -x2;
sign_bias = 1;
}
#if WANT_SIMD_EXCEPT
if (2 * ix == 0 && iy >> 63)
return __math_divzero (sign_bias);
#endif
return iy >> 63 ? 1 / x2 : x2;
}
/* Here x and y are non-zero finite. */
if (ix >> 63)
{
/* Finite x < 0. */
int yint = checkint (iy);
if (yint == 0)
#if WANT_SIMD_EXCEPT
return __math_invalid (x);
#else
return __builtin_nan ("");
#endif
if (yint == 1)
sign_bias = SignBias;
ix &= 0x7fffffffffffffff;
topx &= 0x7ff;
}
if ((topy & 0x7ff) - SmallPowY >= ThresPowY)
{
/* Note: sign_bias == 0 here because y is not odd. */
if (ix == asuint64 (1.0))
return 1.0;
/* |y| < 2^-65, x^y ~= 1 + y*log(x). */
if ((topy & 0x7ff) < SmallPowY)
return 1.0;
#if WANT_SIMD_EXCEPT
return (ix > asuint64 (1.0)) == (topy < 0x800) ? __math_oflow (0)
: __math_uflow (0);
#else
return (ix > asuint64 (1.0)) == (topy < 0x800) ? INFINITY : 0;
#endif
}
if (topx == 0)
{
/* Normalize subnormal x so exponent becomes negative. */
ix = asuint64 (x * 0x1p52);
ix &= 0x7fffffffffffffff;
ix -= 52ULL << 52;
}
}
double lo;
double hi = log_inline (ix, &lo);
double ehi = y * hi;
double elo = y * lo + fma (y, hi, -ehi);
return exp_inline (ehi, elo, sign_bias);
}

View file

@ -0,0 +1,249 @@
/* Double-precision vector (AdvSIMD) pow function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
/* Defines parameters of the approximation and scalar fallback. */
#include "finite_pow.h"
#define VecSmallExp v_u64 (SmallExp)
#define VecThresExp v_u64 (ThresExp)
#define VecSmallPowX v_u64 (SmallPowX)
#define VecThresPowX v_u64 (ThresPowX)
#define VecSmallPowY v_u64 (SmallPowY)
#define VecThresPowY v_u64 (ThresPowY)
static const struct data
{
float64x2_t log_poly[6];
float64x2_t exp_poly[3];
float64x2_t ln2_hi, ln2_lo;
float64x2_t shift, inv_ln2_n, ln2_hi_n, ln2_lo_n, small_powx;
uint64x2_t inf;
} data = {
/* Coefficients copied from v_pow_log_data.c
relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8]
Coefficients are scaled to match the scaling during evaluation. */
.log_poly
= { V2 (0x1.555555555556p-2 * -2), V2 (-0x1.0000000000006p-2 * -2),
V2 (0x1.999999959554ep-3 * 4), V2 (-0x1.555555529a47ap-3 * 4),
V2 (0x1.2495b9b4845e9p-3 * -8), V2 (-0x1.0002b8b263fc3p-3 * -8) },
.ln2_hi = V2 (0x1.62e42fefa3800p-1),
.ln2_lo = V2 (0x1.ef35793c76730p-45),
/* Polynomial coefficients: abs error: 1.43*2^-58, ulp error: 0.549
(0.550 without fma) if |x| < ln2/512. */
.exp_poly = { V2 (0x1.fffffffffffd4p-2), V2 (0x1.5555571d6ef9p-3),
V2 (0x1.5555576a5adcep-5) },
.shift = V2 (0x1.8p52), /* round to nearest int. without intrinsics. */
.inv_ln2_n = V2 (0x1.71547652b82fep8), /* N/ln2. */
.ln2_hi_n = V2 (0x1.62e42fefc0000p-9), /* ln2/N. */
.ln2_lo_n = V2 (-0x1.c610ca86c3899p-45),
.small_powx = V2 (0x1p-126),
.inf = V2 (0x7ff0000000000000)
};
#define A(i) data.log_poly[i]
#define C(i) data.exp_poly[i]
/* This version implements an algorithm close to scalar pow but
- does not implement the trick in the exp's specialcase subroutine to avoid
double-rounding,
- does not use a tail in the exponential core computation,
- and pow's exp polynomial order and table bits might differ.
Maximum measured error is 1.04 ULPs:
_ZGVnN2vv_pow(0x1.024a3e56b3c3p-136, 0x1.87910248b58acp-13)
got 0x1.f71162f473251p-1
want 0x1.f71162f473252p-1. */
static inline float64x2_t
v_masked_lookup_f64 (const double *table, uint64x2_t i)
{
return (float64x2_t){
table[(i[0] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)],
table[(i[1] >> (52 - V_POW_LOG_TABLE_BITS)) & (N_LOG - 1)]
};
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline float64x2_t
v_log_inline (uint64x2_t ix, float64x2_t *tail, const struct data *d)
{
/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
uint64x2_t tmp = vsubq_u64 (ix, v_u64 (Off));
int64x2_t k
= vshrq_n_s64 (vreinterpretq_s64_u64 (tmp), 52); /* arithmetic shift. */
uint64x2_t iz = vsubq_u64 (ix, vandq_u64 (tmp, v_u64 (0xfffULL << 52)));
float64x2_t z = vreinterpretq_f64_u64 (iz);
float64x2_t kd = vcvtq_f64_s64 (k);
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
float64x2_t invc = v_masked_lookup_f64 (__v_pow_log_data.invc, tmp);
float64x2_t logc = v_masked_lookup_f64 (__v_pow_log_data.logc, tmp);
float64x2_t logctail = v_masked_lookup_f64 (__v_pow_log_data.logctail, tmp);
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), z, invc);
/* k*Ln2 + log(c) + r. */
float64x2_t t1 = vfmaq_f64 (logc, kd, d->ln2_hi);
float64x2_t t2 = vaddq_f64 (t1, r);
float64x2_t lo1 = vfmaq_f64 (logctail, kd, d->ln2_lo);
float64x2_t lo2 = vaddq_f64 (vsubq_f64 (t1, t2), r);
/* Evaluation is optimized assuming superscalar pipelined execution. */
float64x2_t ar = vmulq_f64 (v_f64 (-0.5), r);
float64x2_t ar2 = vmulq_f64 (r, ar);
float64x2_t ar3 = vmulq_f64 (r, ar2);
/* k*Ln2 + log(c) + r + A[0]*r*r. */
float64x2_t hi = vaddq_f64 (t2, ar2);
float64x2_t lo3 = vfmaq_f64 (vnegq_f64 (ar2), ar, r);
float64x2_t lo4 = vaddq_f64 (vsubq_f64 (t2, hi), ar2);
/* p = log1p(r) - r - A[0]*r*r. */
float64x2_t a56 = vfmaq_f64 (A (4), r, A (5));
float64x2_t a34 = vfmaq_f64 (A (2), r, A (3));
float64x2_t a12 = vfmaq_f64 (A (0), r, A (1));
float64x2_t p = vfmaq_f64 (a34, ar2, a56);
p = vfmaq_f64 (a12, ar2, p);
p = vmulq_f64 (ar3, p);
float64x2_t lo
= vaddq_f64 (vaddq_f64 (vaddq_f64 (vaddq_f64 (lo1, lo2), lo3), lo4), p);
float64x2_t y = vaddq_f64 (hi, lo);
*tail = vaddq_f64 (vsubq_f64 (hi, y), lo);
return y;
}
static float64x2_t VPCS_ATTR NOINLINE
exp_special_case (float64x2_t x, float64x2_t xtail)
{
return (float64x2_t){ exp_nosignbias (x[0], xtail[0]),
exp_nosignbias (x[1], xtail[1]) };
}
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|. */
static inline float64x2_t
v_exp_inline (float64x2_t x, float64x2_t xtail, const struct data *d)
{
/* Fallback to scalar exp_inline for all lanes if any lane
contains value of x s.t. |x| <= 2^-54 or >= 512. */
uint64x2_t abstop
= vshrq_n_u64 (vandq_u64 (vreinterpretq_u64_f64 (x), d->inf), 52);
uint64x2_t uoflowx
= vcgeq_u64 (vsubq_u64 (abstop, VecSmallExp), VecThresExp);
if (__glibc_unlikely (v_any_u64 (uoflowx)))
return exp_special_case (x, xtail);
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with k integer and r in [-ln2/2N, ln2/2N]. */
float64x2_t z = vmulq_f64 (d->inv_ln2_n, x);
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
float64x2_t kd = vaddq_f64 (z, d->shift);
uint64x2_t ki = vreinterpretq_u64_f64 (kd);
kd = vsubq_f64 (kd, d->shift);
float64x2_t r = vfmsq_f64 (x, kd, d->ln2_hi_n);
r = vfmsq_f64 (r, kd, d->ln2_lo_n);
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r = vaddq_f64 (r, xtail);
/* 2^(k/N) ~= scale. */
uint64x2_t idx = vandq_u64 (ki, v_u64 (N_EXP - 1));
uint64x2_t top = vshlq_n_u64 (ki, 52 - V_POW_EXP_TABLE_BITS);
/* This is only a valid scale when -1023*N < k < 1024*N. */
uint64x2_t sbits = v_lookup_u64 (SBits, idx);
sbits = vaddq_u64 (sbits, top);
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
float64x2_t r2 = vmulq_f64 (r, r);
float64x2_t tmp = vfmaq_f64 (C (1), r, C (2));
tmp = vfmaq_f64 (C (0), r, tmp);
tmp = vfmaq_f64 (r, r2, tmp);
float64x2_t scale = vreinterpretq_f64_u64 (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
return vfmaq_f64 (scale, scale, tmp);
}
static float64x2_t NOINLINE VPCS_ATTR
scalar_fallback (float64x2_t x, float64x2_t y)
{
return (float64x2_t){ pow_scalar_special_case (x[0], y[0]),
pow_scalar_special_case (x[1], y[1]) };
}
float64x2_t VPCS_ATTR V_NAME_D2 (pow) (float64x2_t x, float64x2_t y)
{
const struct data *d = ptr_barrier (&data);
/* Case of x <= 0 is too complicated to be vectorised efficiently here,
fallback to scalar pow for all lanes if any x < 0 detected. */
if (v_any_u64 (vclezq_s64 (vreinterpretq_s64_f64 (x))))
return scalar_fallback (x, y);
uint64x2_t vix = vreinterpretq_u64_f64 (x);
uint64x2_t viy = vreinterpretq_u64_f64 (y);
uint64x2_t iay = vandq_u64 (viy, d->inf);
/* Special cases of x or y. */
#if WANT_SIMD_EXCEPT
/* Small or large. */
uint64x2_t vtopx = vshrq_n_u64 (vix, 52);
uint64x2_t vabstopy = vshrq_n_u64 (iay, 52);
uint64x2_t specialx
= vcgeq_u64 (vsubq_u64 (vtopx, VecSmallPowX), VecThresPowX);
uint64x2_t specialy
= vcgeq_u64 (vsubq_u64 (vabstopy, VecSmallPowY), VecThresPowY);
#else
/* The case y==0 does not trigger a special case, since in this case it is
necessary to fix the result only if x is a signalling nan, which already
triggers a special case. We test y==0 directly in the scalar fallback. */
uint64x2_t iax = vandq_u64 (vix, d->inf);
uint64x2_t specialx = vcgeq_u64 (iax, d->inf);
uint64x2_t specialy = vcgeq_u64 (iay, d->inf);
#endif
uint64x2_t special = vorrq_u64 (specialx, specialy);
/* Fallback to scalar on all lanes if any lane is inf or nan. */
if (__glibc_unlikely (v_any_u64 (special)))
return scalar_fallback (x, y);
/* Small cases of x: |x| < 0x1p-126. */
uint64x2_t smallx = vcaltq_f64 (x, d->small_powx);
if (__glibc_unlikely (v_any_u64 (smallx)))
{
/* Update ix if top 12 bits of x are 0. */
uint64x2_t sub_x = vceqzq_u64 (vshrq_n_u64 (vix, 52));
if (__glibc_unlikely (v_any_u64 (sub_x)))
{
/* Normalize subnormal x so exponent becomes negative. */
uint64x2_t vix_norm = vreinterpretq_u64_f64 (
vabsq_f64 (vmulq_f64 (x, vcvtq_f64_u64 (v_u64 (1ULL << 52)))));
vix_norm = vsubq_u64 (vix_norm, v_u64 (52ULL << 52));
vix = vbslq_u64 (sub_x, vix_norm, vix);
}
}
/* Vector Log(ix, &lo). */
float64x2_t vlo;
float64x2_t vhi = v_log_inline (vix, &vlo, d);
/* Vector Exp(y_loghi, y_loglo). */
float64x2_t vehi = vmulq_f64 (y, vhi);
float64x2_t velo = vmulq_f64 (y, vlo);
float64x2_t vemi = vfmsq_f64 (vehi, y, vhi);
velo = vsubq_f64 (velo, vemi);
return v_exp_inline (vehi, velo, d);
}

