Adding bridge multicast context support for host-joined groups is easy
because we only need the proper timer value. We pass the already chosen
context and use its timer value.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new global vlan option which controls whether multicast snooping
is enabled or disabled for a single vlan. It controls the vlan private
flag: BR_VLFLAG_GLOBAL_MCAST_ENABLED.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a new vlan options dump flag which causes only global vlan options
to be dumped. The dumps are done only with bridge devices, ports are
ignored. They support vlan compression if the options in sequential
vlans are equal (currently always true).
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We can have two types of vlan options depending on context:
- per-device vlan options (split in per-bridge and per-port)
- global vlan options
The second type wasn't supported in the bridge until now, but we need
them for per-vlan multicast support, per-vlan STP support and other
options which require global vlan context. They are contained in the global
bridge vlan context even if the vlan is not configured on the bridge device
itself. This patch adds initial netlink attributes and support for setting
these global vlan options, they can only be set (RTM_NEWVLAN) and the
operation must use the bridge device. Since there are no such options yet
it shouldn't have any functional effect.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Use the port multicast context to check if the router port is a vlan and
in case it is include its vlan id in the notification.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add helpers which check if the current bridge/port multicast context
should be used (i.e. they're not disabled) and use them for Rx IGMP/MLD
processing, timers and new group addition. It is important for vlans to
disable processing of timer/packet after the multicast_lock is obtained
if the vlan context doesn't have BR_VLFLAG_MCAST_ENABLED. There are two
cases when that flag is missing:
- if the vlan is getting destroyed it will be removed and timers will
be stopped
- if the vlan mcast snooping is being disabled
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a global knob that controls if vlan multicast snooping is enabled.
The proper contexts (vlan or bridge-wide) will be chosen based on the knob
when processing packets and changing bridge device state. Note that
vlans have their individual mcast snooping enabled by default, but this
knob is needed to turn on bridge vlan snooping. It is disabled by
default. To enable the knob vlan filtering must also be enabled, it
doesn't make sense to have vlan mcast snooping without vlan filtering
since that would lead to inconsistencies. Disabling vlan filtering will
also automatically disable vlan mcast snooping.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add helpers to enable/disable vlan multicast based on its flags, we need
two flags because we need to know if the vlan has multicast enabled
globally (user-controlled) and if it has it enabled on the specific device
(bridge or port). The new private vlan flags are:
- BR_VLFLAG_MCAST_ENABLED: locally enabled multicast on the device, used
when removing a vlan, toggling vlan mcast snooping and controlling
single vlan (kernel-controlled, valid under RTNL and multicast_lock)
- BR_VLFLAG_GLOBAL_MCAST_ENABLED: globally enabled multicast for the
vlan, used to control the bridge-wide vlan mcast snooping for a
single vlan (user-controlled, can be checked under any context)
Bridge vlan contexts are created with multicast snooping enabled by
default to be in line with the current bridge snooping defaults. In
order to actually activate per vlan snooping and context usage a
bridge-wide knob will be added later which will default to disabled.
If that knob is enabled then automatically all vlan snooping will be
enabled. All vlan contexts are initialized with the current bridge
multicast context defaults.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add global and per-port vlan multicast context, only initialized but
still not used. No functional changes intended.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Pass multicast context pointers to multicast functions instead of bridge/port.
This would make it easier later to switch these contexts to their per-vlan
versions. The patch is basically search and replace, no functional changes.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Factor out the bridge's global multicast context into a separate
structure which will later be used for per-vlan global context.
No functional changes intended.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Factor out the port's multicast context into a separate structure which
will later be shared for per-port,vlan context. No functional changes
intended. We need the structure even if bridge multicast is not defined
to pass down as pointer to forwarding functions.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Treat addresses added to the bridge itself in the same way as regular
ports and send out a notification so that drivers may sync it down to
the hardware FDB.
