mirror of
git://sourceware.org/git/glibc.git
synced 2025-03-06 20:58:33 +01:00
aarch64: Add vector implementations of atan routines
This commit is contained in:
parent
b5d23367a8
commit
d30c39f80d
13 changed files with 407 additions and 0 deletions
|
@ -1,5 +1,6 @@
|
|||
libmvec-supported-funcs = acos \
|
||||
asin \
|
||||
atan \
|
||||
cos \
|
||||
exp \
|
||||
exp10 \
|
||||
|
|
|
@ -26,6 +26,10 @@ libmvec {
|
|||
_ZGVnN2v_asin;
|
||||
_ZGVsMxv_asinf;
|
||||
_ZGVsMxv_asin;
|
||||
_ZGVnN4v_atanf;
|
||||
_ZGVnN2v_atan;
|
||||
_ZGVsMxv_atanf;
|
||||
_ZGVsMxv_atan;
|
||||
_ZGVnN4v_exp10f;
|
||||
_ZGVnN2v_exp10;
|
||||
_ZGVsMxv_exp10f;
|
||||
|
|
104
sysdeps/aarch64/fpu/atan_advsimd.c
Normal file
104
sysdeps/aarch64/fpu/atan_advsimd.c
Normal file
|
@ -0,0 +1,104 @@
|
|||
/* Double-precision AdvSIMD inverse tan
|
||||
|
||||
Copyright (C) 2023 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "v_math.h"
|
||||
#include "poly_advsimd_f64.h"
|
||||
|
||||
static const struct data
|
||||
{
|
||||
float64x2_t pi_over_2;
|
||||
float64x2_t poly[20];
|
||||
} data = {
|
||||
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
||||
[2**-1022, 1.0]. */
|
||||
.poly = { V2 (-0x1.5555555555555p-2), V2 (0x1.99999999996c1p-3),
|
||||
V2 (-0x1.2492492478f88p-3), V2 (0x1.c71c71bc3951cp-4),
|
||||
V2 (-0x1.745d160a7e368p-4), V2 (0x1.3b139b6a88ba1p-4),
|
||||
V2 (-0x1.11100ee084227p-4), V2 (0x1.e1d0f9696f63bp-5),
|
||||
V2 (-0x1.aebfe7b418581p-5), V2 (0x1.842dbe9b0d916p-5),
|
||||
V2 (-0x1.5d30140ae5e99p-5), V2 (0x1.338e31eb2fbbcp-5),
|
||||
V2 (-0x1.00e6eece7de8p-5), V2 (0x1.860897b29e5efp-6),
|
||||
V2 (-0x1.0051381722a59p-6), V2 (0x1.14e9dc19a4a4ep-7),
|
||||
V2 (-0x1.d0062b42fe3bfp-9), V2 (0x1.17739e210171ap-10),
|
||||
V2 (-0x1.ab24da7be7402p-13), V2 (0x1.358851160a528p-16), },
|
||||
.pi_over_2 = V2 (0x1.921fb54442d18p+0),
|
||||
};
|
||||
|
||||
#define SignMask v_u64 (0x8000000000000000)
|
||||
#define TinyBound 0x3e10000000000000 /* asuint64(0x1p-30). */
|
||||
#define BigBound 0x4340000000000000 /* asuint64(0x1p53). */
|
||||
|
||||
/* Fast implementation of vector atan.