View file

@ -0,0 +1,411 @@
/* Double-precision vector (SVE) pow function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
/* This version share a similar algorithm as AOR scalar pow.
The core computation consists in computing pow(x, y) as
exp (y * log (x)).
The algorithms for exp and log are very similar to scalar exp and log.
The log relies on table lookup for 3 variables and an order 8 polynomial.
It returns a high and a low contribution that are then passed to the exp,
to minimise the loss of accuracy in both routines.
The exp is based on 8-bit table lookup for scale and order-4 polynomial.
The SVE algorithm drops the tail in the exp computation at the price of
a lower accuracy, slightly above 1ULP.
The SVE algorithm also drops the special treatement of small (< 2^-65) and
large (> 2^63) finite values of |y|, as they only affect non-round to nearest
modes.
Maximum measured error is 1.04 ULPs:
SV_NAME_D2 (pow) (0x1.3d2d45bc848acp+63, -0x1.a48a38b40cd43p-12)
got 0x1.f7116284221fcp-1
want 0x1.f7116284221fdp-1. */
#include "math_config.h"
#include "sv_math.h"
/* Data is defined in v_pow_log_data.c. */
#define N_LOG (1 << V_POW_LOG_TABLE_BITS)
#define A __v_pow_log_data.poly
#define Off 0x3fe6955500000000
/* Data is defined in v_pow_exp_data.c. */
#define N_EXP (1 << V_POW_EXP_TABLE_BITS)
#define SignBias (0x800 << V_POW_EXP_TABLE_BITS)
#define C __v_pow_exp_data.poly
#define SmallExp 0x3c9 /* top12(0x1p-54). */
#define BigExp 0x408 /* top12(512.). */
#define ThresExp 0x03f /* BigExp - SmallExp. */
#define HugeExp 0x409 /* top12(1024.). */
/* Constants associated with pow. */
#define SmallPowX 0x001 /* top12(0x1p-126). */
#define BigPowX 0x7ff /* top12(INFINITY). */
#define ThresPowX 0x7fe /* BigPowX - SmallPowX. */
#define SmallPowY 0x3be /* top12(0x1.e7b6p-65). */
#define BigPowY 0x43e /* top12(0x1.749p62). */
#define ThresPowY 0x080 /* BigPowY - SmallPowY. */
/* Check if x is an integer. */
static inline svbool_t
sv_isint (svbool_t pg, svfloat64_t x)
{
return svcmpeq (pg, svrintz_z (pg, x), x);
}
/* Check if x is real not integer valued. */
static inline svbool_t
sv_isnotint (svbool_t pg, svfloat64_t x)
{
return svcmpne (pg, svrintz_z (pg, x), x);
}
/* Check if x is an odd integer. */
static inline svbool_t
sv_isodd (svbool_t pg, svfloat64_t x)
{
svfloat64_t y = svmul_x (pg, x, 0.5);
return sv_isnotint (pg, y);
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int
checkint (uint64_t iy)
{
int e = iy >> 52 & 0x7ff;
if (e < 0x3ff)
return 0;
if (e > 0x3ff + 52)
return 2;
if (iy & ((1ULL << (0x3ff + 52 - e)) - 1))
return 0;
if (iy & (1ULL << (0x3ff + 52 - e)))
return 1;
return 2;
}
/* Top 12 bits (sign and exponent of each double float lane). */
static inline svuint64_t
sv_top12 (svfloat64_t x)
{
return svlsr_x (svptrue_b64 (), svreinterpret_u64 (x), 52);
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline int
zeroinfnan (uint64_t i)
{
return 2 * i - 1 >= 2 * asuint64 (INFINITY) - 1;
}
/* Returns 1 if input is the bit representation of 0, infinity or nan. */
static inline svbool_t
sv_zeroinfnan (svbool_t pg, svuint64_t i)
{
return svcmpge (pg, svsub_x (pg, svmul_x (pg, i, 2), 1),
2 * asuint64 (INFINITY) - 1);
}
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double tmp, uint64_t sbits, uint64_t ki)
{
double scale;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by <= 460. */
sbits -= 1009ull << 52;
scale = asdouble (sbits);
return 0x1p1009 * (scale + scale * tmp);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
/* Note: sbits is signed scale. */
scale = asdouble (sbits);
double y = scale + scale * tmp;
return 0x1p-1022 * y;
}
/* Scalar fallback for special cases of SVE pow's exp. */
static inline svfloat64_t
sv_call_specialcase (svfloat64_t x1, svuint64_t u1, svuint64_t u2,
svfloat64_t y, svbool_t cmp)
{
svbool_t p = svpfirst (cmp, svpfalse ());
while (svptest_any (cmp, p))
{
double sx1 = svclastb (p, 0, x1);
uint64_t su1 = svclastb (p, 0, u1);
uint64_t su2 = svclastb (p, 0, u2);
double elem = specialcase (sx1, su1, su2);
svfloat64_t y2 = sv_f64 (elem);
y = svsel (p, y2, y);
p = svpnext_b64 (cmp, p);
}
return y;
}
/* Compute y+TAIL = log(x) where the rounded result is y and TAIL has about
additional 15 bits precision. IX is the bit representation of x, but
normalized in the subnormal range using the sign bit for the exponent. */
static inline svfloat64_t
sv_log_inline (svbool_t pg, svuint64_t ix, svfloat64_t *tail)
{
/* x = 2^k z; where z is in range [Off,2*Off) and exact.
The range is split into N subintervals.
The ith subinterval contains z and c is near its center. */
svuint64_t tmp = svsub_x (pg, ix, Off);
svuint64_t i = svand_x (pg, svlsr_x (pg, tmp, 52 - V_POW_LOG_TABLE_BITS),
sv_u64 (N_LOG - 1));
svint64_t k = svasr_x (pg, svreinterpret_s64 (tmp), 52);
svuint64_t iz = svsub_x (pg, ix, svand_x (pg, tmp, sv_u64 (0xfffULL << 52)));
svfloat64_t z = svreinterpret_f64 (iz);
svfloat64_t kd = svcvt_f64_x (pg, k);
/* log(x) = k*Ln2 + log(c) + log1p(z/c-1). */
/* SVE lookup requires 3 separate lookup tables, as opposed to scalar version
that uses array of structures. We also do the lookup earlier in the code to
make sure it finishes as early as possible. */
svfloat64_t invc = svld1_gather_index (pg, __v_pow_log_data.invc, i);
svfloat64_t logc = svld1_gather_index (pg, __v_pow_log_data.logc, i);
svfloat64_t logctail = svld1_gather_index (pg, __v_pow_log_data.logctail, i);
/* Note: 1/c is j/N or j/N/2 where j is an integer in [N,2N) and
|z/c - 1| < 1/N, so r = z/c - 1 is exactly representible. */
svfloat64_t r = svmad_x (pg, z, invc, -1.0);
/* k*Ln2 + log(c) + r. */
svfloat64_t t1 = svmla_x (pg, logc, kd, __v_pow_log_data.ln2_hi);
svfloat64_t t2 = svadd_x (pg, t1, r);
svfloat64_t lo1 = svmla_x (pg, logctail, kd, __v_pow_log_data.ln2_lo);
svfloat64_t lo2 = svadd_x (pg, svsub_x (pg, t1, t2), r);
/* Evaluation is optimized assuming superscalar pipelined execution. */
svfloat64_t ar = svmul_x (pg, r, -0.5); /* A[0] = -0.5. */
svfloat64_t ar2 = svmul_x (pg, r, ar);
svfloat64_t ar3 = svmul_x (pg, r, ar2);
/* k*Ln2 + log(c) + r + A[0]*r*r. */
svfloat64_t hi = svadd_x (pg, t2, ar2);
svfloat64_t lo3 = svmla_x (pg, svneg_x (pg, ar2), ar, r);
svfloat64_t lo4 = svadd_x (pg, svsub_x (pg, t2, hi), ar2);
/* p = log1p(r) - r - A[0]*r*r. */
/* p = (ar3 * (A[1] + r * A[2] + ar2 * (A[3] + r * A[4] + ar2 * (A[5] + r *
A[6])))). */
svfloat64_t a56 = svmla_x (pg, sv_f64 (A[5]), r, A[6]);
svfloat64_t a34 = svmla_x (pg, sv_f64 (A[3]), r, A[4]);
svfloat64_t a12 = svmla_x (pg, sv_f64 (A[1]), r, A[2]);
svfloat64_t p = svmla_x (pg, a34, ar2, a56);
p = svmla_x (pg, a12, ar2, p);
p = svmul_x (pg, ar3, p);
svfloat64_t lo = svadd_x (
pg, svadd_x (pg, svadd_x (pg, svadd_x (pg, lo1, lo2), lo3), lo4), p);
svfloat64_t y = svadd_x (pg, hi, lo);
*tail = svadd_x (pg, svsub_x (pg, hi, y), lo);
