mirror of
git://sourceware.org/git/glibc.git
synced 2025-03-06 20:58:33 +01:00
math: Improve fmodf
This uses a new algorithm similar to already proposed earlier [1]. With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the simplest implementation is: mx * 2^ex == 2 * mx * 2^(ex - 1) while (ex > ey) { mx *= 2; --ex; mx %= my; } With mx/my being mantissa of double floating pointer, on each step the argument reduction can be improved 8 (which is sizeof of uint32_t minus MANTISSA_WIDTH plus the signal bit): while (ex > ey) { mx << 8; ex -= 8; mx %= my; } */ The implementation uses builtin clz and ctz, along with shifts to convert hx/hy back to doubles. Different than the original patch, this path assume modulo/divide operation is slow, so use multiplication with invert values. I see the following performance improvements using fmod benchtests (result only show the 'mean' result): Architecture | Input | master | patch -----------------|-----------------|----------|-------- x86_64 (Ryzen 9) | subnormals | 17.2549 | 12.0318 x86_64 (Ryzen 9) | normal | 85.4096 | 49.9641 x86_64 (Ryzen 9) | close-exponents | 19.1072 | 15.8224 aarch64 (N1) | subnormal | 10.2182 | 6.81778 aarch64 (N1) | normal | 60.0616 | 20.3667 aarch64 (N1) | close-exponents | 11.5256 | 8.39685 I also see similar improvements on arm-linux-gnueabihf when running on the N1 aarch64 chips, where it a lot of soft-fp implementation (for modulo, and multiplication): Architecture | Input | master | patch -----------------|-----------------|----------|-------- armhf (N1) | subnormal | 11.6662 | 10.8955 armhf (N1) | normal | 69.2759 | 34.1524 armhf (N1) | close-exponents | 13.6472 | 18.2131 Instead of using the math_private.h definitions, I used the math_config.h instead which is used on newer math implementations. Co-authored-by: kirill <kirill.okhotnikov@gmail.com> [1] https://sourceware.org/pipermail/libc-alpha/2020-November/119794.html Reviewed-by: Wilco Dijkstra <Wilco.Dijkstra@arm.com>
This commit is contained in:
parent
34b9f8bc17
commit
cf9cf33199
3 changed files with 182 additions and 84 deletions
|
@ -213,6 +213,10 @@ static const struct test_ff_f_data fmod_test_data[] =
|
||||||
TEST_ff_f (fmod, -0x1p127L, -0x3p-148L, -0x1p-147L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
TEST_ff_f (fmod, -0x1p127L, -0x3p-148L, -0x1p-147L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
TEST_ff_f (fmod, -0x1p127L, 0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
TEST_ff_f (fmod, -0x1p127L, 0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
TEST_ff_f (fmod, -0x1p127L, -0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
TEST_ff_f (fmod, -0x1p127L, -0x3p-126L, -0x1p-125L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
|
TEST_ff_f (fmod, 0x1.3a3e6p-127, 0x1.8b8338p-128, 0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
|
TEST_ff_f (fmod, 0x1.3a3e6p-127, -0x1.8b8338p-128, 0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
|
TEST_ff_f (fmod, -0x1.3a3e6p-127, 0x1.8b8338p-128, -0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
|
TEST_ff_f (fmod, -0x1.3a3e6p-127, -0x1.8b8338p-128, -0x1.d1f31p-129, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
#if !TEST_COND_binary32
|
#if !TEST_COND_binary32
|
||||||
TEST_ff_f (fmod, 0x1p1023L, 0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
TEST_ff_f (fmod, 0x1p1023L, 0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
TEST_ff_f (fmod, 0x1p1023L, -0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
TEST_ff_f (fmod, 0x1p1023L, -0x3p-1074L, 0x1p-1073L, NO_INEXACT_EXCEPTION|ERRNO_UNCHANGED),
|
||||||
|
|
|
@ -1,102 +1,155 @@
|
||||||
/* e_fmodf.c -- float version of e_fmod.c.
|
/* Floating-point remainder function.
|
||||||
*/
|
Copyright (C) 2023 Free Software Foundation, Inc.
|
||||||
|
This file is part of the GNU C Library.
