aarch64: Add vector implementations of sin routines

Optimised implementations for single and double precision, Advanced
SIMD and SVE, copied from Arm Optimized Routines.

As previously, data tables are used via a barrier to prevent
overly aggressive constant inlining. Special-case handlers are
marked NOINLINE to avoid incurring the penalty of switching call
standards unnecessarily.

Reviewed-by: Szabolcs Nagy <szabolcs.nagy@arm.com>
This commit is contained in:
Joe Ramsay 2023-06-28 12:19:37 +01:00 committed by Szabolcs Nagy
parent aed39a3aa3
commit 3bb1af2051
13 changed files with 430 additions and 6 deletions

View file

@ -1,10 +1,10 @@
float-advsimd-funcs = cos
libmvec-supported-funcs = cos \
sin
double-advsimd-funcs = cos
float-sve-funcs = cos
double-sve-funcs = cos
float-advsimd-funcs = $(libmvec-supported-funcs)
double-advsimd-funcs = $(libmvec-supported-funcs)
float-sve-funcs = $(libmvec-supported-funcs)
double-sve-funcs = $(libmvec-supported-funcs)
ifeq ($(subdir),mathvec)
libmvec-support = $(addsuffix f_advsimd,$(float-advsimd-funcs)) \

View file

@ -1,8 +1,12 @@
libmvec {
GLIBC_2.38 {
_ZGVnN2v_cos;
_ZGVnN2v_sin;
_ZGVnN4v_cosf;
_ZGVnN4v_sinf;
_ZGVsMxv_cos;
_ZGVsMxv_cosf;
_ZGVsMxv_sin;
_ZGVsMxv_sinf;
}
}

View file

@ -50,7 +50,10 @@ typedef __SVBool_t __sv_bool_t;
# define __vpcs __attribute__ ((__aarch64_vector_pcs__))
__vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t);
__vpcs __f32x4_t _ZGVnN4v_sinf (__f32x4_t);
__vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
__vpcs __f64x2_t _ZGVnN2v_sin (__f64x2_t);
# undef __ADVSIMD_VEC_MATH_SUPPORTED
#endif /* __ADVSIMD_VEC_MATH_SUPPORTED */
@ -58,7 +61,10 @@ __vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
#ifdef __SVE_VEC_MATH_SUPPORTED
__sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t);
__sv_f32_t _ZGVsMxv_sinf (__sv_f32_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t);
__sv_f64_t _ZGVsMxv_sin (__sv_f64_t, __sv_bool_t);
# undef __SVE_VEC_MATH_SUPPORTED
#endif /* __SVE_VEC_MATH_SUPPORTED */

View file

@ -0,0 +1,106 @@
/* Double-precision vector (Advanced SIMD) sin function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
float64x2_t poly[7];
float64x2_t range_val, inv_pi, shift, pi_1, pi_2, pi_3;
} data = {
/* Worst-case error is 2.8 ulp in [-pi/2, pi/2]. */
.poly = { V2 (-0x1.555555555547bp-3), V2 (0x1.1111111108a4dp-7),
V2 (-0x1.a01a019936f27p-13), V2 (0x1.71de37a97d93ep-19),
V2 (-0x1.ae633919987c6p-26), V2 (0x1.60e277ae07cecp-33),
V2 (-0x1.9e9540300a1p-41) },
.range_val = V2 (0x1p23),
.inv_pi = V2 (0x1.45f306dc9c883p-2),
.pi_1 = V2 (0x1.921fb54442d18p+1),
.pi_2 = V2 (0x1.1a62633145c06p-53),
.pi_3 = V2 (0x1.c1cd129024e09p-106),
.shift = V2 (0x1.8p52),
};
#if WANT_SIMD_EXCEPT
# define TinyBound v_u64 (0x3000000000000000) /* asuint64 (0x1p-255). */
# define Thresh v_u64 (0x1160000000000000) /* RangeVal - TinyBound. */
#endif
#define C(i) d->poly[i]
static float64x2_t VPCS_ATTR NOINLINE
special_case (float64x2_t x, float64x2_t y, uint64x2_t odd, uint64x2_t cmp)
{
y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), odd));
return v_call_f64 (sin, x, y, cmp);
}
float64x2_t VPCS_ATTR V_NAME_D1 (sin) (float64x2_t x)
{
const struct data *d = ptr_barrier (&data);
float64x2_t n, r, r2, r3, r4, y, t1, t2, t3;
uint64x2_t odd, cmp, eqz;
#if WANT_SIMD_EXCEPT
/* Detect |x| <= TinyBound or |x| >= RangeVal. If fenv exceptions are to be
triggered correctly, set any special lanes to 1 (which is neutral w.r.t.
fenv). These lanes will be fixed by special-case handler later. */
uint64x2_t ir = vreinterpretq_u64_f64 (vabsq_f64 (x));
cmp = vcgeq_u64 (vsubq_u64 (ir, TinyBound), Thresh);
r = vbslq_f64 (cmp, vreinterpretq_f64_u64 (cmp), x);
#else
r = x;
cmp = vcageq_f64 (d->range_val, x);
cmp = vceqzq_u64 (cmp); /* cmp = ~cmp. */
#endif
eqz = vceqzq_f64 (x);
/* n = rint(|x|/pi). */
n = vfmaq_f64 (d->shift, d->inv_pi, r);
odd = vshlq_n_u64 (vreinterpretq_u64_f64 (n), 63);
n = vsubq_f64 (n, d->shift);
/* r = |x| - n*pi (range reduction into -pi/2 .. pi/2). */
r = vfmsq_f64 (r, d->pi_1, n);
r = vfmsq_f64 (r, d->pi_2, n);
r = vfmsq_f64 (r, d->pi_3, n);
/* sin(r) poly approx. */
r2 = vmulq_f64 (r, r);
r3 = vmulq_f64 (r2, r);
r4 = vmulq_f64 (r2, r2);
t1 = vfmaq_f64 (C (4), C (5), r2);
t2 = vfmaq_f64 (C (2), C (3), r2);
t3 = vfmaq_f64 (C (0), C (1), r2);
y = vfmaq_f64 (t1, C (6), r4);
y = vfmaq_f64 (t2, y, r4);
y = vfmaq_f64 (t3, y, r4);
y = vfmaq_f64 (r, y, r3);
/* Sign of 0 is discarded by polynomial, so copy it back here. */
if (__glibc_unlikely (v_any_u64 (eqz)))
y = vbslq_f64 (eqz, x, y);
if (__glibc_unlikely (v_any_u64 (cmp)))
return special_case (x, y, odd, cmp);
return vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), odd));
}