|
||||
Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
|
||||
z=1/x and shift = pi/2. Maximum observed error is 2.27 ulps:
|
||||
_ZGVnN2v_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
|
||||
want 0x1.9225645bdd7c3p-1. */
|
||||
float64x2_t VPCS_ATTR V_NAME_D1 (atan) (float64x2_t x)
|
||||
{
|
||||
const struct data *d = ptr_barrier (&data);
|
||||
|
||||
/* Small cases, infs and nans are supported by our approximation technique,
|
||||
but do not set fenv flags correctly. Only trigger special case if we need
|
||||
fenv. */
|
||||
uint64x2_t ix = vreinterpretq_u64_f64 (x);
|
||||
uint64x2_t sign = vandq_u64 (ix, SignMask);
|
||||
|
||||
#if WANT_SIMD_EXCEPT
|
||||
uint64x2_t ia12 = vandq_u64 (ix, v_u64 (0x7ff0000000000000));
|
||||
uint64x2_t special = vcgtq_u64 (vsubq_u64 (ia12, v_u64 (TinyBound)),
|
||||
v_u64 (BigBound - TinyBound));
|
||||
/* If any lane is special, fall back to the scalar routine for all lanes. */
|
||||
if (__glibc_unlikely (v_any_u64 (special)))
|
||||
return v_call_f64 (atan, x, v_f64 (0), v_u64 (-1));
|
||||
#endif
|
||||
|
||||
/* Argument reduction:
|
||||
y := arctan(x) for x < 1
|
||||
y := pi/2 + arctan(-1/x) for x > 1
|
||||
Hence, use z=-1/a if x>=1, otherwise z=a. */
|
||||
uint64x2_t red = vcagtq_f64 (x, v_f64 (1.0));
|
||||
/* Avoid dependency in abs(x) in division (and comparison). */
|
||||
float64x2_t z = vbslq_f64 (red, vdivq_f64 (v_f64 (1.0), x), x);
|
||||
float64x2_t shift = vreinterpretq_f64_u64 (
|
||||
vandq_u64 (red, vreinterpretq_u64_f64 (d->pi_over_2)));
|
||||
/* Use absolute value only when needed (odd powers of z). */
|
||||
float64x2_t az = vbslq_f64 (
|
||||
SignMask, vreinterpretq_f64_u64 (vandq_u64 (SignMask, red)), z);
|
||||
|
||||
/* Calculate the polynomial approximation.
|
||||
Use split Estrin scheme for P(z^2) with deg(P)=19. Use split instead of
|
||||
full scheme to avoid underflow in x^16.
|
||||
The order 19 polynomial P approximates
|
||||
(atan(sqrt(x))-sqrt(x))/x^(3/2). */
|
||||
float64x2_t z2 = vmulq_f64 (z, z);
|
||||
float64x2_t x2 = vmulq_f64 (z2, z2);
|
||||
float64x2_t x4 = vmulq_f64 (x2, x2);
|
||||
float64x2_t x8 = vmulq_f64 (x4, x4);
|
||||
float64x2_t y
|
||||
= vfmaq_f64 (v_estrin_7_f64 (z2, x2, x4, d->poly),
|
||||
v_estrin_11_f64 (z2, x2, x4, x8, d->poly + 8), x8);
|
||||
|
||||
/* Finalize. y = shift + z + z^3 * P(z^2). */
|
||||
y = vfmaq_f64 (az, y, vmulq_f64 (z2, az));
|
||||
y = vaddq_f64 (y, shift);
|
||||
|
||||
/* y = atan(x) if x>0, -atan(-x) otherwise. */
|
||||
y = vreinterpretq_f64_u64 (veorq_u64 (vreinterpretq_u64_f64 (y), sign));
|
||||
return y;
|
||||
}
|
90
sysdeps/aarch64/fpu/atan_sve.c
Normal file
90
sysdeps/aarch64/fpu/atan_sve.c
Normal file
|
@ -0,0 +1,90 @@
|
|||
/* Double-precision SVE inverse tan
|
||||
|
||||
Copyright (C) 2023 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "sv_math.h"
|
||||
#include "poly_sve_f64.h"
|
||||
|
||||
static const struct data
|
||||
{
|
||||
float64_t poly[20];
|
||||
float64_t pi_over_2;
|
||||
} data = {
|
||||
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
||||
[2**-1022, 1.0]. */
|
||||
.poly = { -0x1.5555555555555p-2, 0x1.99999999996c1p-3, -0x1.2492492478f88p-3,
|
||||
0x1.c71c71bc3951cp-4, -0x1.745d160a7e368p-4, 0x1.3b139b6a88ba1p-4,
|
||||
-0x1.11100ee084227p-4, 0x1.e1d0f9696f63bp-5, -0x1.aebfe7b418581p-5,
|
||||
0x1.842dbe9b0d916p-5, -0x1.5d30140ae5e99p-5, 0x1.338e31eb2fbbcp-5,
|
||||
-0x1.00e6eece7de8p-5, 0x1.860897b29e5efp-6, -0x1.0051381722a59p-6,
|
||||
0x1.14e9dc19a4a4ep-7, -0x1.d0062b42fe3bfp-9, 0x1.17739e210171ap-10,
|
||||
-0x1.ab24da7be7402p-13, 0x1.358851160a528p-16, },
|
||||
.pi_over_2 = 0x1.921fb54442d18p+0,
|
||||
};
|
||||
|
||||
/* Useful constants. */
|
||||
#define SignMask (0x8000000000000000)
|
||||
|
||||
/* Fast implementation of SVE atan.