|
||||||
|
|
||||||
/*
|
The GNU C Library is free software; you can redistribute it and/or
|
||||||
* ====================================================
|
modify it under the terms of the GNU Lesser General Public
|
||||||
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
License as published by the Free Software Foundation; either
|
||||||
*
|
version 2.1 of the License, or (at your option) any later version.
|
||||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
||||||
* Permission to use, copy, modify, and distribute this
|
|
||||||
* software is freely granted, provided that this notice
|
|
||||||
* is preserved.
|
|
||||||
* ====================================================
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
The GNU C Library is distributed in the hope that it will be useful,
|
||||||
* __ieee754_fmodf(x,y)
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
* Return x mod y in exact arithmetic
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||||
* Method: shift and subtract
|
Lesser General Public License for more details.
|
||||||
*/
|
|
||||||
|
You should have received a copy of the GNU Lesser General Public
|
||||||
|
License along with the GNU C Library; if not, see
|
||||||
|
<https://www.gnu.org/licenses/>. */
|
||||||
|
|
||||||
#include <math.h>
|
|
||||||
#include <math_private.h>
|
|
||||||
#include <libm-alias-finite.h>
|
#include <libm-alias-finite.h>
|
||||||
|
#include <math.h>
|
||||||
|
#include "math_config.h"
|
||||||
|
|
||||||
static const float one = 1.0, Zero[] = {0.0, -0.0,};
|
/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
|
||||||
|
simplest implementation is:
|
||||||
|
|
||||||
|
mx * 2^ex == 2 * mx * 2^(ex - 1)
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
while (ex > ey)
|
||||||
|
{
|
||||||
|
mx *= 2;
|
||||||
|
--ex;
|
||||||
|
mx %= my;
|
||||||
|
}
|
||||||
|
|
||||||
|
With the mathematical equivalence of:
|
||||||
|
|
||||||
|
r == x % y == (x % (N * y)) % y
|
||||||
|
|
||||||
|
And with mx/my being mantissa of double floating point number (which uses
|
||||||
|
less bits than the storage type), on each step the argument reduction can
|
||||||
|
be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus
|
||||||
|
the signal bit):
|
||||||
|
|
||||||
|
mx * 2^ex == 2^8 * mx * 2^(ex - 8)
|
||||||
|
|
||||||
|
or
|
||||||
|
|
||||||
|
while (ex > ey)
|
||||||
|
{
|
||||||
|
mx << 8;
|
||||||
|
ex -= 8;
|
||||||
|
mx %= my;
|
||||||
|
} */
|
||||||
|
|
||||||
float
|
float
|
||||||
__ieee754_fmodf (float x, float y)
|
__ieee754_fmodf (float x, float y)
|
||||||
{
|
{
|
||||||
int32_t n,hx,hy,hz,ix,iy,sx,i;
|
uint32_t hx = asuint (x);
|
||||||
|
uint32_t hy = asuint (y);
|
||||||
|
|
||||||
GET_FLOAT_WORD(hx,x);
|
uint32_t sx = hx & SIGN_MASK;
|
||||||
GET_FLOAT_WORD(hy,y);
|
/* Get |x| and |y|. */
|
||||||
sx = hx&0x80000000; /* sign of x */
|
hx ^= sx;
|
||||||
hx ^=sx; /* |x| */
|
hy &= ~SIGN_MASK;
|
||||||
hy &= 0x7fffffff; /* |y| */
|
|
||||||
|
|
||||||
/* purge off exception values */
|
/* Special cases:
|
||||||
if(hy==0||(hx>=0x7f800000)|| /* y=0,or x not finite */
|
- If x or y is a Nan, NaN is returned.
|
||||||
(hy>0x7f800000)) /* or y is NaN */
|
- If x is an inifinity, a NaN is returned.
|
||||||
return (x*y)/(x*y);
|
- If y is zero, Nan is returned.