return y;
}
/* Computes sign*exp(x+xtail) where |xtail| < 2^-8/N and |xtail| <= |x|.
The sign_bias argument is SignBias or 0 and sets the sign to -1 or 1. */
static inline svfloat64_t
sv_exp_inline (svbool_t pg, svfloat64_t x, svfloat64_t xtail,
svuint64_t sign_bias)
{
/* 3 types of special cases: tiny (uflow and spurious uflow), huge (oflow)
and other cases of large values of x (scale * (1 + TMP) oflow). */
svuint64_t abstop = svand_x (pg, sv_top12 (x), 0x7ff);
/* |x| is large (|x| >= 512) or tiny (|x| <= 0x1p-54). */
svbool_t uoflow = svcmpge (pg, svsub_x (pg, abstop, SmallExp), ThresExp);
/* Conditions special, uflow and oflow are all expressed as uoflow &&
something, hence do not bother computing anything if no lane in uoflow is
true. */
svbool_t special = svpfalse_b ();
svbool_t uflow = svpfalse_b ();
svbool_t oflow = svpfalse_b ();
if (__glibc_unlikely (svptest_any (pg, uoflow)))
{
/* |x| is tiny (|x| <= 0x1p-54). */
uflow = svcmpge (pg, svsub_x (pg, abstop, SmallExp), 0x80000000);
uflow = svand_z (pg, uoflow, uflow);
/* |x| is huge (|x| >= 1024). */
oflow = svcmpge (pg, abstop, HugeExp);
oflow = svand_z (pg, uoflow, svbic_z (pg, oflow, uflow));
/* For large |x| values (512 < |x| < 1024) scale * (1 + TMP) can overflow
or underflow. */
special = svbic_z (pg, uoflow, svorr_z (pg, uflow, oflow));
}
/* exp(x) = 2^(k/N) * exp(r), with exp(r) in [2^(-1/2N),2^(1/2N)]. */
/* x = ln2/N*k + r, with int k and r in [-ln2/2N, ln2/2N]. */
svfloat64_t z = svmul_x (pg, x, __v_pow_exp_data.n_over_ln2);
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
svfloat64_t shift = sv_f64 (__v_pow_exp_data.shift);
svfloat64_t kd = svadd_x (pg, z, shift);
svuint64_t ki = svreinterpret_u64 (kd);
kd = svsub_x (pg, kd, shift);
svfloat64_t r = x;
r = svmls_x (pg, r, kd, __v_pow_exp_data.ln2_over_n_hi);
r = svmls_x (pg, r, kd, __v_pow_exp_data.ln2_over_n_lo);
/* The code assumes 2^-200 < |xtail| < 2^-8/N. */
r = svadd_x (pg, r, xtail);
/* 2^(k/N) ~= scale. */
svuint64_t idx = svand_x (pg, ki, N_EXP - 1);
svuint64_t top
= svlsl_x (pg, svadd_x (pg, ki, sign_bias), 52 - V_POW_EXP_TABLE_BITS);
/* This is only a valid scale when -1023*N < k < 1024*N. */
svuint64_t sbits = svld1_gather_index (pg, __v_pow_exp_data.sbits, idx);
sbits = svadd_x (pg, sbits, top);
/* exp(x) = 2^(k/N) * exp(r) ~= scale + scale * (exp(r) - 1). */
svfloat64_t r2 = svmul_x (pg, r, r);
svfloat64_t tmp = svmla_x (pg, sv_f64 (C[1]), r, C[2]);
tmp = svmla_x (pg, sv_f64 (C[0]), r, tmp);
tmp = svmla_x (pg, r, r2, tmp);
svfloat64_t scale = svreinterpret_f64 (sbits);
/* Note: tmp == 0 or |tmp| > 2^-200 and scale > 2^-739, so there
is no spurious underflow here even without fma. */
z = svmla_x (pg, scale, scale, tmp);
/* Update result with special and large cases. */
if (__glibc_unlikely (svptest_any (pg, special)))
z = sv_call_specialcase (tmp, sbits, ki, z, special);
/* Handle underflow and overflow. */
svuint64_t sign_bit = svlsr_x (pg, svreinterpret_u64 (x), 63);
svbool_t x_is_neg = svcmpne (pg, sign_bit, 0);
svuint64_t sign_mask = svlsl_x (pg, sign_bias, 52 - V_POW_EXP_TABLE_BITS);
svfloat64_t res_uoflow = svsel (x_is_neg, sv_f64 (0.0), sv_f64 (INFINITY));
res_uoflow = svreinterpret_f64 (
svorr_x (pg, svreinterpret_u64 (res_uoflow), sign_mask));
z = svsel (oflow, res_uoflow, z);
/* Avoid spurious underflow for tiny x. */
svfloat64_t res_spurious_uflow
= svreinterpret_f64 (svorr_x (pg, sign_mask, 0x3ff0000000000000));
z = svsel (uflow, res_spurious_uflow, z);
return z;
}
static inline double
pow_sc (double x, double y)
{
uint64_t ix = asuint64 (x);
uint64_t iy = asuint64 (y);
/* Special cases: |x| or |y| is 0, inf or nan. */
if (__glibc_unlikely (zeroinfnan (iy)))
{
if (2 * iy == 0)
return issignaling_inline (x) ? x + y : 1.0;
if (ix == asuint64 (1.0))
return issignaling_inline (y) ? x + y : 1.0;
if (2 * ix > 2 * asuint64 (INFINITY) || 2 * iy > 2 * asuint64 (INFINITY))
return x + y;
if (2 * ix == 2 * asuint64 (1.0))
return 1.0;
if ((2 * ix < 2 * asuint64 (1.0)) == !(iy >> 63))
return 0.0; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (__glibc_unlikely (zeroinfnan (ix)))
{
double_t x2 = x * x;
if (ix >> 63 && checkint (iy) == 1)
x2 = -x2;
return (iy >> 63) ? 1 / x2 : x2;
}
return x;
}
svfloat64_t SV_NAME_D2 (pow) (svfloat64_t x, svfloat64_t y, const svbool_t pg)
{
/* This preamble handles special case conditions used in the final scalar
fallbacks. It also updates ix and sign_bias, that are used in the core
computation too, i.e., exp( y * log (x) ). */
svuint64_t vix0 = svreinterpret_u64 (x);
svuint64_t viy0 = svreinterpret_u64 (y);
svuint64_t vtopx0 = svlsr_x (svptrue_b64 (), vix0, 52);
/* Negative x cases. */
svuint64_t sign_bit = svlsr_m (pg, vix0, 63);
svbool_t xisneg = svcmpeq (pg, sign_bit, 1);
/* Set sign_bias and ix depending on sign of x and nature of y. */
svbool_t yisnotint_xisneg = svpfalse_b ();
svuint64_t sign_bias = sv_u64 (0);
svuint64_t vix = vix0;
svuint64_t vtopx1 = vtopx0;
if (__glibc_unlikely (svptest_any (pg, xisneg)))
{
/* Determine nature of y. */
yisnotint_xisneg = sv_isnotint (xisneg, y);
svbool_t yisint_xisneg = sv_isint (xisneg, y);
svbool_t yisodd_xisneg = sv_isodd (xisneg, y);
/* ix set to abs(ix) if y is integer. */
vix = svand_m (yisint_xisneg, vix0, 0x7fffffffffffffff);
vtopx1 = svand_m (yisint_xisneg, vtopx0, 0x7ff);
/* Set to SignBias if x is negative and y is odd. */
sign_bias = svsel (yisodd_xisneg, sv_u64 (SignBias), sv_u64 (0));
}
/* Special cases of x or y: zero, inf and nan. */
svbool_t xspecial = sv_zeroinfnan (pg, vix0);
svbool_t yspecial = sv_zeroinfnan (pg, viy0);
svbool_t special = svorr_z (pg, xspecial, yspecial);
/* Small cases of x: |x| < 0x1p-126. */
svuint64_t vabstopx0 = svand_x (pg, vtopx0, 0x7ff);
svbool_t xsmall = svcmplt (pg, vabstopx0, SmallPowX);
if (__glibc_unlikely (svptest_any (pg, xsmall)))
{
/* Normalize subnormal x so exponent becomes negative. */
svbool_t topx_is_null = svcmpeq (xsmall, vtopx1, 0);
svuint64_t vix_norm = svreinterpret_u64 (svmul_m (xsmall, x, 0x1p52));
vix_norm = svand_m (xsmall, vix_norm, 0x7fffffffffffffff);
vix_norm = svsub_m (xsmall, vix_norm, 52ULL << 52);
vix = svsel (topx_is_null, vix_norm, vix);
}
/* y_hi = log(ix, &y_lo). */
svfloat64_t vlo;
svfloat64_t vhi = sv_log_inline (pg, vix, &vlo);
/* z = exp(y_hi, y_lo, sign_bias). */
svfloat64_t vehi = svmul_x (pg, y, vhi);
svfloat64_t velo = svmul_x (pg, y, vlo);
svfloat64_t vemi = svmls_x (pg, vehi, y, vhi);
velo = svsub_x (pg, velo, vemi);
svfloat64_t vz = sv_exp_inline (pg, vehi, velo, sign_bias);
/* Cases of finite y and finite negative x. */
vz = svsel (yisnotint_xisneg, sv_f64 (__builtin_nan ("")), vz);
/* Cases of zero/inf/nan x or y. */
if (__glibc_unlikely (svptest_any (pg, special)))
vz = sv_call2_f64 (pow_sc, x, y, vz, special);
return vz;
}