|
||||
Based on atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
|
||||
z=1/x and shift = pi/2. Largest errors are close to 1. The maximum observed
|
||||
error is 2.27 ulps:
|
||||
_ZGVsMxv_atan (0x1.0005af27c23e9p+0) got 0x1.9225645bdd7c1p-1
|
||||
want 0x1.9225645bdd7c3p-1. */
|
||||
svfloat64_t SV_NAME_D1 (atan) (svfloat64_t x, const svbool_t pg)
|
||||
{
|
||||
const struct data *d = ptr_barrier (&data);
|
||||
|
||||
/* No need to trigger special case. Small cases, infs and nans
|
||||
are supported by our approximation technique. */
|
||||
svuint64_t ix = svreinterpret_u64 (x);
|
||||
svuint64_t sign = svand_x (pg, ix, SignMask);
|
||||
|
||||
/* Argument reduction:
|
||||
y := arctan(x) for x < 1
|
||||
y := pi/2 + arctan(-1/x) for x > 1
|
||||
Hence, use z=-1/a if x>=1, otherwise z=a. */
|
||||
svbool_t red = svacgt (pg, x, 1.0);
|
||||
/* Avoid dependency in abs(x) in division (and comparison). */
|
||||
svfloat64_t z = svsel (red, svdivr_x (pg, x, 1.0), x);
|
||||
/* Use absolute value only when needed (odd powers of z). */
|
||||
svfloat64_t az = svabs_x (pg, z);
|
||||
az = svneg_m (az, red, az);
|
||||
|
||||
/* Use split Estrin scheme for P(z^2) with deg(P)=19. */
|
||||
svfloat64_t z2 = svmul_x (pg, z, z);
|
||||
svfloat64_t x2 = svmul_x (pg, z2, z2);
|
||||
svfloat64_t x4 = svmul_x (pg, x2, x2);
|
||||
svfloat64_t x8 = svmul_x (pg, x4, x4);
|
||||
|
||||
svfloat64_t y
|
||||
= svmla_x (pg, sv_estrin_7_f64_x (pg, z2, x2, x4, d->poly),
|
||||
sv_estrin_11_f64_x (pg, z2, x2, x4, x8, d->poly + 8), x8);
|
||||
|
||||
/* y = shift + z + z^3 * P(z^2). */
|
||||
svfloat64_t z3 = svmul_x (pg, z2, az);
|
||||
y = svmla_x (pg, az, z3, y);
|
||||
|
||||
/* Apply shift as indicated by `red` predicate. */
|
||||
y = svadd_m (red, y, d->pi_over_2);
|
||||
|
||||
/* y = atan(x) if x>0, -atan(-x) otherwise. */
|
||||
y = svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign));
|
||||
|
||||
return y;
|
||||
}
|
109
sysdeps/aarch64/fpu/atanf_advsimd.c
Normal file
109
sysdeps/aarch64/fpu/atanf_advsimd.c
Normal file
|
@ -0,0 +1,109 @@
|
|||
/* Single-precision AdvSIMD inverse tan
|
||||
|
||||
Copyright (C) 2023 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "v_math.h"
|
||||
#include "poly_advsimd_f32.h"
|
||||
|
||||
static const struct data
|
||||
{
|
||||
float32x4_t poly[8];
|
||||
float32x4_t pi_over_2;
|
||||
} data = {
|
||||
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
||||
[2**-128, 1.0].