Signed-off-by: Tobias Waldekranz <tobias@waldekranz.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Trivial conflicts in net/can/isotp.c and
tools/testing/selftests/net/mptcp/mptcp_connect.sh
scaled_ppm_to_ppb() was moved from drivers/ptp/ptp_clock.c
to include/linux/ptp_clock_kernel.h in -next so re-apply
the fix there.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch fixes a tunnel_dst null pointer dereference due to lockless
access in the tunnel egress path. When deleting a vlan tunnel the
tunnel_dst pointer is set to NULL without waiting a grace period (i.e.
while it's still usable) and packets egressing are dereferencing it
without checking. Use READ/WRITE_ONCE to annotate the lockless use of
tunnel_id, use RCU for accessing tunnel_dst and make sure it is read
only once and checked in the egress path. The dst is already properly RCU
protected so we don't need to do anything fancy than to make sure
tunnel_id and tunnel_dst are read only once and checked in the egress path.
Cc: stable@vger.kernel.org
Fixes: 11538d039a ("bridge: vlan dst_metadata hooks in ingress and egress paths")
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
br_multicast_is_router takes two arguments when bridge IGMP is enabled
and just one when it's disabled, fix the stub to take two as well.
Fixes: 1a3065a268 ("net: bridge: mcast: prepare is-router function for mcast router split")
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Acked-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
A multicast router for IPv4 does not imply that the same host also is a
multicast router for IPv6 and vice versa.
To reduce multicast traffic when a host is only a multicast router for
one of these two protocol families, keep router state for IPv4 and IPv6
separately. Similar to how querier state is kept separately.
For backwards compatibility for netlink and switchdev notifications
these two will still only notify if a port switched from either no
IPv4/IPv6 multicast router to any IPv4/IPv6 multicast router or the
other way round. However a full netlink MDB router dump will now also
include a multicast router timeout for both IPv4 and IPv6.
Signed-off-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation for the upcoming split of multicast router state into
their IPv4 and IPv6 variants make br_multicast_is_router() protocol
family aware.
Note that for now br_ip6_multicast_is_router() uses the currently still
common ip4_mc_router_timer for now. It will be renamed to
ip6_mc_router_timer later when the split is performed.
While at it also renames the "1" and "2" constants in
br_multicast_is_router() to the MDB_RTR_TYPE_TEMP_QUERY and
MDB_RTR_TYPE_PERM enums.
Signed-off-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation for the upcoming split of multicast router state into
their IPv4 and IPv6 variants and to avoid IPv6 #ifdef clutter later add
two wrapper functions for router node retrieval in the payload
forwarding code.
Signed-off-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
In preparation for the upcoming split of multicast router state into
their IPv4 and IPv6 variants, rename the affected variable to the IPv4
version first to avoid some renames in later commits.
Signed-off-by: Linus Lüssing <linus.luessing@c0d3.blue>
Signed-off-by: David S. Miller <davem@davemloft.net>
Some Ethernet switches might only be able to support disabling multicast
snooping globally, which is an issue for example when several bridges
span the same physical device and request contradictory settings.
Propagate the return value of br_mc_disabled_update() such that this
limitation is transmitted correctly to user-space.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Depending on the VLAN settings of the bridge and the port, the bridge can
either add or remove a tag. When vlan filtering is enabled, the fdb lookup
also needs to know the VLAN tag/proto for the destination address
To provide this, keep track of the stack of VLAN tags for the path in the
lookup context
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Pablo Neira Ayuso <pablo@netfilter.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
The prototype of br_vlan_filter_toggle was updated to include a netlink
extack, but the stub definition wasn't, which results in a build error
when CONFIG_BRIDGE_VLAN_FILTERING=n.
Fixes: 9e781401cb ("net: bridge: propagate extack through store_bridge_parm")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The benefit is the ability to propagate errors from switchdev drivers
for the SWITCHDEV_ATTR_ID_BRIDGE_VLAN_FILTERING and
SWITCHDEV_ATTR_ID_BRIDGE_VLAN_PROTOCOL attributes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The bridge sysfs interface stores parameters for the STP, VLAN,
multicast etc subsystems using a predefined function prototype.