View file

@ -0,0 +1,97 @@
/* Double-precision vector (SVE) sin function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
double inv_pi, half_pi, inv_pi_over_2, pi_over_2_1, pi_over_2_2, pi_over_2_3,
shift;
} data = {
/* Polynomial coefficients are hard-wired in the FTMAD instruction. */
.inv_pi = 0x1.45f306dc9c883p-2,
.half_pi = 0x1.921fb54442d18p+0,
.inv_pi_over_2 = 0x1.45f306dc9c882p-1,
.pi_over_2_1 = 0x1.921fb50000000p+0,
.pi_over_2_2 = 0x1.110b460000000p-26,
.pi_over_2_3 = 0x1.1a62633145c07p-54,
.shift = 0x1.8p52
};
#define RangeVal 0x4160000000000000 /* asuint64 (0x1p23). */
static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t cmp)
{
return sv_call_f64 (sin, x, y, cmp);
}
/* A fast SVE implementation of sin based on trigonometric
instructions (FTMAD, FTSSEL, FTSMUL).
Maximum observed error in 2.52 ULP:
SV_NAME_D1 (sin)(0x1.2d2b00df69661p+19) got 0x1.10ace8f3e786bp-40
want 0x1.10ace8f3e7868p-40. */
svfloat64_t SV_NAME_D1 (sin) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svfloat64_t r = svabs_f64_x (pg, x);
svuint64_t sign
= sveor_u64_x (pg, svreinterpret_u64_f64 (x), svreinterpret_u64_f64 (r));
svbool_t cmp = svcmpge_n_u64 (pg, svreinterpret_u64_f64 (r), RangeVal);
/* Load first two pio2-related constants to one vector. */
svfloat64_t invpio2_and_pio2_1
= svld1rq_f64 (svptrue_b64 (), &d->inv_pi_over_2);
/* n = rint(|x|/(pi/2)). */
svfloat64_t q = svmla_lane_f64 (sv_f64 (d->shift), r, invpio2_and_pio2_1, 0);
svfloat64_t n = svsub_n_f64_x (pg, q, d->shift);
/* r = |x| - n*(pi/2) (range reduction into -pi/4 .. pi/4). */
r = svmls_lane_f64 (r, n, invpio2_and_pio2_1, 1);
r = svmls_n_f64_x (pg, r, n, d->pi_over_2_2);
r = svmls_n_f64_x (pg, r, n, d->pi_over_2_3);
/* Final multiplicative factor: 1.0 or x depending on bit #0 of q. */
svfloat64_t f = svtssel_f64 (r, svreinterpret_u64_f64 (q));
/* sin(r) poly approx. */
svfloat64_t r2 = svtsmul_f64 (r, svreinterpret_u64_f64 (q));
svfloat64_t y = sv_f64 (0.0);
y = svtmad_f64 (y, r2, 7);
y = svtmad_f64 (y, r2, 6);
y = svtmad_f64 (y, r2, 5);
y = svtmad_f64 (y, r2, 4);
y = svtmad_f64 (y, r2, 3);
y = svtmad_f64 (y, r2, 2);
y = svtmad_f64 (y, r2, 1);
y = svtmad_f64 (y, r2, 0);
/* Apply factor. */
y = svmul_f64_x (pg, f, y);
/* sign = y^sign. */
y = svreinterpret_f64_u64 (
sveor_u64_x (pg, svreinterpret_u64_f64 (y), sign));
if (__glibc_unlikely (svptest_any (pg, cmp)))
return special_case (x, y, cmp);
return y;
}