|
||||
Generated using fpminimax between FLT_MIN and 1. */
|
||||
.poly = { V4 (-0x1.55555p-2f), V4 (0x1.99935ep-3f), V4 (-0x1.24051ep-3f),
|
||||
V4 (0x1.bd7368p-4f), V4 (-0x1.491f0ep-4f), V4 (0x1.93a2c0p-5f),
|
||||
V4 (-0x1.4c3c60p-6f), V4 (0x1.01fd88p-8f) },
|
||||
.pi_over_2 = V4 (0x1.921fb6p+0f),
|
||||
};
|
||||
|
||||
#define SignMask v_u32 (0x80000000)
|
||||
|
||||
#define P(i) d->poly[i]
|
||||
|
||||
#define TinyBound 0x30800000 /* asuint(0x1p-30). */
|
||||
#define BigBound 0x4e800000 /* asuint(0x1p30). */
|
||||
|
||||
#if WANT_SIMD_EXCEPT
|
||||
static float32x4_t VPCS_ATTR NOINLINE
|
||||
special_case (float32x4_t x, float32x4_t y, uint32x4_t special)
|
||||
{
|
||||
return v_call_f32 (atanf, x, y, special);
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Fast implementation of vector atanf based on
|
||||
atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1]
|
||||
using z=-1/x and shift = pi/2. Maximum observed error is 2.9ulps:
|
||||
_ZGVnN4v_atanf (0x1.0468f6p+0) got 0x1.967f06p-1 want 0x1.967fp-1. */
|
||||
float32x4_t VPCS_ATTR V_NAME_F1 (atan) (float32x4_t x)
|
||||
{
|
||||
const struct data *d = ptr_barrier (&data);
|
||||
|
||||
/* Small cases, infs and nans are supported by our approximation technique,
|
||||
but do not set fenv flags correctly. Only trigger special case if we need
|
||||
fenv. */
|
||||
uint32x4_t ix = vreinterpretq_u32_f32 (x);
|
||||
uint32x4_t sign = vandq_u32 (ix, SignMask);
|
||||
|
||||
#if WANT_SIMD_EXCEPT
|
||||
uint32x4_t ia = vandq_u32 (ix, v_u32 (0x7ff00000));
|
||||
uint32x4_t special = vcgtq_u32 (vsubq_u32 (ia, v_u32 (TinyBound)),
|
||||
v_u32 (BigBound - TinyBound));
|
||||
/* If any lane is special, fall back to the scalar routine for all lanes. */
|
||||
if (__glibc_unlikely (v_any_u32 (special)))
|
||||
return special_case (x, x, v_u32 (-1));
|
||||
#endif
|
||||
|
||||
/* Argument reduction:
|
||||
y := arctan(x) for x < 1
|
||||
y := pi/2 + arctan(-1/x) for x > 1
|
||||
Hence, use z=-1/a if x>=1, otherwise z=a. */
|
||||
uint32x4_t red = vcagtq_f32 (x, v_f32 (1.0));
|
||||
/* Avoid dependency in abs(x) in division (and comparison). */
|
||||
float32x4_t z = vbslq_f32 (red, vdivq_f32 (v_f32 (1.0f), x), x);
|
||||
float32x4_t shift = vreinterpretq_f32_u32 (
|
||||
vandq_u32 (red, vreinterpretq_u32_f32 (d->pi_over_2)));
|
||||
/* Use absolute value only when needed (odd powers of z). */
|
||||
float32x4_t az = vbslq_f32 (
|
||||
SignMask, vreinterpretq_f32_u32 (vandq_u32 (SignMask, red)), z);
|
||||
|
||||
/* Calculate the polynomial approximation.
|
||||
Use 2-level Estrin scheme for P(z^2) with deg(P)=7. However,
|
||||
a standard implementation using z8 creates spurious underflow
|
||||
in the very last fma (when z^8 is small enough).
|
||||
Therefore, we split the last fma into a mul and an fma.
|
||||
Horner and single-level Estrin have higher errors that exceed
|
||||
threshold. */
|
||||
float32x4_t z2 = vmulq_f32 (z, z);
|
||||
float32x4_t z4 = vmulq_f32 (z2, z2);
|
||||
|
||||
float32x4_t y = vfmaq_f32 (
|
||||
v_pairwise_poly_3_f32 (z2, z4, d->poly), z4,
|
||||
vmulq_f32 (z4, v_pairwise_poly_3_f32 (z2, z4, d->poly + 4)));
|
||||
|
||||
/* y = shift + z * P(z^2). */
|
||||
y = vaddq_f32 (vfmaq_f32 (az, y, vmulq_f32 (z2, az)), shift);
|
||||
|
||||
/* y = atan(x) if x>0, -atan(-x) otherwise. */
|
||||
y = vreinterpretq_f32_u32 (veorq_u32 (vreinterpretq_u32_f32 (y), sign));
|
||||
|
||||
return y;
|
||||
}
|
79
sysdeps/aarch64/fpu/atanf_sve.c
Normal file
79
sysdeps/aarch64/fpu/atanf_sve.c
Normal file
|
@ -0,0 +1,79 @@
|
|||
/* Single-precision SVE inverse tan
|
||||
|
||||
Copyright (C) 2023 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
modify it under the terms of the GNU Lesser General Public
|
||||
License as published by the Free Software Foundation; either
|
||||
version 2.1 of the License, or (at your option) any later version.