View file

@ -0,0 +1,210 @@
/* Single-precision vector (AdvSIMD) pow function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "math_config.h"
#include "v_math.h"
#define Min v_u32 (0x00800000)
#define Max v_u32 (0x7f800000)
#define Thresh v_u32 (0x7f000000) /* Max - Min. */
#define MantissaMask v_u32 (0x007fffff)
#define A d->log2_poly
#define C d->exp2f_poly
/* 2.6 ulp ~ 0.5 + 2^24 (128*Ln2*relerr_log2 + relerr_exp2). */
#define Off v_u32 (0x3f35d000)
#define V_POWF_LOG2_TABLE_BITS 5
#define V_EXP2F_TABLE_BITS 5
#define Log2IdxMask ((1 << V_POWF_LOG2_TABLE_BITS) - 1)
#define Scale ((double) (1 << V_EXP2F_TABLE_BITS))
static const struct data
{
struct
{
double invc, logc;
} log2_tab[1 << V_POWF_LOG2_TABLE_BITS];
float64x2_t log2_poly[4];
uint64_t exp2f_tab[1 << V_EXP2F_TABLE_BITS];
float64x2_t exp2f_poly[3];
} data = {
.log2_tab = {{0x1.6489890582816p+0, -0x1.e960f97b22702p-2 * Scale},
{0x1.5cf19b35e3472p+0, -0x1.c993406cd4db6p-2 * Scale},
{0x1.55aac0e956d65p+0, -0x1.aa711d9a7d0f3p-2 * Scale},
{0x1.4eb0022977e01p+0, -0x1.8bf37bacdce9bp-2 * Scale},
{0x1.47fcccda1dd1fp+0, -0x1.6e13b3519946ep-2 * Scale},
{0x1.418ceabab68c1p+0, -0x1.50cb8281e4089p-2 * Scale},
{0x1.3b5c788f1edb3p+0, -0x1.341504a237e2bp-2 * Scale},
{0x1.3567de48e9c9ap+0, -0x1.17eaab624ffbbp-2 * Scale},
{0x1.2fabc80fd19bap+0, -0x1.f88e708f8c853p-3 * Scale},
{0x1.2a25200ce536bp+0, -0x1.c24b6da113914p-3 * Scale},
{0x1.24d108e0152e3p+0, -0x1.8d02ee397cb1dp-3 * Scale},
{0x1.1facd8ab2fbe1p+0, -0x1.58ac1223408b3p-3 * Scale},
{0x1.1ab614a03efdfp+0, -0x1.253e6fd190e89p-3 * Scale},
{0x1.15ea6d03af9ffp+0, -0x1.e5641882c12ffp-4 * Scale},
{0x1.1147b994bb776p+0, -0x1.81fea712926f7p-4 * Scale},
{0x1.0ccbf650593aap+0, -0x1.203e240de64a3p-4 * Scale},
{0x1.0875408477302p+0, -0x1.8029b86a78281p-5 * Scale},
{0x1.0441d42a93328p+0, -0x1.85d713190fb9p-6 * Scale},
{0x1p+0, 0x0p+0 * Scale},
{0x1.f1d006c855e86p-1, 0x1.4c1cc07312997p-5 * Scale},
{0x1.e28c3341aa301p-1, 0x1.5e1848ccec948p-4 * Scale},
{0x1.d4bdf9aa64747p-1, 0x1.04cfcb7f1196fp-3 * Scale},
{0x1.c7b45a24e5803p-1, 0x1.582813d463c21p-3 * Scale},
{0x1.bb5f5eb2ed60ap-1, 0x1.a936fa68760ccp-3 * Scale},
{0x1.afb0bff8fe6b4p-1, 0x1.f81bc31d6cc4ep-3 * Scale},
{0x1.a49badf7ab1f5p-1, 0x1.2279a09fae6b1p-2 * Scale},
{0x1.9a14a111fc4c9p-1, 0x1.47ec0b6df5526p-2 * Scale},
{0x1.901131f5b2fdcp-1, 0x1.6c71762280f1p-2 * Scale},
{0x1.8687f73f6d865p-1, 0x1.90155070798dap-2 * Scale},
{0x1.7d7067eb77986p-1, 0x1.b2e23b1d3068cp-2 * Scale},
{0x1.74c2c1cf97b65p-1, 0x1.d4e21b0daa86ap-2 * Scale},
{0x1.6c77f37cff2a1p-1, 0x1.f61e2a2f67f3fp-2 * Scale},},
.log2_poly = { /* rel err: 1.5 * 2^-30. */
V2 (-0x1.6ff5daa3b3d7cp-2 * Scale),
V2 (0x1.ec81d03c01aebp-2 * Scale),
V2 (-0x1.71547bb43f101p-1 * Scale),
V2 (0x1.7154764a815cbp0 * Scale)},
.exp2f_tab = {0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f,
0x3fef9301d0125b51, 0x3fef72b83c7d517b, 0x3fef54873168b9aa,
0x3fef387a6e756238, 0x3fef1e9df51fdee1, 0x3fef06fe0a31b715,
0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429,
0x3feea47eb03a5585, 0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74,
0x3feea11473eb0187, 0x3feea589994cce13, 0x3feeace5422aa0db,
0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c,
0x3fef3720dcef9069, 0x3fef5818dcfba487, 0x3fef7c97337b9b5f,
0x3fefa4afa2a490da, 0x3fefd0765b6e4540,},
.exp2f_poly = { /* rel err: 1.69 * 2^-34. */
V2 (0x1.c6af84b912394p-5 / Scale / Scale / Scale),
V2 (0x1.ebfce50fac4f3p-3 / Scale / Scale),
V2 (0x1.62e42ff0c52d6p-1 / Scale)}};
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t x, float32x4_t y, float32x4_t ret, uint32x4_t cmp)
{
return v_call2_f32 (powf, x, y, ret, cmp);
}
static inline float64x2_t
ylogx_core (const struct data *d, float64x2_t iz, float64x2_t k,
float64x2_t invc, float64x2_t logc, float64x2_t y)
{
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k. */
float64x2_t r = vfmaq_f64 (v_f64 (-1.0), iz, invc);
float64x2_t y0 = vaddq_f64 (logc, k);
/* Polynomial to approximate log1p(r)/ln2. */
float64x2_t logx = vfmaq_f64 (A[1], r, A[0]);
logx = vfmaq_f64 (A[2], logx, r);
logx = vfmaq_f64 (A[3], logx, r);
logx = vfmaq_f64 (y0, logx, r);
return vmulq_f64 (logx, y);
}
static inline float64x2_t
log2_lookup (const struct data *d, uint32_t i)
{
return vld1q_f64 (
&d->log2_tab[(i >> (23 - V_POWF_LOG2_TABLE_BITS)) & Log2IdxMask].invc);
}
static inline uint64x1_t
exp2f_lookup (const struct data *d, uint64_t i)
{
return vld1_u64 (&d->exp2f_tab[i % (1 << V_EXP2F_TABLE_BITS)]);
}
static inline float32x2_t
powf_core (const struct data *d, float64x2_t ylogx)
{
/* N*x = k + r with r in [-1/2, 1/2]. */
float64x2_t kd = vrndnq_f64 (ylogx);
int64x2_t ki = vcvtaq_s64_f64 (ylogx);
float64x2_t r = vsubq_f64 (ylogx, kd);
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1). */
uint64x2_t t = vcombine_u64 (exp2f_lookup (d, vgetq_lane_s64 (ki, 0)),
exp2f_lookup (d, vgetq_lane_s64 (ki, 1)));
t = vaddq_u64 (
t, vreinterpretq_u64_s64 (vshlq_n_s64 (ki, 52 - V_EXP2F_TABLE_BITS)));
float64x2_t s = vreinterpretq_f64_u64 (t);
float64x2_t p = vfmaq_f64 (C[1], r, C[0]);
p = vfmaq_f64 (C[2], r, p);
p = vfmaq_f64 (s, p, vmulq_f64 (s, r));
return vcvt_f32_f64 (p);
}
float32x4_t VPCS_ATTR V_NAME_F2 (pow) (float32x4_t x, float32x4_t y)
{
const struct data *d = ptr_barrier (&data);
uint32x4_t u = vreinterpretq_u32_f32 (x);
uint32x4_t cmp = vcgeq_u32 (vsubq_u32 (u, Min), Thresh);
uint32x4_t tmp = vsubq_u32 (u, Off);
uint32x4_t top = vbicq_u32 (tmp, MantissaMask);
float32x4_t iz = vreinterpretq_f32_u32 (vsubq_u32 (u, top));
int32x4_t k = vshrq_n_s32 (vreinterpretq_s32_u32 (top),
23 - V_EXP2F_TABLE_BITS); /* arithmetic shift. */
/* Use double precision for each lane: split input vectors into lo and hi
halves and promote. */
float64x2_t tab0 = log2_lookup (d, vgetq_lane_u32 (tmp, 0)),
tab1 = log2_lookup (d, vgetq_lane_u32 (tmp, 1)),
tab2 = log2_lookup (d, vgetq_lane_u32 (tmp, 2)),
tab3 = log2_lookup (d, vgetq_lane_u32 (tmp, 3));
float64x2_t iz_lo = vcvt_f64_f32 (vget_low_f32 (iz)),
iz_hi = vcvt_high_f64_f32 (iz);
float64x2_t k_lo = vcvtq_f64_s64 (vmovl_s32 (vget_low_s32 (k))),
k_hi = vcvtq_f64_s64 (vmovl_high_s32 (k));
float64x2_t invc_lo = vzip1q_f64 (tab0, tab1),
invc_hi = vzip1q_f64 (tab2, tab3),
logc_lo = vzip2q_f64 (tab0, tab1),
logc_hi = vzip2q_f64 (tab2, tab3);
float64x2_t y_lo = vcvt_f64_f32 (vget_low_f32 (y)),
y_hi = vcvt_high_f64_f32 (y);
float64x2_t ylogx_lo = ylogx_core (d, iz_lo, k_lo, invc_lo, logc_lo, y_lo);
float64x2_t ylogx_hi = ylogx_core (d, iz_hi, k_hi, invc_hi, logc_hi, y_hi);
uint32x4_t ylogx_top = vuzp2q_u32 (vreinterpretq_u32_f64 (ylogx_lo),
vreinterpretq_u32_f64 (ylogx_hi));
cmp = vorrq_u32 (
cmp, vcgeq_u32 (vandq_u32 (vshrq_n_u32 (ylogx_top, 15), v_u32 (0xffff)),
vdupq_n_u32 (asuint64 (126.0 * (1 << V_EXP2F_TABLE_BITS))
>> 47)));
float32x2_t p_lo = powf_core (d, ylogx_lo);
float32x2_t p_hi = powf_core (d, ylogx_hi);
if (__glibc_unlikely (v_any_u32 (cmp)))
return special_case (x, y, vcombine_f32 (p_lo, p_hi), cmp);
return vcombine_f32 (p_lo, p_hi);
}
libmvec_hidden_def (V_NAME_F2 (pow))
HALF_WIDTH_ALIAS_F2(pow)