View file

@ -0,0 +1,99 @@
/* Single-precision vector (Advanced SIMD) sin function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
static const struct data
{
float32x4_t poly[4];
float32x4_t range_val, inv_pi, shift, pi_1, pi_2, pi_3;
} data = {
/* 1.886 ulp error. */
.poly = { V4 (-0x1.555548p-3f), V4 (0x1.110df4p-7f), V4 (-0x1.9f42eap-13f),
V4 (0x1.5b2e76p-19f) },
.pi_1 = V4 (0x1.921fb6p+1f),
.pi_2 = V4 (-0x1.777a5cp-24f),
.pi_3 = V4 (-0x1.ee59dap-49f),
.inv_pi = V4 (0x1.45f306p-2f),
.shift = V4 (0x1.8p+23f),
.range_val = V4 (0x1p20f)
};
#if WANT_SIMD_EXCEPT
# define TinyBound v_u32 (0x21000000) /* asuint32(0x1p-61f). */
# define Thresh v_u32 (0x28800000) /* RangeVal - TinyBound. */
#endif
#define C(i) d->poly[i]
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t x, float32x4_t y, uint32x4_t odd, uint32x4_t cmp)
{
/* Fall back to scalar code. */
y = vreinterpretq_f32_u32 (veorq_u32 (vreinterpretq_u32_f32 (y), odd));
return v_call_f32 (sinf, x, y, cmp);
}
float32x4_t VPCS_ATTR V_NAME_F1 (sin) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
float32x4_t n, r, r2, y;
uint32x4_t odd, cmp, eqz;
#if WANT_SIMD_EXCEPT
uint32x4_t ir = vreinterpretq_u32_f32 (vabsq_f32 (x));
cmp = vcgeq_u32 (vsubq_u32 (ir, TinyBound), Thresh);
/* If fenv exceptions are to be triggered correctly, set any special lanes
to 1 (which is neutral w.r.t. fenv). These lanes will be fixed by
special-case handler later. */
r = vbslq_f32 (cmp, vreinterpretq_f32_u32 (cmp), x);
#else
r = x;
cmp = vcageq_f32 (d->range_val, x);
cmp = vceqzq_u32 (cmp); /* cmp = ~cmp. */
#endif
eqz = vceqzq_f32 (x);
/* n = rint(|x|/pi) */
n = vfmaq_f32 (d->shift, d->inv_pi, r);
odd = vshlq_n_u32 (vreinterpretq_u32_f32 (n), 31);
n = vsubq_f32 (n, d->shift);
/* r = |x| - n*pi (range reduction into -pi/2 .. pi/2) */
r = vfmsq_f32 (r, d->pi_1, n);
r = vfmsq_f32 (r, d->pi_2, n);
r = vfmsq_f32 (r, d->pi_3, n);
/* y = sin(r) */
r2 = vmulq_f32 (r, r);
y = vfmaq_f32 (C (2), C (3), r2);
y = vfmaq_f32 (C (1), y, r2);
y = vfmaq_f32 (C (0), y, r2);
y = vfmaq_f32 (r, vmulq_f32 (y, r2), r);
/* Sign of 0 is discarded by polynomial, so copy it back here. */
if (__glibc_unlikely (v_any_u32 (eqz)))
y = vbslq_f32 (eqz, x, y);
if (__glibc_unlikely (v_any_u32 (cmp)))
return special_case (x, y, odd, cmp);
return vreinterpretq_f32_u32 (veorq_u32 (vreinterpretq_u32_f32 (y), odd));
}