|
||||
|
||||
The GNU C Library is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
Lesser General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU Lesser General Public
|
||||
License along with the GNU C Library; if not, see
|
||||
<https://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "sv_math.h"
|
||||
#include "poly_sve_f32.h"
|
||||
|
||||
static const struct data
|
||||
{
|
||||
float32_t poly[8];
|
||||
float32_t pi_over_2;
|
||||
} data = {
|
||||
/* Coefficients of polynomial P such that atan(x)~x+x*P(x^2) on
|
||||
[2**-128, 1.0]. */
|
||||
.poly = { -0x1.55555p-2f, 0x1.99935ep-3f, -0x1.24051ep-3f, 0x1.bd7368p-4f,
|
||||
-0x1.491f0ep-4f, 0x1.93a2c0p-5f, -0x1.4c3c60p-6f, 0x1.01fd88p-8f },
|
||||
.pi_over_2 = 0x1.921fb6p+0f,
|
||||
};
|
||||
|
||||
#define SignMask (0x80000000)
|
||||
|
||||
/* Fast implementation of SVE atanf based on
|
||||
atan(x) ~ shift + z + z^3 * P(z^2) with reduction to [0,1] using
|
||||
z=-1/x and shift = pi/2.
|
||||
Largest observed error is 2.9 ULP, close to +/-1.0:
|
||||
_ZGVsMxv_atanf (0x1.0468f6p+0) got -0x1.967f06p-1
|
||||
want -0x1.967fp-1. */
|
||||
svfloat32_t SV_NAME_F1 (atan) (svfloat32_t x, const svbool_t pg)
|
||||
{
|
||||
const struct data *d = ptr_barrier (&data);
|
||||
|
||||
/* No need to trigger special case. Small cases, infs and nans
|
||||
are supported by our approximation technique. */
|
||||
svuint32_t ix = svreinterpret_u32 (x);
|
||||
svuint32_t sign = svand_x (pg, ix, SignMask);
|
||||
|
||||
/* Argument reduction:
|
||||
y := arctan(x) for x < 1
|
||||
y := pi/2 + arctan(-1/x) for x > 1
|
||||
Hence, use z=-1/a if x>=1, otherwise z=a. */
|
||||
svbool_t red = svacgt (pg, x, 1.0f);
|
||||
/* Avoid dependency in abs(x) in division (and comparison). */
|
||||
svfloat32_t z = svsel (red, svdiv_x (pg, sv_f32 (1.0f), x), x);
|
||||
/* Use absolute value only when needed (odd powers of z). */
|
||||
svfloat32_t az = svabs_x (pg, z);
|
||||
az = svneg_m (az, red, az);
|
||||
|
||||
/* Use split Estrin scheme for P(z^2) with deg(P)=7. */
|
||||
svfloat32_t z2 = svmul_x (pg, z, z);
|
||||
svfloat32_t z4 = svmul_x (pg, z2, z2);
|
||||
svfloat32_t z8 = svmul_x (pg, z4, z4);
|
||||
|
||||
svfloat32_t y = sv_estrin_7_f32_x (pg, z2, z4, z8, d->poly);
|
||||
|
||||
/* y = shift + z + z^3 * P(z^2). */
|
||||
svfloat32_t z3 = svmul_x (pg, z2, az);
|
||||
y = svmla_x (pg, az, z3, y);