Sometimes the underlying function being called supports a netlink
extended ack message, and we ignore it.
Let's expand the store_bridge_parm function prototype to include the
extack, and just print it to console, but at least propagate it where
applicable. Where not applicable, create a shim function in the
br_sysfs_br.c file that discards the extra function argument.
This patch allows us to propagate the extack argument to
br_vlan_set_default_pvid, br_vlan_set_proto and br_vlan_filter_toggle,
and from there, further up in br_changelink from br_netlink.c.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This function is identical with br_vlan_filter_toggle.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For the netlink interface, propagate errors through extack rather than
simply printing them to the console. For the sysfs interface, we still
print to the console, but at least that's one layer higher than in
switchdev, which also allows us to silently ignore the offloading of
flags if that is ever needed in the future.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add a default limit of 512 for number of tracked EHT hosts per-port.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Mark groups which were deleted due to fast leave/EHT.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add support for IGMPv3/MLDv2 allow/block EHT handling. Similar to how
the reports are processed we have 2 cases when the group is in include
or exclude mode, these are processed as follows:
- group include
- allow: create missing entries
- block: remove existing matching entries and remove the corresponding
S,G entries if there are no more set host entries, then possibly
delete the whole group if there are no more S,G entries
- group exclude
- allow
- host include: create missing entries
- host exclude: remove existing matching entries and remove the
corresponding S,G entries if there are no more set host entries
- block
- host include: remove existing matching entries and remove the
corresponding S,G entries if there are no more set host entries,
then possibly delete the whole group if there are no more S,G entries
- host exclude: create missing entries
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Add EHT structures for tracking hosts and sources per group. We keep one
set for each host which has all of the host's S,G entries, and one set for
each multicast source which has all hosts that have joined that S,G. For
each host, source entry we record the filter_mode and we keep an expiry
timer. There is also one global expiry timer per source set, it is
updated with each set entry update, it will be later used to lower the
set's timer instead of lowering each entry's timer separately.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
xdp_return_frame_bulk() needs to pass a xdp_buff
to __xdp_return().
strlcpy got converted to strscpy but here it makes no
functional difference, so just keep the right code.
Conflicts:
net/netfilter/nf_tables_api.c
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When enabling multicast snooping, bridge module deadlocks on multicast_lock
if 1) IPv6 is enabled, and 2) there is an existing querier on the same L2
network.
The deadlock was caused by the following sequence: While holding the lock,
br_multicast_open calls br_multicast_join_snoopers, which eventually causes
IP stack to (attempt to) send out a Listener Report (in igmp6_join_group).
Since the destination Ethernet address is a multicast address, br_dev_xmit
feeds the packet back to the bridge via br_multicast_rcv, which in turn
calls br_multicast_add_group, which then deadlocks on multicast_lock.
The fix is to move the call br_multicast_join_snoopers outside of the
critical section. This works since br_multicast_join_snoopers only deals
with IP and does not modify any multicast data structures of the bridge,
so there's no need to hold the lock.