View file

@ -0,0 +1,335 @@
/* Single-precision vector (SVE) pow function
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "../ieee754/flt-32/math_config.h"
#include "sv_math.h"
/* The following data is used in the SVE pow core computation
and special case detection. */
#define Tinvc __v_powf_data.invc
#define Tlogc __v_powf_data.logc
#define Texp __v_powf_data.scale
#define SignBias (1 << (V_POWF_EXP2_TABLE_BITS + 11))
#define Shift 0x1.8p52
#define Norm 0x1p23f /* 0x4b000000. */
/* Overall ULP error bound for pow is 2.6 ulp
~ 0.5 + 2^24 (128*Ln2*relerr_log2 + relerr_exp2). */
static const struct data
{
double log_poly[4];
double exp_poly[3];
float uflow_bound, oflow_bound, small_bound;
uint32_t sign_bias, sign_mask, subnormal_bias, off;
} data = {
/* rel err: 1.5 * 2^-30. Each coefficients is multiplied the value of
V_POWF_EXP2_N. */
.log_poly = { -0x1.6ff5daa3b3d7cp+3, 0x1.ec81d03c01aebp+3,
-0x1.71547bb43f101p+4, 0x1.7154764a815cbp+5 },
/* rel err: 1.69 * 2^-34. */
.exp_poly = {
0x1.c6af84b912394p-20, /* A0 / V_POWF_EXP2_N^3. */
0x1.ebfce50fac4f3p-13, /* A1 / V_POWF_EXP2_N^2. */
0x1.62e42ff0c52d6p-6, /* A3 / V_POWF_EXP2_N. */
},
.uflow_bound = -0x1.2cp+12f, /* -150.0 * V_POWF_EXP2_N. */
.oflow_bound = 0x1p+12f, /* 128.0 * V_POWF_EXP2_N. */
.small_bound = 0x1p-126f,
.off = 0x3f35d000,
.sign_bias = SignBias,
.sign_mask = 0x80000000,
.subnormal_bias = 0x0b800000, /* 23 << 23. */
};
#define A(i) sv_f64 (d->log_poly[i])
#define C(i) sv_f64 (d->exp_poly[i])
/* Check if x is an integer. */
static inline svbool_t
svisint (svbool_t pg, svfloat32_t x)
{
return svcmpeq (pg, svrintz_z (pg, x), x);
}
/* Check if x is real not integer valued. */
static inline svbool_t
svisnotint (svbool_t pg, svfloat32_t x)
{
return svcmpne (pg, svrintz_z (pg, x), x);
}
/* Check if x is an odd integer. */
static inline svbool_t
svisodd (svbool_t pg, svfloat32_t x)
{
svfloat32_t y = svmul_x (pg, x, 0.5f);
return svisnotint (pg, y);
}
/* Check if zero, inf or nan. */
static inline svbool_t
sv_zeroinfnan (svbool_t pg, svuint32_t i)
{
return svcmpge (pg, svsub_x (pg, svmul_x (pg, i, 2u), 1),
2u * 0x7f800000 - 1);
}
/* Returns 0 if not int, 1 if odd int, 2 if even int. The argument is
the bit representation of a non-zero finite floating-point value. */
static inline int
checkint (uint32_t iy)
{
int e = iy >> 23 & 0xff;
if (e < 0x7f)
return 0;
if (e > 0x7f + 23)
return 2;
if (iy & ((1 << (0x7f + 23 - e)) - 1))
return 0;
if (iy & (1 << (0x7f + 23 - e)))
return 1;
return 2;
}
/* Check if zero, inf or nan. */
static inline int
zeroinfnan (uint32_t ix)
{
return 2 * ix - 1 >= 2u * 0x7f800000 - 1;
}
/* A scalar subroutine used to fix main power special cases. Similar to the
preamble of scalar powf except that we do not update ix and sign_bias. This
is done in the preamble of the SVE powf. */
static inline float
powf_specialcase (float x, float y, float z)
{
uint32_t ix = asuint (x);
uint32_t iy = asuint (y);
/* Either (x < 0x1p-126 or inf or nan) or (y is 0 or inf or nan). */
if (__glibc_unlikely (zeroinfnan (iy)))
{
if (2 * iy == 0)
return issignalingf_inline (x) ? x + y : 1.0f;
if (ix == 0x3f800000)
return issignalingf_inline (y) ? x + y : 1.0f;
if (2 * ix > 2u * 0x7f800000 || 2 * iy > 2u * 0x7f800000)
return x + y;
if (2 * ix == 2 * 0x3f800000)
return 1.0f;
if ((2 * ix < 2 * 0x3f800000) == !(iy & 0x80000000))
return 0.0f; /* |x|<1 && y==inf or |x|>1 && y==-inf. */
return y * y;
}
if (__glibc_unlikely (zeroinfnan (ix)))
{
float_t x2 = x * x;
if (ix & 0x80000000 && checkint (iy) == 1)
x2 = -x2;
return iy & 0x80000000 ? 1 / x2 : x2;
}
/* We need a return here in case x<0 and y is integer, but all other tests
need to be run. */
return z;
}
/* Scalar fallback for special case routines with custom signature. */
static inline svfloat32_t
sv_call_powf_sc (svfloat32_t x1, svfloat32_t x2, svfloat32_t y, svbool_t cmp)
{
svbool_t p = svpfirst (cmp, svpfalse ());
while (svptest_any (cmp, p))
{
float sx1 = svclastb (p, 0, x1);
float sx2 = svclastb (p, 0, x2);
float elem = svclastb (p, 0, y);
elem = powf_specialcase (sx1, sx2, elem);
svfloat32_t y2 = sv_f32 (elem);
y = svsel (p, y2, y);
p = svpnext_b32 (cmp, p);
}
return y;
}
/* Compute core for half of the lanes in double precision. */
static inline svfloat64_t
sv_powf_core_ext (const svbool_t pg, svuint64_t i, svfloat64_t z, svint64_t k,
svfloat64_t y, svuint64_t sign_bias, svfloat64_t *pylogx,
const struct data *d)
{
svfloat64_t invc = svld1_gather_index (pg, Tinvc, i);
svfloat64_t logc = svld1_gather_index (pg, Tlogc, i);
/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k. */
svfloat64_t r = svmla_x (pg, sv_f64 (-1.0), z, invc);
svfloat64_t y0 = svadd_x (pg, logc, svcvt_f64_x (pg, k));
/* Polynomial to approximate log1p(r)/ln2. */
svfloat64_t logx = A (0);
logx = svmla_x (pg, A (1), r, logx);
logx = svmla_x (pg, A (2), r, logx);
logx = svmla_x (pg, A (3), r, logx);
logx = svmla_x (pg, y0, r, logx);
*pylogx = svmul_x (pg, y, logx);
/* z - kd is in [-1, 1] in non-nearest rounding modes. */
svfloat64_t kd = svadd_x (pg, *pylogx, Shift);
svuint64_t ki = svreinterpret_u64 (kd);
kd = svsub_x (pg, kd, Shift);
r = svsub_x (pg, *pylogx, kd);
/* exp2(x) = 2^(k/N) * 2^r ~= s * (C0*r^3 + C1*r^2 + C2*r + 1). */
svuint64_t t
= svld1_gather_index (pg, Texp, svand_x (pg, ki, V_POWF_EXP2_N - 1));
svuint64_t ski = svadd_x (pg, ki, sign_bias);
t = svadd_x (pg, t, svlsl_x (pg, ski, 52 - V_POWF_EXP2_TABLE_BITS));
svfloat64_t s = svreinterpret_f64 (t);
svfloat64_t p = C (0);
p = svmla_x (pg, C (1), p, r);
p = svmla_x (pg, C (2), p, r);
p = svmla_x (pg, s, p, svmul_x (pg, s, r));
return p;
}
/* Widen vector to double precision and compute core on both halves of the
vector. Lower cost of promotion by considering all lanes active. */
static inline svfloat32_t
sv_powf_core (const svbool_t pg, svuint32_t i, svuint32_t iz, svint32_t k,
svfloat32_t y, svuint32_t sign_bias, svfloat32_t *pylogx,
const struct data *d)
{
const svbool_t ptrue = svptrue_b64 ();
/* Unpack and promote input vectors (pg, y, z, i, k and sign_bias) into two in
order to perform core computation in double precision. */
const svbool_t pg_lo = svunpklo (pg);
const svbool_t pg_hi = svunpkhi (pg);
svfloat64_t y_lo = svcvt_f64_x (
ptrue, svreinterpret_f32 (svunpklo (svreinterpret_u32 (y))));
svfloat64_t y_hi = svcvt_f64_x (
ptrue, svreinterpret_f32 (svunpkhi (svreinterpret_u32 (y))));
svfloat32_t z = svreinterpret_f32 (iz);
svfloat64_t z_lo = svcvt_f64_x (
ptrue, svreinterpret_f32 (svunpklo (svreinterpret_u32 (z))));
svfloat64_t z_hi = svcvt_f64_x (
ptrue, svreinterpret_f32 (svunpkhi (svreinterpret_u32 (z))));
svuint64_t i_lo = svunpklo (i);
svuint64_t i_hi = svunpkhi (i);
svint64_t k_lo = svunpklo (k);
svint64_t k_hi = svunpkhi (k);
svuint64_t sign_bias_lo = svunpklo (sign_bias);
svuint64_t sign_bias_hi = svunpkhi (sign_bias);
/* Compute each part in double precision. */
svfloat64_t ylogx_lo, ylogx_hi;
svfloat64_t lo = sv_powf_core_ext (pg_lo, i_lo, z_lo, k_lo, y_lo,
sign_bias_lo, &ylogx_lo, d);
svfloat64_t hi = sv_powf_core_ext (pg_hi, i_hi, z_hi, k_hi, y_hi,
sign_bias_hi, &ylogx_hi, d);
/* Convert back to single-precision and interleave. */
svfloat32_t ylogx_lo_32 = svcvt_f32_x (ptrue, ylogx_lo);
svfloat32_t ylogx_hi_32 = svcvt_f32_x (ptrue, ylogx_hi);
*pylogx = svuzp1 (ylogx_lo_32, ylogx_hi_32);
svfloat32_t lo_32 = svcvt_f32_x (ptrue, lo);
svfloat32_t hi_32 = svcvt_f32_x (ptrue, hi);
return svuzp1 (lo_32, hi_32);
}
/* Implementation of SVE powf.
Provides the same accuracy as AdvSIMD powf, since it relies on the same
algorithm. The theoretical maximum error is under 2.60 ULPs.
Maximum measured error is 2.56 ULPs:
SV_NAME_F2 (pow) (0x1.004118p+0, 0x1.5d14a4p+16) got 0x1.fd4bp+127
want 0x1.fd4b06p+127. */
svfloat32_t SV_NAME_F2 (pow) (svfloat32_t x, svfloat32_t y, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svuint32_t vix0 = svreinterpret_u32 (x);
svuint32_t viy0 = svreinterpret_u32 (y);
/* Negative x cases. */
svuint32_t sign_bit = svand_m (pg, vix0, d->sign_mask);
svbool_t xisneg = svcmpeq (pg, sign_bit, d->sign_mask);
/* Set sign_bias and ix depending on sign of x and nature of y. */
svbool_t yisnotint_xisneg = svpfalse_b ();
svuint32_t sign_bias = sv_u32 (0);
svuint32_t vix = vix0;
if (__glibc_unlikely (svptest_any (pg, xisneg)))
{
/* Determine nature of y. */
yisnotint_xisneg = svisnotint (xisneg, y);
svbool_t yisint_xisneg = svisint (xisneg, y);
svbool_t yisodd_xisneg = svisodd (xisneg, y);
/* ix set to abs(ix) if y is integer. */
vix = svand_m (yisint_xisneg, vix0, 0x7fffffff);
/* Set to SignBias if x is negative and y is odd. */
sign_bias = svsel (yisodd_xisneg, sv_u32 (d->sign_bias), sv_u32 (0));
}
/* Special cases of x or y: zero, inf and nan. */
svbool_t xspecial = sv_zeroinfnan (pg, vix0);
svbool_t yspecial = sv_zeroinfnan (pg, viy0);
svbool_t cmp = svorr_z (pg, xspecial, yspecial);
/* Small cases of x: |x| < 0x1p-126. */
svbool_t xsmall = svaclt (pg, x, d->small_bound);
if (__glibc_unlikely (svptest_any (pg, xsmall)))
{
/* Normalize subnormal x so exponent becomes negative. */
svuint32_t vix_norm = svreinterpret_u32 (svmul_x (xsmall, x, Norm));
vix_norm = svand_x (xsmall, vix_norm, 0x7fffffff);
vix_norm = svsub_x (xsmall, vix_norm, d->subnormal_bias);
vix = svsel (xsmall, vix_norm, vix);
}
/* Part of core computation carried in working precision. */
svuint32_t tmp = svsub_x (pg, vix, d->off);
svuint32_t i = svand_x (pg, svlsr_x (pg, tmp, (23 - V_POWF_LOG2_TABLE_BITS)),
V_POWF_LOG2_N - 1);
svuint32_t top = svand_x (pg, tmp, 0xff800000);
svuint32_t iz = svsub_x (pg, vix, top);
svint32_t k
= svasr_x (pg, svreinterpret_s32 (top), (23 - V_POWF_EXP2_TABLE_BITS));
/* Compute core in extended precision and return intermediate ylogx results to
handle cases of underflow and underflow in exp. */
svfloat32_t ylogx;
svfloat32_t ret = sv_powf_core (pg, i, iz, k, y, sign_bias, &ylogx, d);
/* Handle exp special cases of underflow and overflow. */
svuint32_t sign = svlsl_x (pg, sign_bias, 20 - V_POWF_EXP2_TABLE_BITS);
svfloat32_t ret_oflow
= svreinterpret_f32 (svorr_x (pg, sign, asuint (INFINITY)));
svfloat32_t ret_uflow = svreinterpret_f32 (sign);
ret = svsel (svcmple (pg, ylogx, d->uflow_bound), ret_uflow, ret);
ret = svsel (svcmpgt (pg, ylogx, d->oflow_bound), ret_oflow, ret);
/* Cases of finite y and finite negative x. */
ret = svsel (yisnotint_xisneg, sv_f32 (__builtin_nanf ("")), ret);
if (__glibc_unlikely (svptest_any (pg, cmp)))
return sv_call_powf_sc (x, y, ret, cmp);
return ret;
}

View file

@ -44,6 +44,7 @@ VPCS_VECTOR_WRAPPER (log_advsimd, _ZGVnN2v_log)
VPCS_VECTOR_WRAPPER (log10_advsimd, _ZGVnN2v_log10)
VPCS_VECTOR_WRAPPER (log1p_advsimd, _ZGVnN2v_log1p)
VPCS_VECTOR_WRAPPER (log2_advsimd, _ZGVnN2v_log2)
VPCS_VECTOR_WRAPPER_ff (pow_advsimd, _ZGVnN2vv_pow)
VPCS_VECTOR_WRAPPER (sin_advsimd, _ZGVnN2v_sin)
VPCS_VECTOR_WRAPPER (sinh_advsimd, _ZGVnN2v_sinh)
VPCS_VECTOR_WRAPPER (tan_advsimd, _ZGVnN2v_tan)

View file

@ -63,6 +63,7 @@ SVE_VECTOR_WRAPPER (log_sve, _ZGVsMxv_log)
SVE_VECTOR_WRAPPER (log10_sve, _ZGVsMxv_log10)
SVE_VECTOR_WRAPPER (log1p_sve, _ZGVsMxv_log1p)
SVE_VECTOR_WRAPPER (log2_sve, _ZGVsMxv_log2)
SVE_VECTOR_WRAPPER_ff (pow_sve, _ZGVsMxvv_pow)
SVE_VECTOR_WRAPPER (sin_sve, _ZGVsMxv_sin)
SVE_VECTOR_WRAPPER (sinh_sve, _ZGVsMxv_sinh)
SVE_VECTOR_WRAPPER (tan_sve, _ZGVsMxv_tan)

View file

@ -44,6 +44,7 @@ VPCS_VECTOR_WRAPPER (logf_advsimd, _ZGVnN4v_logf)
VPCS_VECTOR_WRAPPER (log10f_advsimd, _ZGVnN4v_log10f)
VPCS_VECTOR_WRAPPER (log1pf_advsimd, _ZGVnN4v_log1pf)
VPCS_VECTOR_WRAPPER (log2f_advsimd, _ZGVnN4v_log2f)
VPCS_VECTOR_WRAPPER_ff (powf_advsimd, _ZGVnN4vv_powf)
VPCS_VECTOR_WRAPPER (sinf_advsimd, _ZGVnN4v_sinf)
VPCS_VECTOR_WRAPPER (sinhf_advsimd, _ZGVnN4v_sinhf)
VPCS_VECTOR_WRAPPER (tanf_advsimd, _ZGVnN4v_tanf)

View file

@ -63,6 +63,7 @@ SVE_VECTOR_WRAPPER (logf_sve, _ZGVsMxv_logf)
SVE_VECTOR_WRAPPER (log10f_sve, _ZGVsMxv_log10f)
SVE_VECTOR_WRAPPER (log1pf_sve, _ZGVsMxv_log1pf)
SVE_VECTOR_WRAPPER (log2f_sve, _ZGVsMxv_log2f)
SVE_VECTOR_WRAPPER_ff (powf_sve, _ZGVsMxvv_powf)
SVE_VECTOR_WRAPPER (sinf_sve, _ZGVsMxv_sinf)
SVE_VECTOR_WRAPPER (sinhf_sve, _ZGVsMxv_sinhf)
SVE_VECTOR_WRAPPER (tanf_sve, _ZGVsMxv_tanf)