|
||||
|
||||
/* Apply shift as indicated by 'red' predicate. */
|
||||
y = svadd_m (red, y, sv_f32 (d->pi_over_2));
|
||||
|
||||
/* y = atan(x) if x>0, -atan(-x) otherwise. */
|
||||
return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
|
||||
}
|
|
@ -51,6 +51,7 @@ typedef __SVBool_t __sv_bool_t;
|
|||
|
||||
__vpcs __f32x4_t _ZGVnN4v_acosf (__f32x4_t);
|
||||
__vpcs __f32x4_t _ZGVnN4v_asinf (__f32x4_t);
|
||||
__vpcs __f32x4_t _ZGVnN4v_atanf (__f32x4_t);
|
||||
__vpcs __f32x4_t _ZGVnN4v_cosf (__f32x4_t);
|
||||
__vpcs __f32x4_t _ZGVnN4v_expf (__f32x4_t);
|
||||
__vpcs __f32x4_t _ZGVnN4v_exp10f (__f32x4_t);
|
||||
|
@ -63,6 +64,7 @@ __vpcs __f32x4_t _ZGVnN4v_tanf (__f32x4_t);
|
|||
|
||||
__vpcs __f64x2_t _ZGVnN2v_acos (__f64x2_t);
|
||||
__vpcs __f64x2_t _ZGVnN2v_asin (__f64x2_t);
|
||||
__vpcs __f64x2_t _ZGVnN2v_atan (__f64x2_t);
|
||||
__vpcs __f64x2_t _ZGVnN2v_cos (__f64x2_t);
|
||||
__vpcs __f64x2_t _ZGVnN2v_exp (__f64x2_t);
|
||||
__vpcs __f64x2_t _ZGVnN2v_exp10 (__f64x2_t);
|
||||
|
@ -80,6 +82,7 @@ __vpcs __f64x2_t _ZGVnN2v_tan (__f64x2_t);
|
|||
|
||||
__sv_f32_t _ZGVsMxv_acosf (__sv_f32_t, __sv_bool_t);
|
||||
__sv_f32_t _ZGVsMxv_asinf (__sv_f32_t, __sv_bool_t);
|
||||
__sv_f32_t _ZGVsMxv_atanf (__sv_f32_t, __sv_bool_t);
|
||||
__sv_f32_t _ZGVsMxv_cosf (__sv_f32_t, __sv_bool_t);
|
||||
__sv_f32_t _ZGVsMxv_expf (__sv_f32_t, __sv_bool_t);
|
||||
__sv_f32_t _ZGVsMxv_exp10f (__sv_f32_t, __sv_bool_t);
|
||||
|
@ -92,6 +95,7 @@ __sv_f32_t _ZGVsMxv_tanf (__sv_f32_t, __sv_bool_t);
|
|||
|
||||
__sv_f64_t _ZGVsMxv_acos (__sv_f64_t, __sv_bool_t);
|
||||
__sv_f64_t _ZGVsMxv_asin (__sv_f64_t, __sv_bool_t);
|
||||
__sv_f64_t _ZGVsMxv_atan (__sv_f64_t, __sv_bool_t);
|
||||
__sv_f64_t _ZGVsMxv_cos (__sv_f64_t, __sv_bool_t);
|
||||
__sv_f64_t _ZGVsMxv_exp (__sv_f64_t, __sv_bool_t);
|
||||
__sv_f64_t _ZGVsMxv_exp10 (__sv_f64_t, __sv_bool_t);
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
|
||||
VPCS_VECTOR_WRAPPER (acos_advsimd, _ZGVnN2v_acos)
|
||||
VPCS_VECTOR_WRAPPER (asin_advsimd, _ZGVnN2v_asin)
|
||||
VPCS_VECTOR_WRAPPER (atan_advsimd, _ZGVnN2v_atan)
|
||||
VPCS_VECTOR_WRAPPER (cos_advsimd, _ZGVnN2v_cos)
|
||||
VPCS_VECTOR_WRAPPER (exp_advsimd, _ZGVnN2v_exp)
|
||||
VPCS_VECTOR_WRAPPER (exp10_advsimd, _ZGVnN2v_exp10)
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
|
||||
SVE_VECTOR_WRAPPER (acos_sve, _ZGVsMxv_acos)
