AArch64: Improve codegen of AdvSIMD logf function family

Load the polynomial evaluation coefficients into 2 vectors and use lanewise MLAs.
8% improvement in throughput microbenchmark on Neoverse V1 for log2 and log,
and 2% for log10.

Reviewed-by: Wilco Dijkstra  <Wilco.Dijkstra@arm.com>
(cherry picked from commit d6e034f5b2)
This commit is contained in:
Joana Cruz 2024-12-17 14:47:31 +00:00 committed by Wilco Dijkstra
parent 72156cb90b
commit dcd1229e5b
3 changed files with 66 additions and 40 deletions

View file

@ -18,21 +18,25 @@
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f32.h"
static const struct data
{
float32x4_t c0, c2, c4, c6, inv_ln10, ln2;
uint32x4_t off, offset_lower_bound;
uint16x8_t special_bound;
uint32x4_t mantissa_mask;
float32x4_t poly[8];
float32x4_t inv_ln10, ln2;
float c1, c3, c5, c7;
} data = {
/* Use order 9 for log10(1+x), i.e. order 8 for log10(1+x)/x, with x in
[-1/3, 1/3] (offset=2/3). Max. relative error: 0x1.068ee468p-25. */
.poly = { V4 (-0x1.bcb79cp-3f), V4 (0x1.2879c8p-3f), V4 (-0x1.bcd472p-4f),
V4 (0x1.6408f8p-4f), V4 (-0x1.246f8p-4f), V4 (0x1.f0e514p-5f),
V4 (-0x1.0fc92cp-4f), V4 (0x1.f5f76ap-5f) },
.c0 = V4 (-0x1.bcb79cp-3f),
.c1 = 0x1.2879c8p-3f,
.c2 = V4 (-0x1.bcd472p-4f),
.c3 = 0x1.6408f8p-4f,
.c4 = V4 (-0x1.246f8p-4f),
.c5 = 0x1.f0e514p-5f,
.c6 = V4 (-0x1.0fc92cp-4f),
.c7 = 0x1.f5f76ap-5f,
.ln2 = V4 (0x1.62e43p-1f),
.inv_ln10 = V4 (0x1.bcb7b2p-2f),
/* Lower bound is the smallest positive normal float 0x00800000. For
@ -62,7 +66,7 @@ special_case (float32x4_t y, uint32x4_t u_off, float32x4_t p, float32x4_t r2,
float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (log10) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
float32x4_t c1357 = vld1q_f32 (&d->c1);
/* To avoid having to mov x out of the way, keep u after offset has been
applied, and recover x by adding the offset back in the special-case
handler. */
@ -81,7 +85,16 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (log10) (float32x4_t x)
/* y = log10(1+r) + n * log10(2). */
float32x4_t r2 = vmulq_f32 (r, r);
float32x4_t poly = v_pw_horner_7_f32 (r, r2, d->poly);
float32x4_t c01 = vfmaq_laneq_f32 (d->c0, r, c1357, 0);
float32x4_t c23 = vfmaq_laneq_f32 (d->c2, r, c1357, 1);
float32x4_t c45 = vfmaq_laneq_f32 (d->c4, r, c1357, 2);
float32x4_t c67 = vfmaq_laneq_f32 (d->c6, r, c1357, 3);
float32x4_t p47 = vfmaq_f32 (c45, r2, c67);
float32x4_t p27 = vfmaq_f32 (c23, r2, p47);
float32x4_t poly = vfmaq_f32 (c01, r2, p27);
/* y = Log10(2) * n + poly * InvLn(10). */
float32x4_t y = vfmaq_f32 (r, d->ln2, n);
y = vmulq_f32 (y, d->inv_ln10);

View file

@ -18,22 +18,27 @@
<https://www.gnu.org/licenses/>. */
#include "v_math.h"
#include "poly_advsimd_f32.h"
static const struct data
{
float32x4_t c0, c2, c4, c6, c8;
uint32x4_t off, offset_lower_bound;
uint16x8_t special_bound;
uint32x4_t mantissa_mask;
float32x4_t poly[9];
float c1, c3, c5, c7;
} data = {
/* Coefficients generated using Remez algorithm approximate
log2(1+r)/r for r in [ -1/3, 1/3 ].
rel error: 0x1.c4c4b0cp-26. */
.poly = { V4 (0x1.715476p0f), /* (float)(1 / ln(2)). */
V4 (-0x1.715458p-1f), V4 (0x1.ec701cp-2f), V4 (-0x1.7171a4p-2f),
V4 (0x1.27a0b8p-2f), V4 (-0x1.e5143ep-3f), V4 (0x1.9d8ecap-3f),
V4 (-0x1.c675bp-3f), V4 (0x1.9e495p-3f) },
.c0 = V4 (0x1.715476p0f), /* (float)(1 / ln(2)). */
.c1 = -0x1.715458p-1f,
.c2 = V4 (0x1.ec701cp-2f),
.c3 = -0x1.7171a4p-2f,
.c4 = V4 (0x1.27a0b8p-2f),
.c5 = -0x1.e5143ep-3f,
.c6 = V4 (0x1.9d8ecap-3f),
.c7 = -0x1.c675bp-3f,
.c8 = V4 (0x1.9e495p-3f),
/* Lower bound is the smallest positive normal float 0x00800000. For
optimised register use subnormals are detected after offset has been
subtracted, so lower bound is 0x0080000 - offset (which wraps around). */
@ -79,11 +84,21 @@ float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (log2) (float32x4_t x)
/* y = log2(1+r) + n. */
float32x4_t r2 = vmulq_f32 (r, r);
float32x4_t p = v_pw_horner_8_f32 (r, r2, d->poly);
float32x4_t c1357 = vld1q_f32 (&d->c1);
float32x4_t c01 = vfmaq_laneq_f32 (d->c0, r, c1357, 0);
float32x4_t c23 = vfmaq_laneq_f32 (d->c2, r, c1357, 1);
float32x4_t c45 = vfmaq_laneq_f32 (d->c4, r, c1357, 2);
float32x4_t c67 = vfmaq_laneq_f32 (d->c6, r, c1357, 3);
float32x4_t p68 = vfmaq_f32 (c67, r2, d->c8);
float32x4_t p48 = vfmaq_f32 (c45, r2, p68);
float32x4_t p28 = vfmaq_f32 (c23, r2, p48);
float32x4_t p = vfmaq_f32 (c01, r2, p28);
if (__glibc_unlikely (v_any_u16h (special)))
return special_case (n, u_off, p, r, special, d);
return vfmaq_f32 (n, p, r);
}
libmvec_hidden_def (V_NAME_F1 (log2))
HALF_WIDTH_ALIAS_F1 (log2)