View file

@ -0,0 +1,301 @@
/* Shared data between exp, exp2 and pow.
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "vecmath_config.h"
#define N (1 << V_POW_EXP_TABLE_BITS)
const struct v_pow_exp_data __v_pow_exp_data = {
// exp polynomial coefficients.
.poly = {
// abs error: 1.43*2^-58
// ulp error: 0.549 (0.550 without fma)
// if |x| < ln2/512
0x1.fffffffffffd4p-2,
0x1.5555571d6ef9p-3,
0x1.5555576a5adcep-5,
},
// N/ln2
.n_over_ln2 = 0x1.71547652b82fep0 * N,
// ln2/N
.ln2_over_n_hi = 0x1.62e42fefc0000p-9,
.ln2_over_n_lo = -0x1.c610ca86c3899p-45,
// Used for rounding to nearest integer without using intrinsics.
.shift = 0x1.8p52,
// 2^(k/N) ~= H[k]*(1 + T[k]) for int k in [0,N)
// sbits[k] = asuint64(H[k]) - (k << 52)/N
.sbits = {
0x3ff0000000000000,
0x3feffb1afa5abcbf,
0x3feff63da9fb3335,
0x3feff168143b0281,
0x3fefec9a3e778061,
0x3fefe7d42e11bbcc,
0x3fefe315e86e7f85,
0x3fefde5f72f654b1,
0x3fefd9b0d3158574,
0x3fefd50a0e3c1f89,
0x3fefd06b29ddf6de,
0x3fefcbd42b72a836,
0x3fefc74518759bc8,
0x3fefc2bdf66607e0,
0x3fefbe3ecac6f383,
0x3fefb9c79b1f3919,
0x3fefb5586cf9890f,
0x3fefb0f145e46c85,
0x3fefac922b7247f7,
0x3fefa83b23395dec,
0x3fefa3ec32d3d1a2,
0x3fef9fa55fdfa9c5,
0x3fef9b66affed31b,
0x3fef973028d7233e,
0x3fef9301d0125b51,
0x3fef8edbab5e2ab6,
0x3fef8abdc06c31cc,
0x3fef86a814f204ab,
0x3fef829aaea92de0,
0x3fef7e95934f312e,
0x3fef7a98c8a58e51,
0x3fef76a45471c3c2,
0x3fef72b83c7d517b,
0x3fef6ed48695bbc0,
0x3fef6af9388c8dea,
0x3fef672658375d2f,
0x3fef635beb6fcb75,
0x3fef5f99f8138a1c,
0x3fef5be084045cd4,
0x3fef582f95281c6b,
0x3fef54873168b9aa,
0x3fef50e75eb44027,
0x3fef4d5022fcd91d,
0x3fef49c18438ce4d,
0x3fef463b88628cd6,
0x3fef42be3578a819,
0x3fef3f49917ddc96,
0x3fef3bdda27912d1,
0x3fef387a6e756238,
0x3fef351ffb82140a,
0x3fef31ce4fb2a63f,
0x3fef2e85711ece75,
0x3fef2b4565e27cdd,
0x3fef280e341ddf29,
0x3fef24dfe1f56381,
0x3fef21ba7591bb70,
0x3fef1e9df51fdee1,
0x3fef1b8a66d10f13,
0x3fef187fd0dad990,
0x3fef157e39771b2f,
0x3fef1285a6e4030b,
0x3fef0f961f641589,
0x3fef0cafa93e2f56,
0x3fef09d24abd886b,
0x3fef06fe0a31b715,
0x3fef0432edeeb2fd,
0x3fef0170fc4cd831,
0x3feefeb83ba8ea32,
0x3feefc08b26416ff,
0x3feef96266e3fa2d,
0x3feef6c55f929ff1,
0x3feef431a2de883b,
0x3feef1a7373aa9cb,
0x3feeef26231e754a,
0x3feeecae6d05d866,
0x3feeea401b7140ef,
0x3feee7db34e59ff7,
0x3feee57fbfec6cf4,
0x3feee32dc313a8e5,
0x3feee0e544ede173,
0x3feedea64c123422,
0x3feedc70df1c5175,
0x3feeda4504ac801c,
0x3feed822c367a024,
0x3feed60a21f72e2a,
0x3feed3fb2709468a,
0x3feed1f5d950a897,
0x3feecffa3f84b9d4,
0x3feece086061892d,
0x3feecc2042a7d232,
0x3feeca41ed1d0057,
0x3feec86d668b3237,
0x3feec6a2b5c13cd0,
0x3feec4e1e192aed2,
0x3feec32af0d7d3de,
0x3feec17dea6db7d7,
0x3feebfdad5362a27,
0x3feebe41b817c114,
0x3feebcb299fddd0d,
0x3feebb2d81d8abff,
0x3feeb9b2769d2ca7,
0x3feeb8417f4531ee,
0x3feeb6daa2cf6642,
0x3feeb57de83f4eef,
0x3feeb42b569d4f82,
0x3feeb2e2f4f6ad27,
0x3feeb1a4ca5d920f,
0x3feeb070dde910d2,
0x3feeaf4736b527da,
0x3feeae27dbe2c4cf,
0x3feead12d497c7fd,
0x3feeac0827ff07cc,
0x3feeab07dd485429,
0x3feeaa11fba87a03,
0x3feea9268a5946b7,
0x3feea84590998b93,
0x3feea76f15ad2148,
0x3feea6a320dceb71,
0x3feea5e1b976dc09,
0x3feea52ae6cdf6f4,
0x3feea47eb03a5585,
0x3feea3dd1d1929fd,
0x3feea34634ccc320,
0x3feea2b9febc8fb7,
0x3feea23882552225,
0x3feea1c1c70833f6,
0x3feea155d44ca973,
0x3feea0f4b19e9538,
0x3feea09e667f3bcd,
0x3feea052fa75173e,
0x3feea012750bdabf,
0x3fee9fdcddd47645,
0x3fee9fb23c651a2f,
0x3fee9f9298593ae5,
0x3fee9f7df9519484,
0x3fee9f7466f42e87,
0x3fee9f75e8ec5f74,
0x3fee9f8286ead08a,
0x3fee9f9a48a58174,
0x3fee9fbd35d7cbfd,
0x3fee9feb564267c9,
0x3feea024b1ab6e09,
0x3feea0694fde5d3f,
0x3feea0b938ac1cf6,
0x3feea11473eb0187,
0x3feea17b0976cfdb,
0x3feea1ed0130c132,
0x3feea26a62ff86f0,
0x3feea2f336cf4e62,
0x3feea3878491c491,
0x3feea427543e1a12,
0x3feea4d2add106d9,
0x3feea589994cce13,
0x3feea64c1eb941f7,
0x3feea71a4623c7ad,
0x3feea7f4179f5b21,
0x3feea8d99b4492ed,
0x3feea9cad931a436,
0x3feeaac7d98a6699,
0x3feeabd0a478580f,
0x3feeace5422aa0db,
0x3feeae05bad61778,
0x3feeaf3216b5448c,
0x3feeb06a5e0866d9,
0x3feeb1ae99157736,
0x3feeb2fed0282c8a,
0x3feeb45b0b91ffc6,
0x3feeb5c353aa2fe2,
0x3feeb737b0cdc5e5,
0x3feeb8b82b5f98e5,
0x3feeba44cbc8520f,
0x3feebbdd9a7670b3,
0x3feebd829fde4e50,
0x3feebf33e47a22a2,
0x3feec0f170ca07ba,
0x3feec2bb4d53fe0d,
0x3feec49182a3f090,
0x3feec674194bb8d5,
0x3feec86319e32323,
0x3feeca5e8d07f29e,
0x3feecc667b5de565,
0x3feece7aed8eb8bb,
0x3feed09bec4a2d33,
0x3feed2c980460ad8,
0x3feed503b23e255d,
0x3feed74a8af46052,
0x3feed99e1330b358,
0x3feedbfe53c12e59,
0x3feede6b5579fdbf,
0x3feee0e521356eba,
0x3feee36bbfd3f37a,
0x3feee5ff3a3c2774,
0x3feee89f995ad3ad,
0x3feeeb4ce622f2ff,
0x3feeee07298db666,
0x3feef0ce6c9a8952,
0x3feef3a2b84f15fb,
0x3feef68415b749b1,
0x3feef9728de5593a,
0x3feefc6e29f1c52a,
0x3feeff76f2fb5e47,
0x3fef028cf22749e4,
0x3fef05b030a1064a,
0x3fef08e0b79a6f1f,
0x3fef0c1e904bc1d2,
0x3fef0f69c3f3a207,
0x3fef12c25bd71e09,
0x3fef16286141b33d,
0x3fef199bdd85529c,
0x3fef1d1cd9fa652c,
0x3fef20ab5fffd07a,
0x3fef244778fafb22,
0x3fef27f12e57d14b,
0x3fef2ba88988c933,
0x3fef2f6d9406e7b5,
0x3fef33405751c4db,
0x3fef3720dcef9069,
0x3fef3b0f2e6d1675,
0x3fef3f0b555dc3fa,
0x3fef43155b5bab74,
0x3fef472d4a07897c,
0x3fef4b532b08c968,
0x3fef4f87080d89f2,
0x3fef53c8eacaa1d6,
0x3fef5818dcfba487,
0x3fef5c76e862e6d3,
0x3fef60e316c98398,
0x3fef655d71ff6075,
0x3fef69e603db3285,
0x3fef6e7cd63a8315,
0x3fef7321f301b460,
0x3fef77d5641c0658,
0x3fef7c97337b9b5f,
0x3fef81676b197d17,
0x3fef864614f5a129,
0x3fef8b333b16ee12,
0x3fef902ee78b3ff6,
0x3fef953924676d76,
0x3fef9a51fbc74c83,
0x3fef9f7977cdb740,
0x3fefa4afa2a490da,
0x3fefa9f4867cca6e,
0x3fefaf482d8e67f1,
0x3fefb4aaa2188510,
0x3fefba1bee615a27,
0x3fefbf9c1cb6412a,
0x3fefc52b376bba97,
0x3fefcac948dd7274,
0x3fefd0765b6e4540,
0x3fefd632798844f8,
0x3fefdbfdad9cbe14,
0x3fefe1d802243c89,
0x3fefe7c1819e90d8,
0x3fefedba3692d514,
0x3feff3c22b8f71f1,
0x3feff9d96b2a23d9,
},
};