Steps to reproduce:
1. sysctl net.ipv6.conf.all.force_mld_version=1
2. have another querier
3. ip link set dev bridge type bridge mcast_snooping 0 && \
ip link set dev bridge type bridge mcast_snooping 1 < deadlock >
A typical call trace looks like the following:
[ 936.251495] _raw_spin_lock+0x5c/0x68
[ 936.255221] br_multicast_add_group+0x40/0x170 [bridge]
[ 936.260491] br_multicast_rcv+0x7ac/0xe30 [bridge]
[ 936.265322] br_dev_xmit+0x140/0x368 [bridge]
[ 936.269689] dev_hard_start_xmit+0x94/0x158
[ 936.273876] __dev_queue_xmit+0x5ac/0x7f8
[ 936.277890] dev_queue_xmit+0x10/0x18
[ 936.281563] neigh_resolve_output+0xec/0x198
[ 936.285845] ip6_finish_output2+0x240/0x710
[ 936.290039] __ip6_finish_output+0x130/0x170
[ 936.294318] ip6_output+0x6c/0x1c8
[ 936.297731] NF_HOOK.constprop.0+0xd8/0xe8
[ 936.301834] igmp6_send+0x358/0x558
[ 936.305326] igmp6_join_group.part.0+0x30/0xf0
[ 936.309774] igmp6_group_added+0xfc/0x110
[ 936.313787] __ipv6_dev_mc_inc+0x1a4/0x290
[ 936.317885] ipv6_dev_mc_inc+0x10/0x18
[ 936.321677] br_multicast_open+0xbc/0x110 [bridge]
[ 936.326506] br_multicast_toggle+0xec/0x140 [bridge]
Fixes: 4effd28c12 ("bridge: join all-snoopers multicast address")
Signed-off-by: Joseph Huang <Joseph.Huang@garmin.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Link: https://lore.kernel.org/r/20201204235628.50653-1-Joseph.Huang@garmin.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Use netdev->tstats instead of a member of net_bridge for storing
a pointer to the per-cpu counters. This allows us to use core
functionality for statistics handling.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Link: https://lore.kernel.org/r/9bad2be2-fd84-7c6e-912f-cee433787018@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Struct br_vlan_stats duplicates pcpu_sw_netstats (apart from
br_vlan_stats not defining an alignment requirement), therefore
switch to using the latter one.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Link: https://lore.kernel.org/r/04d25c3d-c5f6-3611-6d37-c2f40243dae2@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Replace list_head with hlist_head for MRP list under the bridge.
There is no need for a circular list when a linear list will work.
This will also decrease the size of 'struct net_bridge'.
Signed-off-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Link: https://lore.kernel.org/r/20201106215049.1448185-1-horatiu.vultur@microchip.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The commit cited below has changed only the functional prototype of
br_multicast_querier_exists, but forgot to do that for the stub
prototype (the one where CONFIG_BRIDGE_IGMP_SNOOPING is disabled).
Fixes: 955062b03f ("net: bridge: mcast: add support for raw L2 multicast groups")
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20201101000845.190009-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Extend the bridge multicast control and data path to configure routes
for L2 (non-IP) multicast groups.
The uapi struct br_mdb_entry union u is extended with another variant,
mac_addr, which does not change the structure size, and which is valid
when the proto field is zero.
To be compatible with the forwarding code that is already in place,
which acts as an IGMP/MLD snooping bridge with querier capabilities, we
need to declare that for L2 MDB entries (for which there exists no such
thing as IGMP/MLD snooping/querying), that there is always a querier.
Otherwise, these entries would be flooded to all bridge ports and not
just to those that are members of the L2 multicast group.
Needless to say, only permanent L2 multicast groups can be installed on
a bridge port.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20201028233831.610076-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is the implementation of Netlink notifications out of CFM.
Notifications are initiated whenever a state change happens in CFM.
IFLA_BRIDGE_CFM:
Points to the CFM information.
IFLA_BRIDGE_CFM_MEP_STATUS_INFO:
This indicate that the MEP instance status are following.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO:
This indicate that the peer MEP status are following.
CFM nested attribute has the following attributes in next level.
IFLA_BRIDGE_CFM_MEP_STATUS_INSTANCE:
The MEP instance number of the delivered status.
The type is NLA_U32.
IFLA_BRIDGE_CFM_MEP_STATUS_OPCODE_UNEXP_SEEN:
The MEP instance received CFM PDU with unexpected Opcode.
The type is NLA_U32 (bool).
IFLA_BRIDGE_CFM_MEP_STATUS_VERSION_UNEXP_SEEN:
The MEP instance received CFM PDU with unexpected version.
The type is NLA_U32 (bool).
IFLA_BRIDGE_CFM_MEP_STATUS_RX_LEVEL_LOW_SEEN:
The MEP instance received CCM PDU with MD level lower than
configured level. This frame is discarded.