|
||||
SVE_VECTOR_WRAPPER (asin_sve, _ZGVsMxv_asin)
|
||||
SVE_VECTOR_WRAPPER (atan_sve, _ZGVsMxv_atan)
|
||||
SVE_VECTOR_WRAPPER (cos_sve, _ZGVsMxv_cos)
|
||||
SVE_VECTOR_WRAPPER (exp_sve, _ZGVsMxv_exp)
|
||||
SVE_VECTOR_WRAPPER (exp10_sve, _ZGVsMxv_exp10)
|
||||
|
|
|
@ -25,6 +25,7 @@
|
|||
|
||||
VPCS_VECTOR_WRAPPER (acosf_advsimd, _ZGVnN4v_acosf)
|
||||
VPCS_VECTOR_WRAPPER (asinf_advsimd, _ZGVnN4v_asinf)
|
||||
VPCS_VECTOR_WRAPPER (atanf_advsimd, _ZGVnN4v_atanf)
|
||||
VPCS_VECTOR_WRAPPER (cosf_advsimd, _ZGVnN4v_cosf)
|
||||
VPCS_VECTOR_WRAPPER (expf_advsimd, _ZGVnN4v_expf)
|
||||
VPCS_VECTOR_WRAPPER (exp10f_advsimd, _ZGVnN4v_exp10f)
|
||||
|
|
|
@ -34,6 +34,7 @@
|
|||
|
||||
SVE_VECTOR_WRAPPER (acosf_sve, _ZGVsMxv_acosf)
|
||||
SVE_VECTOR_WRAPPER (asinf_sve, _ZGVsMxv_asinf)
|
||||
SVE_VECTOR_WRAPPER (atanf_sve, _ZGVsMxv_atanf)
|
||||
SVE_VECTOR_WRAPPER (cosf_sve, _ZGVsMxv_cosf)
|
||||
SVE_VECTOR_WRAPPER (expf_sve, _ZGVsMxv_expf)
|
||||
SVE_VECTOR_WRAPPER (exp10f_sve, _ZGVsMxv_exp10f)
|
||||
|
|
|
@ -121,11 +121,19 @@ double: 1
|
|||
float: 1
|
||||
ldouble: 2
|
||||
|
||||
Function: "atan_advsimd":
|
||||
double: 1
|
||||
float: 1
|
||||
|
||||
Function: "atan_downward":
|
||||
double: 1
|
||||
float: 2
|
||||
ldouble: 2
|
||||
|
||||
Function: "atan_sve":
|
||||
double: 1
|
||||
float: 1
|
||||
|
||||
Function: "atan_towardzero":
|
||||
double: 1
|
||||
float: 1
|
||||
|
|
|
@ -16,6 +16,7 @@ GLIBC_2.38 _ZGVsMxv_sin F
|
|||
GLIBC_2.38 _ZGVsMxv_sinf F
|
||||
GLIBC_2.39 _ZGVnN2v_acos F
|
||||
GLIBC_2.39 _ZGVnN2v_asin F
|
||||
GLIBC_2.39 _ZGVnN2v_atan F
|
||||
GLIBC_2.39 _ZGVnN2v_exp10 F
|
||||
GLIBC_2.39 _ZGVnN2v_exp2 F
|
||||
GLIBC_2.39 _ZGVnN2v_log10 F
|
||||
|
@ -23,6 +24,7 @@ GLIBC_2.39 _ZGVnN2v_log2 F
|
|||
GLIBC_2.39 _ZGVnN2v_tan F
|
||||
GLIBC_2.39 _ZGVnN4v_acosf F
|
||||
GLIBC_2.39 _ZGVnN4v_asinf F
|
||||
GLIBC_2.39 _ZGVnN4v_atanf F
|
||||
GLIBC_2.39 _ZGVnN4v_exp10f F
|
||||
GLIBC_2.39 _ZGVnN4v_exp2f F
|
||||
GLIBC_2.39 _ZGVnN4v_log10f F
|
||||
|
@ -32,6 +34,8 @@ GLIBC_2.39 _ZGVsMxv_acos F
|
|||
GLIBC_2.39 _ZGVsMxv_acosf F
|
||||
GLIBC_2.39 _ZGVsMxv_asin F
|
||||
GLIBC_2.39 _ZGVsMxv_asinf F
|
||||
GLIBC_2.39 _ZGVsMxv_atan F
|
||||
GLIBC_2.39 _ZGVsMxv_atanf F
|
||||
GLIBC_2.39 _ZGVsMxv_exp10 F
|
||||
GLIBC_2.39 _ZGVsMxv_exp10f F
|
||||
GLIBC_2.39 _ZGVsMxv_exp2 F
|
||||
|
|
Loading…
Add table
Reference in a new issue