View file

@ -0,0 +1,186 @@
/* Data for the log part of pow.
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "vecmath_config.h"
#define N (1 << V_POW_LOG_TABLE_BITS)
/* Algorithm:
x = 2^k z
log(x) = k ln2 + log(c) + log(z/c)
log(z/c) = poly(z/c - 1)
where z is in [0x1.69555p-1; 0x1.69555p0] which is split into N subintervals
and z falls into the ith one, then table entries are computed as
tab[i].invc = 1/c
tab[i].logc = round(0x1p43*log(c))/0x1p43
tab[i].logctail = (double)(log(c) - logc)
where c is chosen near the center of the subinterval such that 1/c has only
a few precision bits so z/c - 1 is exactly representible as double:
1/c = center < 1 ? round(N/center)/N : round(2*N/center)/N/2
Note: |z/c - 1| < 1/N for the chosen c, |log(c) - logc - logctail| <
0x1p-97, the last few bits of logc are rounded away so k*ln2hi + logc has no
rounding error and the interval for z is selected such that near x == 1,
where log(x)
is tiny, large cancellation error is avoided in logc + poly(z/c - 1). */
const struct v_pow_log_data __v_pow_log_data = {
/* relative error: 0x1.11922ap-70 in [-0x1.6bp-8, 0x1.6bp-8]
Coefficients are scaled to match the scaling during evaluation. */
.poly = { -0x1p-1, -0x1.555555555556p-1, 0x1.0000000000006p-1,
0x1.999999959554ep-1, -0x1.555555529a47ap-1, -0x1.2495b9b4845e9p0,
0x1.0002b8b263fc3p0, },
.ln2_hi = 0x1.62e42fefa3800p-1,
.ln2_lo = 0x1.ef35793c76730p-45,
.invc = { 0x1.6a00000000000p+0, 0x1.6800000000000p+0, 0x1.6600000000000p+0,
0x1.6400000000000p+0, 0x1.6200000000000p+0, 0x1.6000000000000p+0,
0x1.5e00000000000p+0, 0x1.5c00000000000p+0, 0x1.5a00000000000p+0,
0x1.5800000000000p+0, 0x1.5600000000000p+0, 0x1.5600000000000p+0,
0x1.5400000000000p+0, 0x1.5200000000000p+0, 0x1.5000000000000p+0,
0x1.4e00000000000p+0, 0x1.4c00000000000p+0, 0x1.4a00000000000p+0,
0x1.4a00000000000p+0, 0x1.4800000000000p+0, 0x1.4600000000000p+0,
0x1.4400000000000p+0, 0x1.4200000000000p+0, 0x1.4000000000000p+0,
0x1.4000000000000p+0, 0x1.3e00000000000p+0, 0x1.3c00000000000p+0,
0x1.3a00000000000p+0, 0x1.3a00000000000p+0, 0x1.3800000000000p+0,
0x1.3600000000000p+0, 0x1.3400000000000p+0, 0x1.3400000000000p+0,
0x1.3200000000000p+0, 0x1.3000000000000p+0, 0x1.3000000000000p+0,
0x1.2e00000000000p+0, 0x1.2c00000000000p+0, 0x1.2c00000000000p+0,
0x1.2a00000000000p+0, 0x1.2800000000000p+0, 0x1.2600000000000p+0,
0x1.2600000000000p+0, 0x1.2400000000000p+0, 0x1.2400000000000p+0,
0x1.2200000000000p+0, 0x1.2000000000000p+0, 0x1.2000000000000p+0,
0x1.1e00000000000p+0, 0x1.1c00000000000p+0, 0x1.1c00000000000p+0,
0x1.1a00000000000p+0, 0x1.1a00000000000p+0, 0x1.1800000000000p+0,
0x1.1600000000000p+0, 0x1.1600000000000p+0, 0x1.1400000000000p+0,
0x1.1400000000000p+0, 0x1.1200000000000p+0, 0x1.1000000000000p+0,
0x1.1000000000000p+0, 0x1.0e00000000000p+0, 0x1.0e00000000000p+0,
0x1.0c00000000000p+0, 0x1.0c00000000000p+0, 0x1.0a00000000000p+0,
0x1.0a00000000000p+0, 0x1.0800000000000p+0, 0x1.0800000000000p+0,
0x1.0600000000000p+0, 0x1.0400000000000p+0, 0x1.0400000000000p+0,
0x1.0200000000000p+0, 0x1.0200000000000p+0, 0x1.0000000000000p+0,
0x1.0000000000000p+0, 0x1.fc00000000000p-1, 0x1.f800000000000p-1,
0x1.f400000000000p-1, 0x1.f000000000000p-1, 0x1.ec00000000000p-1,
0x1.e800000000000p-1, 0x1.e400000000000p-1, 0x1.e200000000000p-1,
0x1.de00000000000p-1, 0x1.da00000000000p-1, 0x1.d600000000000p-1,
0x1.d400000000000p-1, 0x1.d000000000000p-1, 0x1.cc00000000000p-1,
0x1.ca00000000000p-1, 0x1.c600000000000p-1, 0x1.c400000000000p-1,
0x1.c000000000000p-1, 0x1.be00000000000p-1, 0x1.ba00000000000p-1,
0x1.b800000000000p-1, 0x1.b400000000000p-1, 0x1.b200000000000p-1,
0x1.ae00000000000p-1, 0x1.ac00000000000p-1, 0x1.aa00000000000p-1,
0x1.a600000000000p-1, 0x1.a400000000000p-1, 0x1.a000000000000p-1,
0x1.9e00000000000p-1, 0x1.9c00000000000p-1, 0x1.9a00000000000p-1,
0x1.9600000000000p-1, 0x1.9400000000000p-1, 0x1.9200000000000p-1,
0x1.9000000000000p-1, 0x1.8c00000000000p-1, 0x1.8a00000000000p-1,
0x1.8800000000000p-1, 0x1.8600000000000p-1, 0x1.8400000000000p-1,
0x1.8200000000000p-1, 0x1.7e00000000000p-1, 0x1.7c00000000000p-1,
0x1.7a00000000000p-1, 0x1.7800000000000p-1, 0x1.7600000000000p-1,
0x1.7400000000000p-1, 0x1.7200000000000p-1, 0x1.7000000000000p-1,
0x1.6e00000000000p-1, 0x1.6c00000000000p-1, },
.logc
= { -0x1.62c82f2b9c800p-2, -0x1.5d1bdbf580800p-2, -0x1.5767717455800p-2,
-0x1.51aad872df800p-2, -0x1.4be5f95777800p-2, -0x1.4618bc21c6000p-2,
-0x1.404308686a800p-2, -0x1.3a64c55694800p-2, -0x1.347dd9a988000p-2,
-0x1.2e8e2bae12000p-2, -0x1.2895a13de8800p-2, -0x1.2895a13de8800p-2,
-0x1.22941fbcf7800p-2, -0x1.1c898c1699800p-2, -0x1.1675cababa800p-2,
-0x1.1058bf9ae4800p-2, -0x1.0a324e2739000p-2, -0x1.0402594b4d000p-2,
-0x1.0402594b4d000p-2, -0x1.fb9186d5e4000p-3, -0x1.ef0adcbdc6000p-3,
-0x1.e27076e2af000p-3, -0x1.d5c216b4fc000p-3, -0x1.c8ff7c79aa000p-3,
-0x1.c8ff7c79aa000p-3, -0x1.bc286742d9000p-3, -0x1.af3c94e80c000p-3,
-0x1.a23bc1fe2b000p-3, -0x1.a23bc1fe2b000p-3, -0x1.9525a9cf45000p-3,
-0x1.87fa06520d000p-3, -0x1.7ab890210e000p-3, -0x1.7ab890210e000p-3,
-0x1.6d60fe719d000p-3, -0x1.5ff3070a79000p-3, -0x1.5ff3070a79000p-3,
-0x1.526e5e3a1b000p-3, -0x1.44d2b6ccb8000p-3, -0x1.44d2b6ccb8000p-3,
-0x1.371fc201e9000p-3, -0x1.29552f81ff000p-3, -0x1.1b72ad52f6000p-3,
-0x1.1b72ad52f6000p-3, -0x1.0d77e7cd09000p-3, -0x1.0d77e7cd09000p-3,
-0x1.fec9131dbe000p-4, -0x1.e27076e2b0000p-4, -0x1.e27076e2b0000p-4,
-0x1.c5e548f5bc000p-4, -0x1.a926d3a4ae000p-4, -0x1.a926d3a4ae000p-4,
-0x1.8c345d631a000p-4, -0x1.8c345d631a000p-4, -0x1.6f0d28ae56000p-4,
-0x1.51b073f062000p-4, -0x1.51b073f062000p-4, -0x1.341d7961be000p-4,
-0x1.341d7961be000p-4, -0x1.16536eea38000p-4, -0x1.f0a30c0118000p-5,
-0x1.f0a30c0118000p-5, -0x1.b42dd71198000p-5, -0x1.b42dd71198000p-5,
-0x1.77458f632c000p-5, -0x1.77458f632c000p-5, -0x1.39e87b9fec000p-5,
-0x1.39e87b9fec000p-5, -0x1.f829b0e780000p-6, -0x1.f829b0e780000p-6,
-0x1.7b91b07d58000p-6, -0x1.fc0a8b0fc0000p-7, -0x1.fc0a8b0fc0000p-7,
-0x1.fe02a6b100000p-8, -0x1.fe02a6b100000p-8, 0x0.0000000000000p+0,
0x0.0000000000000p+0, 0x1.0101575890000p-7, 0x1.0205658938000p-6,
0x1.8492528c90000p-6, 0x1.0415d89e74000p-5, 0x1.466aed42e0000p-5,
0x1.894aa149fc000p-5, 0x1.ccb73cdddc000p-5, 0x1.eea31c006c000p-5,
0x1.1973bd1466000p-4, 0x1.3bdf5a7d1e000p-4, 0x1.5e95a4d97a000p-4,
0x1.700d30aeac000p-4, 0x1.9335e5d594000p-4, 0x1.b6ac88dad6000p-4,
0x1.c885801bc4000p-4, 0x1.ec739830a2000p-4, 0x1.fe89139dbe000p-4,
0x1.1178e8227e000p-3, 0x1.1aa2b7e23f000p-3, 0x1.2d1610c868000p-3,
0x1.365fcb0159000p-3, 0x1.4913d8333b000p-3, 0x1.527e5e4a1b000p-3,
0x1.6574ebe8c1000p-3, 0x1.6f0128b757000p-3, 0x1.7898d85445000p-3,
0x1.8beafeb390000p-3, 0x1.95a5adcf70000p-3, 0x1.a93ed3c8ae000p-3,
0x1.b31d8575bd000p-3, 0x1.bd087383be000p-3, 0x1.c6ffbc6f01000p-3,
0x1.db13db0d49000p-3, 0x1.e530effe71000p-3, 0x1.ef5ade4dd0000p-3,
0x1.f991c6cb3b000p-3, 0x1.07138604d5800p-2, 0x1.0c42d67616000p-2,
0x1.1178e8227e800p-2, 0x1.16b5ccbacf800p-2, 0x1.1bf99635a6800p-2,
0x1.214456d0eb800p-2, 0x1.2bef07cdc9000p-2, 0x1.314f1e1d36000p-2,
0x1.36b6776be1000p-2, 0x1.3c25277333000p-2, 0x1.419b423d5e800p-2,
0x1.4718dc271c800p-2, 0x1.4c9e09e173000p-2, 0x1.522ae0738a000p-2,
0x1.57bf753c8d000p-2, 0x1.5d5bddf596000p-2, },
.logctail
= { 0x1.ab42428375680p-48, -0x1.ca508d8e0f720p-46, -0x1.362a4d5b6506dp-45,
-0x1.684e49eb067d5p-49, -0x1.41b6993293ee0p-47, 0x1.3d82f484c84ccp-46,
0x1.c42f3ed820b3ap-50, 0x1.0b1c686519460p-45, 0x1.5594dd4c58092p-45,
0x1.67b1e99b72bd8p-45, 0x1.5ca14b6cfb03fp-46, 0x1.5ca14b6cfb03fp-46,
-0x1.65a242853da76p-46, -0x1.fafbc68e75404p-46, 0x1.f1fc63382a8f0p-46,
-0x1.6a8c4fd055a66p-45, -0x1.c6bee7ef4030ep-47, -0x1.036b89ef42d7fp-48,
-0x1.036b89ef42d7fp-48, 0x1.d572aab993c87p-47, 0x1.b26b79c86af24p-45,
-0x1.72f4f543fff10p-46, 0x1.1ba91bbca681bp-45, 0x1.7794f689f8434p-45,
0x1.7794f689f8434p-45, 0x1.94eb0318bb78fp-46, 0x1.a4e633fcd9066p-52,
-0x1.58c64dc46c1eap-45, -0x1.58c64dc46c1eap-45, -0x1.ad1d904c1d4e3p-45,
0x1.bbdbf7fdbfa09p-45, 0x1.bdb9072534a58p-45, 0x1.bdb9072534a58p-45,
-0x1.0e46aa3b2e266p-46, -0x1.e9e439f105039p-46, -0x1.e9e439f105039p-46,
-0x1.0de8b90075b8fp-45, 0x1.70cc16135783cp-46, 0x1.70cc16135783cp-46,
0x1.178864d27543ap-48, -0x1.48d301771c408p-45, -0x1.e80a41811a396p-45,
-0x1.e80a41811a396p-45, 0x1.a699688e85bf4p-47, 0x1.a699688e85bf4p-47,
-0x1.575545ca333f2p-45, 0x1.a342c2af0003cp-45, 0x1.a342c2af0003cp-45,
-0x1.d0c57585fbe06p-46, 0x1.53935e85baac8p-45, 0x1.53935e85baac8p-45,
0x1.37c294d2f5668p-46, 0x1.37c294d2f5668p-46, -0x1.69737c93373dap-45,
0x1.f025b61c65e57p-46, 0x1.f025b61c65e57p-46, 0x1.c5edaccf913dfp-45,
0x1.c5edaccf913dfp-45, 0x1.47c5e768fa309p-46, 0x1.d599e83368e91p-45,
0x1.d599e83368e91p-45, 0x1.c827ae5d6704cp-46, 0x1.c827ae5d6704cp-46,
-0x1.cfc4634f2a1eep-45, -0x1.cfc4634f2a1eep-45, 0x1.502b7f526feaap-48,
0x1.502b7f526feaap-48, -0x1.980267c7e09e4p-45, -0x1.980267c7e09e4p-45,
-0x1.88d5493faa639p-45, -0x1.f1e7cf6d3a69cp-50, -0x1.f1e7cf6d3a69cp-50,
-0x1.9e23f0dda40e4p-46, -0x1.9e23f0dda40e4p-46, 0x0.0000000000000p+0,
0x0.0000000000000p+0, -0x1.0c76b999d2be8p-46, -0x1.3dc5b06e2f7d2p-45,
-0x1.aa0ba325a0c34p-45, 0x1.111c05cf1d753p-47, -0x1.c167375bdfd28p-45,
-0x1.97995d05a267dp-46, -0x1.a68f247d82807p-46, -0x1.e113e4fc93b7bp-47,
-0x1.5325d560d9e9bp-45, 0x1.cc85ea5db4ed7p-45, -0x1.c69063c5d1d1ep-45,
0x1.c1e8da99ded32p-49, 0x1.3115c3abd47dap-45, -0x1.390802bf768e5p-46,
0x1.646d1c65aacd3p-45, -0x1.dc068afe645e0p-45, -0x1.534d64fa10afdp-45,
0x1.1ef78ce2d07f2p-45, 0x1.ca78e44389934p-45, 0x1.39d6ccb81b4a1p-47,
0x1.62fa8234b7289p-51, 0x1.5837954fdb678p-45, 0x1.633e8e5697dc7p-45,
0x1.9cf8b2c3c2e78p-46, -0x1.5118de59c21e1p-45, -0x1.c661070914305p-46,
-0x1.73d54aae92cd1p-47, 0x1.7f22858a0ff6fp-47, -0x1.8724350562169p-45,
-0x1.c358d4eace1aap-47, -0x1.d4bc4595412b6p-45, -0x1.1ec72c5962bd2p-48,
-0x1.aff2af715b035p-45, 0x1.212276041f430p-51, -0x1.a211565bb8e11p-51,
0x1.bcbecca0cdf30p-46, 0x1.89cdb16ed4e91p-48, 0x1.7188b163ceae9p-45,
-0x1.c210e63a5f01cp-45, 0x1.b9acdf7a51681p-45, 0x1.ca6ed5147bdb7p-45,
0x1.a87deba46baeap-47, 0x1.a9cfa4a5004f4p-45, -0x1.8e27ad3213cb8p-45,
0x1.16ecdb0f177c8p-46, 0x1.83b54b606bd5cp-46, 0x1.8e436ec90e09dp-47,
-0x1.f27ce0967d675p-45, -0x1.e20891b0ad8a4p-45, 0x1.ebe708164c759p-45,
0x1.fadedee5d40efp-46, -0x1.a0b2a08a465dcp-47, },
};