The type is NLA_U32 (bool).
IFLA_BRIDGE_CFM_CC_PEER_STATUS_INSTANCE:
The MEP instance number of the delivered status.
The type is NLA_U32.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_PEER_MEPID:
The added Peer MEP ID of the delivered status.
The type is NLA_U32.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_CCM_DEFECT:
The CCM defect status.
The type is NLA_U32 (bool).
True means no CCM frame is received for 3.25 intervals.
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_RDI:
The last received CCM PDU RDI.
The type is NLA_U32 (bool).
IFLA_BRIDGE_CFM_CC_PEER_STATUS_PORT_TLV_VALUE:
The last received CCM PDU Port Status TLV value field.
The type is NLA_U8.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_IF_TLV_VALUE:
The last received CCM PDU Interface Status TLV value field.
The type is NLA_U8.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEEN:
A CCM frame has been received from Peer MEP.
The type is NLA_U32 (bool).
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_TLV_SEEN:
A CCM frame with TLV has been received from Peer MEP.
The type is NLA_U32 (bool).
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEQ_UNEXP_SEEN:
A CCM frame with unexpected sequence number has been received
from Peer MEP.
The type is NLA_U32 (bool).
When a sequence number is not one higher than previously received
then it is unexpected.
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is the implementation of CFM netlink status
get information interface.
Add new nested netlink attributes. These attributes are used by the
user space to get status information.
GETLINK:
Request filter RTEXT_FILTER_CFM_STATUS:
Indicating that CFM status information must be delivered.
IFLA_BRIDGE_CFM:
Points to the CFM information.
IFLA_BRIDGE_CFM_MEP_STATUS_INFO:
This indicate that the MEP instance status are following.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO:
This indicate that the peer MEP status are following.
CFM nested attribute has the following attributes in next level.
GETLINK RTEXT_FILTER_CFM_STATUS:
IFLA_BRIDGE_CFM_MEP_STATUS_INSTANCE:
The MEP instance number of the delivered status.
The type is u32.
IFLA_BRIDGE_CFM_MEP_STATUS_OPCODE_UNEXP_SEEN:
The MEP instance received CFM PDU with unexpected Opcode.
The type is u32 (bool).
IFLA_BRIDGE_CFM_MEP_STATUS_VERSION_UNEXP_SEEN:
The MEP instance received CFM PDU with unexpected version.
The type is u32 (bool).
IFLA_BRIDGE_CFM_MEP_STATUS_RX_LEVEL_LOW_SEEN:
The MEP instance received CCM PDU with MD level lower than
configured level. This frame is discarded.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_PEER_STATUS_INSTANCE:
The MEP instance number of the delivered status.
The type is u32.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_PEER_MEPID:
The added Peer MEP ID of the delivered status.
The type is u32.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_CCM_DEFECT:
The CCM defect status.
The type is u32 (bool).
True means no CCM frame is received for 3.25 intervals.
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_RDI:
The last received CCM PDU RDI.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_PEER_STATUS_PORT_TLV_VALUE:
The last received CCM PDU Port Status TLV value field.
The type is u8.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_IF_TLV_VALUE:
The last received CCM PDU Interface Status TLV value field.
The type is u8.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEEN:
A CCM frame has been received from Peer MEP.
The type is u32 (bool).
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_TLV_SEEN:
A CCM frame with TLV has been received from Peer MEP.
The type is u32 (bool).
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
IFLA_BRIDGE_CFM_CC_PEER_STATUS_SEQ_UNEXP_SEEN:
A CCM frame with unexpected sequence number has been received
from Peer MEP.
The type is u32 (bool).
When a sequence number is not one higher than previously received
then it is unexpected.
This is cleared after GETLINK IFLA_BRIDGE_CFM_CC_PEER_STATUS_INFO.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is the implementation of CFM netlink configuration
get information interface.
Add new nested netlink attributes. These attributes are used by the
user space to get configuration information.