|
||||||
if(hx<hy) return x; /* |x|<|y| return x */
|
- If x is +0/-0, and y is not zero, +0/-0 is returned. */
|
||||||
if(hx==hy)
|
if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK || hy > EXPONENT_MASK))
|
||||||
return Zero[(uint32_t)sx>>31]; /* |x|=|y| return x*0*/
|
return (x * y) / (x * y);
|
||||||
|
|
||||||
/* determine ix = ilogb(x) */
|
if (__glibc_unlikely (hx <= hy))
|
||||||
if(hx<0x00800000) { /* subnormal x */
|
{
|
||||||
for (ix = -126,i=(hx<<8); i>0; i<<=1) ix -=1;
|
if (hx < hy)
|
||||||
} else ix = (hx>>23)-127;
|
return x;
|
||||||
|
return asfloat (sx);
|
||||||
|
}
|
||||||
|
|
||||||
/* determine iy = ilogb(y) */
|
int ex = hx >> MANTISSA_WIDTH;
|
||||||
if(hy<0x00800000) { /* subnormal y */
|
int ey = hy >> MANTISSA_WIDTH;
|
||||||
for (iy = -126,i=(hy<<8); i>=0; i<<=1) iy -=1;
|
|
||||||
} else iy = (hy>>23)-127;
|
|
||||||
|
|
||||||
/* set up {hx,lx}, {hy,ly} and align y to x */
|
/* Common case where exponents are close: ey >= -103 and |x/y| < 2^8, */
|
||||||
if(ix >= -126)
|
if (__glibc_likely (ey > MANTISSA_WIDTH && ex - ey <= EXPONENT_WIDTH))
|
||||||
hx = 0x00800000|(0x007fffff&hx);
|
{
|
||||||
else { /* subnormal x, shift x to normal */
|
uint64_t mx = (hx & MANTISSA_MASK) | (MANTISSA_MASK + 1);
|
||||||
n = -126-ix;
|
uint64_t my = (hy & MANTISSA_MASK) | (MANTISSA_MASK + 1);
|
||||||
hx = hx<<n;
|
|
||||||
}
|
|
||||||
if(iy >= -126)
|
|
||||||
hy = 0x00800000|(0x007fffff&hy);
|
|
||||||
else { /* subnormal y, shift y to normal */
|
|
||||||
n = -126-iy;
|
|
||||||
hy = hy<<n;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* fix point fmod */
|
uint32_t d = (ex == ey) ? (mx - my) : (mx << (ex - ey)) % my;
|
||||||
n = ix - iy;
|
return make_float (d, ey - 1, sx);
|
||||||
while(n--) {
|
}
|
||||||
hz=hx-hy;
|
|
||||||
if(hz<0){hx = hx+hx;}
|
|
||||||
else {
|
|
||||||
if(hz==0) /* return sign(x)*0 */
|
|
||||||
return Zero[(uint32_t)sx>>31];
|
|
||||||
hx = hz+hz;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
hz=hx-hy;
|
|
||||||
if(hz>=0) {hx=hz;}
|
|
||||||
|
|
||||||
/* convert back to floating value and restore the sign */
|
/* Special case, both x and y are subnormal. */
|
||||||
if(hx==0) /* return sign(x)*0 */
|
if (__glibc_unlikely (ex == 0 && ey == 0))
|
||||||
return Zero[(uint32_t)sx>>31];
|
return asfloat (sx | hx % hy);
|
||||||
while(hx<0x00800000) { /* normalize x */
|
|
||||||
hx = hx+hx;
|
/* Convert |x| and |y| to 'mx + 2^ex' and 'my + 2^ey'. Assume that hx is
|
||||||
iy -= 1;
|
not subnormal by conditions above. */
|
||||||
}
|
uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
|
||||||
if(iy>= -126) { /* normalize output */
|
ex--;
|
||||||
hx = ((hx-0x00800000)|((iy+127)<<23));
|
|
||||||
SET_FLOAT_WORD(x,hx|sx);
|
uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
|
||||||
} else { /* subnormal output */
|
int lead_zeros_my = EXPONENT_WIDTH;
|
||||||
n = -126 - iy;
|
if (__glibc_likely (ey > 0))
|
||||||
hx >>= n;
|
ey--;
|
||||||
SET_FLOAT_WORD(x,hx|sx);
|
else
|
||||||
x *= one; /* create necessary signal */
|
{
|
||||||
}
|
my = hy;
|
||||||
return x; /* exact output */
|
lead_zeros_my = __builtin_clz (my);
|
||||||
|
}
|
||||||
|
|
||||||
|