View file

@ -0,0 +1,102 @@
/* Coefficients for single-precision SVE pow(x) function.
Copyright (C) 2024 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "vecmath_config.h"
const struct v_powf_data __v_powf_data = {
.invc = { 0x1.6489890582816p+0,
0x1.5cf19b35e3472p+0,
0x1.55aac0e956d65p+0,
0x1.4eb0022977e01p+0,
0x1.47fcccda1dd1fp+0,
0x1.418ceabab68c1p+0,
0x1.3b5c788f1edb3p+0,
0x1.3567de48e9c9ap+0,
0x1.2fabc80fd19bap+0,
0x1.2a25200ce536bp+0,
0x1.24d108e0152e3p+0,
0x1.1facd8ab2fbe1p+0,
0x1.1ab614a03efdfp+0,
0x1.15ea6d03af9ffp+0,
0x1.1147b994bb776p+0,
0x1.0ccbf650593aap+0,
0x1.0875408477302p+0,
0x1.0441d42a93328p+0,
0x1p+0,
0x1.f1d006c855e86p-1,
0x1.e28c3341aa301p-1,
0x1.d4bdf9aa64747p-1,
0x1.c7b45a24e5803p-1,
0x1.bb5f5eb2ed60ap-1,
0x1.afb0bff8fe6b4p-1,
0x1.a49badf7ab1f5p-1,
0x1.9a14a111fc4c9p-1,
0x1.901131f5b2fdcp-1,
0x1.8687f73f6d865p-1,
0x1.7d7067eb77986p-1,
0x1.74c2c1cf97b65p-1,
0x1.6c77f37cff2a1p-1
},
.logc = { -0x1.e960f97b22702p+3,
-0x1.c993406cd4db6p+3,
-0x1.aa711d9a7d0f3p+3,
-0x1.8bf37bacdce9bp+3,
-0x1.6e13b3519946ep+3,
-0x1.50cb8281e4089p+3,
-0x1.341504a237e2bp+3,
-0x1.17eaab624ffbbp+3,
-0x1.f88e708f8c853p+2,
-0x1.c24b6da113914p+2,
-0x1.8d02ee397cb1dp+2,
-0x1.58ac1223408b3p+2,
-0x1.253e6fd190e89p+2,
-0x1.e5641882c12ffp+1,
-0x1.81fea712926f7p+1,
-0x1.203e240de64a3p+1,
-0x1.8029b86a78281p0,
-0x1.85d713190fb9p-1,
0x0p+0,
0x1.4c1cc07312997p0,
0x1.5e1848ccec948p+1,
0x1.04cfcb7f1196fp+2,
0x1.582813d463c21p+2,
0x1.a936fa68760ccp+2,
0x1.f81bc31d6cc4ep+2,
0x1.2279a09fae6b1p+3,
0x1.47ec0b6df5526p+3,
0x1.6c71762280f1p+3,
0x1.90155070798dap+3,
0x1.b2e23b1d3068cp+3,
0x1.d4e21b0daa86ap+3,
0x1.f61e2a2f67f3fp+3
},
.scale = { 0x3ff0000000000000, 0x3fefd9b0d3158574, 0x3fefb5586cf9890f,
0x3fef9301d0125b51, 0x3fef72b83c7d517b, 0x3fef54873168b9aa,
0x3fef387a6e756238, 0x3fef1e9df51fdee1, 0x3fef06fe0a31b715,
0x3feef1a7373aa9cb, 0x3feedea64c123422, 0x3feece086061892d,
0x3feebfdad5362a27, 0x3feeb42b569d4f82, 0x3feeab07dd485429,
0x3feea47eb03a5585, 0x3feea09e667f3bcd, 0x3fee9f75e8ec5f74,
0x3feea11473eb0187, 0x3feea589994cce13, 0x3feeace5422aa0db,
0x3feeb737b0cdc5e5, 0x3feec49182a3f090, 0x3feed503b23e255d,
0x3feee89f995ad3ad, 0x3feeff76f2fb5e47, 0x3fef199bdd85529c,
0x3fef3720dcef9069, 0x3fef5818dcfba487, 0x3fef7c97337b9b5f,
0x3fefa4afa2a490da, 0x3fefd0765b6e4540,
},
};

View file

@ -35,17 +35,6 @@
__ptr; \
})
static inline uint64_t
asuint64 (double f)
{
union
{
double f;
uint64_t i;
} u = { f };
return u.i;
}
#define V_LOG_POLY_ORDER 6
#define V_LOG_TABLE_BITS 7
extern const struct v_log_data
@ -130,4 +119,35 @@ extern const struct erfcf_data
} tab[645];
} __erfcf_data attribute_hidden;
/* Some data for AdvSIMD and SVE pow's internal exp and log. */
#define V_POW_EXP_TABLE_BITS 8
extern const struct v_pow_exp_data
{
double poly[3];
double n_over_ln2, ln2_over_n_hi, ln2_over_n_lo, shift;
uint64_t sbits[1 << V_POW_EXP_TABLE_BITS];
} __v_pow_exp_data attribute_hidden;
#define V_POW_LOG_TABLE_BITS 7
extern const struct v_pow_log_data
{
double poly[7]; /* First coefficient is 1. */
double ln2_hi, ln2_lo;
double invc[1 << V_POW_LOG_TABLE_BITS];
double logc[1 << V_POW_LOG_TABLE_BITS];
double logctail[1 << V_POW_LOG_TABLE_BITS];
} __v_pow_log_data attribute_hidden;
/* Some data for SVE powf's internal exp and log. */
#define V_POWF_EXP2_TABLE_BITS 5
#define V_POWF_EXP2_N (1 << V_POWF_EXP2_TABLE_BITS)
#define V_POWF_LOG2_TABLE_BITS 5
#define V_POWF_LOG2_N (1 << V_POWF_LOG2_TABLE_BITS)
extern const struct v_powf_data
{
double invc[V_POWF_LOG2_N];
double logc[V_POWF_LOG2_N];
uint64_t scale[V_POWF_EXP2_N];
} __v_powf_data attribute_hidden;
#endif

View file

@ -1417,11 +1417,19 @@ double: 1
float: 1
ldouble: 2
Function: "pow_advsimd":
double: 1
float: 2
Function: "pow_downward":
double: 1
float: 1
ldouble: 2
Function: "pow_sve":
double: 1
float: 2
Function: "pow_towardzero":
double: 1
float: 1

View file

@ -93,6 +93,8 @@ GLIBC_2.40 _ZGVnN2v_tanh F
GLIBC_2.40 _ZGVnN2v_tanhf F
GLIBC_2.40 _ZGVnN2vv_hypot F
GLIBC_2.40 _ZGVnN2vv_hypotf F
GLIBC_2.40 _ZGVnN2vv_pow F
GLIBC_2.40 _ZGVnN2vv_powf F
GLIBC_2.40 _ZGVnN4v_acoshf F
GLIBC_2.40 _ZGVnN4v_asinhf F
GLIBC_2.40 _ZGVnN4v_atanhf F
@ -103,6 +105,7 @@ GLIBC_2.40 _ZGVnN4v_erff F
GLIBC_2.40 _ZGVnN4v_sinhf F
GLIBC_2.40 _ZGVnN4v_tanhf F
GLIBC_2.40 _ZGVnN4vv_hypotf F
GLIBC_2.40 _ZGVnN4vv_powf F
GLIBC_2.40 _ZGVsMxv_acosh F
GLIBC_2.40 _ZGVsMxv_acoshf F
GLIBC_2.40 _ZGVsMxv_asinh F
@ -123,3 +126,5 @@ GLIBC_2.40 _ZGVsMxv_tanh F
GLIBC_2.40 _ZGVsMxv_tanhf F
GLIBC_2.40 _ZGVsMxvv_hypot F
GLIBC_2.40 _ZGVsMxvv_hypotf F
GLIBC_2.40 _ZGVsMxvv_pow F
GLIBC_2.40 _ZGVsMxvv_powf F