View file

@ -21,16 +21,19 @@
static const struct data
{
uint32x4_t off, offset_lower_bound;
float32x4_t c2, c4, c6, ln2;
uint32x4_t off, offset_lower_bound, mantissa_mask;
uint16x8_t special_bound;
uint32x4_t mantissa_mask;
float32x4_t poly[7];
float32x4_t ln2;
float c1, c3, c5, c0;
} data = {
/* 3.34 ulp error. */
.poly = { V4 (-0x1.3e737cp-3f), V4 (0x1.5a9aa2p-3f), V4 (-0x1.4f9934p-3f),
V4 (0x1.961348p-3f), V4 (-0x1.00187cp-2f), V4 (0x1.555d7cp-2f),
V4 (-0x1.ffffc8p-2f) },
.c0 = -0x1.3e737cp-3f,
.c1 = 0x1.5a9aa2p-3f,
.c2 = V4 (-0x1.4f9934p-3f),
.c3 = 0x1.961348p-3f,
.c4 = V4 (-0x1.00187cp-2f),
.c5 = 0x1.555d7cp-2f,
.c6 = V4 (-0x1.ffffc8p-2f),
.ln2 = V4 (0x1.62e43p-1f),
/* Lower bound is the smallest positive normal float 0x00800000. For
optimised register use subnormals are detected after offset has been
@ -41,8 +44,6 @@ static const struct data
.mantissa_mask = V4 (0x007fffff)
};
#define P(i) d->poly[7 - i]
static float32x4_t VPCS_ATTR NOINLINE
special_case (float32x4_t p, uint32x4_t u_off, float32x4_t y, float32x4_t r2,
uint16x4_t cmp, const struct data *d)
@ -55,33 +56,30 @@ special_case (float32x4_t p, uint32x4_t u_off, float32x4_t y, float32x4_t r2,
float32x4_t VPCS_ATTR NOINLINE V_NAME_F1 (log) (float32x4_t x)
{
const struct data *d = ptr_barrier (&data);
float32x4_t n, p, q, r, r2, y;
uint32x4_t u, u_off;
uint16x4_t cmp;
float32x4_t c1350 = vld1q_f32 (&d->c1);
/* To avoid having to mov x out of the way, keep u after offset has been
applied, and recover x by adding the offset back in the special-case
handler. */
u_off = vreinterpretq_u32_f32 (x);
uint32x4_t u_off = vsubq_u32 (vreinterpretq_u32_f32 (x), d->off);
/* x = 2^n * (1+r), where 2/3 < 1+r < 4/3. */
u_off = vsubq_u32 (u_off, d->off);
n = vcvtq_f32_s32 (
float32x4_t n = vcvtq_f32_s32 (
vshrq_n_s32 (vreinterpretq_s32_u32 (u_off), 23)); /* signextend. */
u = vandq_u32 (u_off, d->mantissa_mask);
u = vaddq_u32 (u, d->off);
r = vsubq_f32 (vreinterpretq_f32_u32 (u), v_f32 (1.0f));
uint16x4_t cmp = vcge_u16 (vsubhn_u32 (u_off, d->offset_lower_bound),
vget_low_u16 (d->special_bound));
cmp = vcge_u16 (vsubhn_u32 (u_off, d->offset_lower_bound),
vget_low_u16 (d->special_bound));
uint32x4_t u = vaddq_u32 (vandq_u32 (u_off, d->mantissa_mask), d->off);
float32x4_t r = vsubq_f32 (vreinterpretq_f32_u32 (u), v_f32 (1.0f));
/* y = log(1+r) + n*ln2. */
r2 = vmulq_f32 (r, r);
float32x4_t r2 = vmulq_f32 (r, r);
/* n*ln2 + r + r2*(P1 + r*P2 + r2*(P3 + r*P4 + r2*(P5 + r*P6 + r2*P7))). */
p = vfmaq_f32 (P (5), P (6), r);
q = vfmaq_f32 (P (3), P (4), r);
y = vfmaq_f32 (P (1), P (2), r);
p = vfmaq_f32 (p, P (7), r2);
float32x4_t p = vfmaq_laneq_f32 (d->c2, r, c1350, 0);
float32x4_t q = vfmaq_laneq_f32 (d->c4, r, c1350, 1);
float32x4_t y = vfmaq_laneq_f32 (d->c6, r, c1350, 2);
p = vfmaq_laneq_f32 (p, r2, c1350, 3);
q = vfmaq_f32 (q, p, r2);
y = vfmaq_f32 (y, q, r2);
p = vfmaq_f32 (r, d->ln2, n);