int tail_zeros_my = __builtin_ctz (my);
|
||||||
|
int sides_zeroes = lead_zeros_my + tail_zeros_my;
|
||||||
|
int exp_diff = ex - ey;
|
||||||
|
|
||||||
|
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
|
||||||
|
my >>= right_shift;
|
||||||
|
exp_diff -= right_shift;
|
||||||
|
ey += right_shift;
|
||||||
|
|
||||||
|
int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
|
||||||
|
mx <<= left_shift;
|
||||||
|
exp_diff -= left_shift;
|
||||||
|
|
||||||
|
mx %= my;
|
||||||
|
|
||||||
|
if (__glibc_unlikely (mx == 0))
|
||||||
|
return asfloat (sx);
|
||||||
|
|
||||||
|
if (exp_diff == 0)
|
||||||
|
return make_float (mx, ey, sx);
|
||||||
|
|
||||||
|
/* Assume modulo/divide operation is slow, so use multiplication with invert
|
||||||
|
values. */
|
||||||
|
uint32_t inv_hy = UINT32_MAX / my;
|
||||||
|
while (exp_diff > sides_zeroes) {
|
||||||
|
exp_diff -= sides_zeroes;
|
||||||
|
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
|
||||||
|
mx <<= sides_zeroes;
|
||||||
|
mx -= hd * my;
|
||||||
|
while (__glibc_unlikely (mx > my))
|
||||||
|
mx -= my;
|
||||||
|
}
|
||||||
|
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
|
||||||
|
mx <<= exp_diff;
|
||||||
|
mx -= hd * my;
|
||||||
|
while (__glibc_unlikely (mx > my))
|
||||||
|
mx -= my;
|
||||||
|
|
||||||
|
return make_float (mx, ey, sx);
|
||||||
}
|
}
|
||||||
libm_alias_finite (__ieee754_fmodf, __fmodf)
|
libm_alias_finite (__ieee754_fmodf, __fmodf)
|
||||||
|
|
|
@ -110,6 +110,47 @@ issignalingf_inline (float x)
|
||||||
return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
|
return 2 * (ix ^ 0x00400000) > 2 * 0x7fc00000UL;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#define BIT_WIDTH 32
|
||||||
|
#define MANTISSA_WIDTH 23
|
||||||
|
#define EXPONENT_WIDTH 8
|
||||||
|
#define MANTISSA_MASK 0x007fffff
|
||||||
|
#define EXPONENT_MASK 0x7f800000
|
||||||
|
#define EXP_MANT_MASK 0x7fffffff
|
||||||
|
#define QUIET_NAN_MASK 0x00400000
|
||||||
|
#define SIGN_MASK 0x80000000
|
||||||
|
|
||||||
|
static inline bool
|
||||||
|
is_nan (uint32_t x)
|
||||||
|
{
|
||||||
|
return (x & EXP_MANT_MASK) > EXPONENT_MASK;
|
||||||
|
}
|
||||||
|
|
||||||
|
static inline uint32_t
|
||||||
|
get_mantissa (uint32_t x)
|
||||||
|
{
|
||||||
|
return x & MANTISSA_MASK;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Convert integer number X, unbiased exponent EP, and sign S to double:
|
||||||
|
|
||||||
|
result = X * 2^(EP+1 - exponent_bias)
|
||||||
|
|
||||||
|
NB: zero is not supported. */
|
||||||
|
static inline double
|
||||||
|
make_float (uint32_t x, int ep, uint32_t s)
|
||||||
|
{
|
||||||
|
int lz = __builtin_clz (x) - EXPONENT_WIDTH;
|
||||||
|
x <<= lz;
|
||||||
|
ep -= lz;
|
||||||
|
|
||||||
|
if (__glibc_unlikely (ep < 0 || x == 0))
|
||||||
|
{
|
||||||
|
x >>= -ep;
|
||||||
|
ep = 0;
|
||||||
|
}
|
||||||
|
return asfloat (s + x + (ep << MANTISSA_WIDTH));
|
||||||
|
}
|
||||||
|
|
||||||
#define NOINLINE __attribute__ ((noinline))
|
#define NOINLINE __attribute__ ((noinline))
|
||||||
|
|
||||||
attribute_hidden float __math_oflowf (uint32_t);
|
attribute_hidden float __math_oflowf (uint32_t);
|
||||||
|
|
Loading…
Add table
Reference in a new issue