View file

@ -0,0 +1,96 @@
/* Single-precision vector (SVE) sin function.
Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
static const struct data
{
float poly[4];
/* Pi-related values to be loaded as one quad-word and used with
svmla_lane_f32. */
float negpi1, negpi2, negpi3, invpi;
float shift;
} data = {
.poly = {
/* Non-zero coefficients from the degree 9 Taylor series expansion of
sin. */
-0x1.555548p-3f, 0x1.110df4p-7f, -0x1.9f42eap-13f, 0x1.5b2e76p-19f
},
.negpi1 = -0x1.921fb6p+1f,
.negpi2 = 0x1.777a5cp-24f,
.negpi3 = 0x1.ee59dap-49f,
.invpi = 0x1.45f306p-2f,
.shift = 0x1.8p+23f
};
#define RangeVal 0x49800000 /* asuint32 (0x1p20f). */
#define C(i) sv_f32 (d->poly[i])
static svfloat32_t NOINLINE
special_case (svfloat32_t x, svfloat32_t y, svbool_t cmp)
{
return sv_call_f32 (sinf, x, y, cmp);
}
/* A fast SVE implementation of sinf.
Maximum error: 1.89 ULPs.
This maximum error is achieved at multiple values in [-2^18, 2^18]
but one example is:
SV_NAME_F1 (sin)(0x1.9247a4p+0) got 0x1.fffff6p-1 want 0x1.fffffap-1. */
svfloat32_t SV_NAME_F1 (sin) (svfloat32_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svfloat32_t ax = svabs_f32_x (pg, x);
svuint32_t sign = sveor_u32_x (pg, svreinterpret_u32_f32 (x),
svreinterpret_u32_f32 (ax));
svbool_t cmp = svcmpge_n_u32 (pg, svreinterpret_u32_f32 (ax), RangeVal);
/* pi_vals are a quad-word of helper values - the first 3 elements contain
-pi in extended precision, the last contains 1 / pi. */
svfloat32_t pi_vals = svld1rq_f32 (svptrue_b32 (), &d->negpi1);
/* n = rint(|x|/pi). */
svfloat32_t n = svmla_lane_f32 (sv_f32 (d->shift), ax, pi_vals, 3);
svuint32_t odd = svlsl_n_u32_x (pg, svreinterpret_u32_f32 (n), 31);
n = svsub_n_f32_x (pg, n, d->shift);
/* r = |x| - n*pi (range reduction into -pi/2 .. pi/2). */
svfloat32_t r;
r = svmla_lane_f32 (ax, n, pi_vals, 0);
r = svmla_lane_f32 (r, n, pi_vals, 1);
r = svmla_lane_f32 (r, n, pi_vals, 2);
/* sin(r) approx using a degree 9 polynomial from the Taylor series
expansion. Note that only the odd terms of this are non-zero. */
svfloat32_t r2 = svmul_f32_x (pg, r, r);
svfloat32_t y;
y = svmla_f32_x (pg, C (2), r2, C (3));
y = svmla_f32_x (pg, C (1), r2, y);
y = svmla_f32_x (pg, C (0), r2, y);
y = svmla_f32_x (pg, r, r, svmul_f32_x (pg, y, r2));
/* sign = y^sign^odd. */
y = svreinterpret_f32_u32 (sveor_u32_x (pg, svreinterpret_u32_f32 (y),
sveor_u32_x (pg, sign, odd)));
if (__glibc_unlikely (svptest_any (pg, cmp)))
return special_case (x, y, cmp);
return y;
}

View file

@ -24,3 +24,4 @@
#define VEC_TYPE float64x2_t
VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos)
VPCS_VECTOR_WRAPPER (sin_advsimd, _ZGVnN2v_sin)

View file

@ -33,3 +33,4 @@
}
SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos)
SVE_VECTOR_WRAPPER (sin_sve, _ZGVsMxv_sin)

View file

@ -24,3 +24,4 @@
#define VEC_TYPE float32x4_t
VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf)
VPCS_VECTOR_WRAPPER (sinf_advsimd, _ZGVnN4v_sinf)

View file

@ -33,3 +33,4 @@
}
SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf)
SVE_VECTOR_WRAPPER (sinf_sve, _ZGVsMxv_sinf)

View file

@ -1257,11 +1257,19 @@ double: 1
float: 1
ldouble: 2
Function: "sin_advsimd":
double: 2
float: 1
Function: "sin_downward":
double: 1
float: 1
ldouble: 3
Function: "sin_sve":
double: 2
float: 1
Function: "sin_towardzero":
double: 1
float: 1

View file

@ -1,4 +1,8 @@
GLIBC_2.38 _ZGVnN2v_cos F
GLIBC_2.38 _ZGVnN2v_sin F
GLIBC_2.38 _ZGVnN4v_cosf F
GLIBC_2.38 _ZGVnN4v_sinf F
GLIBC_2.38 _ZGVsMxv_cos F
GLIBC_2.38 _ZGVsMxv_cosf F
GLIBC_2.38 _ZGVsMxv_sin F
GLIBC_2.38 _ZGVsMxv_sinf F