glibc/sysdeps/ieee754/flt-32/s_atanf.c
Adhemerval Zanella a357d6273f math: Use atanf from CORE-MATH
The CORE-MATH implementation is correctly rounded (for any rounding mode)
and shows slight better performance to the generic atanf.

The code was adapted to glibc style and to use the definition of
math_config.h (to handle errno, overflow, and underflow).

Benchtest on x64_64 (Ryzen 9 5900X, gcc 14.2.1), aarch64 (Neoverse-N1,
gcc 13.3.1), and powerpc (POWER10, gcc 13.2.1):

Latency                      master        patched   improvement
x86_64                      56.8265        53.6842         5.53%
x86_64v2                    54.8177        53.6842         2.07%
x86_64v3                    46.2915        48.7034        -5.21%
i686                       158.3760        108.9560       31.20%
aarch64 (Neoverse)           21.687        20.5893         5.06%
power10                     13.1903        13.5012        -2.36%

reciprocal-throughput        master        patched   improvement
x86_64                      16.6787        16.7601        -0.49%
x86_64v2                    16.6983        16.7601        -0.37%
x86_64v3                    16.2268        12.1391        25.19%
i686                       138.6840        36.0640        74.00%
aarch64 (Neoverse)          11.8012        10.3565        12.24%
power10                      5.3212         4.2894        19.39%

Signed-off-by: Alexei Sibidanov <sibid@uvic.ca>
Signed-off-by: Paul Zimmermann <Paul.Zimmermann@inria.fr>
Signed-off-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: DJ Delorie <dj@redhat.com>
2024-12-18 17:24:43 -03:00

113 lines
3.9 KiB
C

/* Correctly-rounded arc-tangent of binary32 value.
Copyright (c) 2022-2024 Alexei Sibidanov.
The original version of this file was copied from the CORE-MATH
project (file src/binary32/atan/atanf.c, revision a8066a5).
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
*/
#include <math.h>
#include <stdint.h>
#include <libm-alias-float.h>
#include "math_config.h"
float
__atanf (float x)
{
const double pi2 = 0x1.921fb54442d18p+0;
uint32_t t = asuint (x);
int e = (t >> 23) & 0xff;
bool gt = e >= 127;
uint32_t ta = t & 0x7fffffff;
if (__glibc_unlikely (ta >= 0x4c700518u)) /* |x| > 0x1.e00a3p+25 */
{
if (ta > 0x7f800000u)
return x + x; /* nan */
return copysign (pi2, (double) x);
}
if (__glibc_unlikely (e < 127 - 13))
{
if (__glibc_unlikely (e < 127 - 25))
{
if (!(t << 1))
return x;
return fmaf (-x, fabsf (x), x);
}
return fmaf (-0x1.5555555555555p-2f * x, x * x, x);
}
/* now |x| >= 0x1p-13 */
double z = x;
if (gt)
z = 1 / z; /* gt is non-zero for |x| >= 1 */
double z2 = z * z;
double z4 = z2 * z2;
double z8 = z4 * z4;
/* polynomials generated using rminimax
(https://gitlab.inria.fr/sfilip/rminimax) with the following command:
./ratapprox --function="atan(x)" --dom=[0.000122070,1]
--num=[x,x^3,x^5,x^7,x^9,x^11,x^13] --den=[1,x^2,x^4,x^6,x^8,x^10,x^12]
--output=atanf.sollya --log (see output atanf.sollya) The coefficient
cd[0] was slightly reduced from the original value 0x1.51eccde075d67p-2 to
avoid an exceptional case for |x| = 0x1.1ad646p-4 and rounding to nearest.
*/
static const double cn[] =
{
0x1.51eccde075d67p-2, 0x1.a76bb5637f2f2p-1, 0x1.81e0eed20de88p-1,
0x1.376c8ca67d11dp-2, 0x1.aec7b69202ac6p-5, 0x1.9561899acc73ep-9,
0x1.bf9fa5b67e6p-16
};
static const double cd[] =
{
0x1.51eccde075d66p-2, 0x1.dfbdd7b392d28p-1, 0x1p+0,
0x1.fd22bf0e89b54p-2, 0x1.d91ff8b576282p-4, 0x1.653ea99fc9bbp-7,
0x1.1e7fcc202340ap-12
};
double cn0 = cn[0] + z2 * cn[1];
double cn2 = cn[2] + z2 * cn[3];
double cn4 = cn[4] + z2 * cn[5];
double cn6 = cn[6];
cn0 += z4 * cn2;
cn4 += z4 * cn6;
cn0 += z8 * cn4;
cn0 *= z;
double cd0 = cd[0] + z2 * cd[1];
double cd2 = cd[2] + z2 * cd[3];
double cd4 = cd[4] + z2 * cd[5];
double cd6 = cd[6];
cd0 += z4 * cd2;
cd4 += z4 * cd6;
cd0 += z8 * cd4;
double r = cn0 / cd0;
if (!gt)
return r; /* for |x| < 1, (float) r is correctly rounded */
#define PI_OVER2_H 0x1.9p0
#define PI_OVER2_L 0x1.0fdaa22168c23p-7
/* now r approximates atan(1/x), we use atan(x) + atan(1/x) = sign(x)*pi/2,
where PI_OVER2_H + PI_OVER2_L approximates pi/2.
With sign(z)*L + (-r + sign(z)*H), it fails for x=0x1.98c252p+12 and
rounding upward.
With sign(z)*PI - r, where PI is a double approximation of pi to nearest,
it fails for x=0x1.ddf9f6p+0 and rounding upward. */
r = copysign (PI_OVER2_L, z) - r + copysign (PI_OVER2_H, z);
return r;
}
libm_alias_float (__atan, atan)