GETLINK:
Request filter RTEXT_FILTER_CFM_CONFIG:
Indicating that CFM configuration information must be delivered.
IFLA_BRIDGE_CFM:
Points to the CFM information.
IFLA_BRIDGE_CFM_MEP_CREATE_INFO:
This indicate that MEP instance create parameters are following.
IFLA_BRIDGE_CFM_MEP_CONFIG_INFO:
This indicate that MEP instance config parameters are following.
IFLA_BRIDGE_CFM_CC_CONFIG_INFO:
This indicate that MEP instance CC functionality
parameters are following.
IFLA_BRIDGE_CFM_CC_RDI_INFO:
This indicate that CC transmitted CCM PDU RDI
parameters are following.
IFLA_BRIDGE_CFM_CC_CCM_TX_INFO:
This indicate that CC transmitted CCM PDU parameters are
following.
IFLA_BRIDGE_CFM_CC_PEER_MEP_INFO:
This indicate that the added peer MEP IDs are following.
CFM nested attribute has the following attributes in next level.
GETLINK RTEXT_FILTER_CFM_CONFIG:
IFLA_BRIDGE_CFM_MEP_CREATE_INSTANCE:
The created MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CREATE_DOMAIN:
The created MEP domain.
The type is u32 (br_cfm_domain).
It must be BR_CFM_PORT.
This means that CFM frames are transmitted and received
directly on the port - untagged. Not in a VLAN.
IFLA_BRIDGE_CFM_MEP_CREATE_DIRECTION:
The created MEP direction.
The type is u32 (br_cfm_mep_direction).
It must be BR_CFM_MEP_DIRECTION_DOWN.
This means that CFM frames are transmitted and received on
the port. Not in the bridge.
IFLA_BRIDGE_CFM_MEP_CREATE_IFINDEX:
The created MEP residence port ifindex.
The type is u32 (ifindex).
IFLA_BRIDGE_CFM_MEP_DELETE_INSTANCE:
The deleted MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CONFIG_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CONFIG_UNICAST_MAC:
The configured MEP unicast MAC address.
The type is 6*u8 (array).
This is used as SMAC in all transmitted CFM frames.
IFLA_BRIDGE_CFM_MEP_CONFIG_MDLEVEL:
The configured MEP unicast MD level.
The type is u32.
It must be in the range 1-7.
No CFM frames are passing through this MEP on lower levels.
IFLA_BRIDGE_CFM_MEP_CONFIG_MEPID:
The configured MEP ID.
The type is u32.
It must be in the range 0-0x1FFF.
This MEP ID is inserted in any transmitted CCM frame.
IFLA_BRIDGE_CFM_CC_CONFIG_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_CONFIG_ENABLE:
The Continuity Check (CC) functionality is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL:
The CC expected receive interval of CCM frames.
The type is u32 (br_cfm_ccm_interval).
This is also the transmission interval of CCM frames when enabled.
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_MAID:
The CC expected receive MAID in CCM frames.
The type is CFM_MAID_LENGTH*u8.
This is MAID is also inserted in transmitted CCM frames.
IFLA_BRIDGE_CFM_CC_PEER_MEP_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_PEER_MEPID:
The CC Peer MEP ID added.
The type is u32.
When a Peer MEP ID is added and CC is enabled it is expected to
receive CCM frames from that Peer MEP.
IFLA_BRIDGE_CFM_CC_RDI_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_RDI_RDI:
The RDI that is inserted in transmitted CCM PDU.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_CCM_TX_DMAC:
The transmitted CCM frame destination MAC address.
The type is 6*u8 (array).
This is used as DMAC in all transmitted CFM frames.
IFLA_BRIDGE_CFM_CC_CCM_TX_SEQ_NO_UPDATE:
The transmitted CCM frame update (increment) of sequence
number is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_PERIOD:
The period of time where CCM frame are transmitted.
The type is u32.
The time is given in seconds. SETLINK IFLA_BRIDGE_CFM_CC_CCM_TX
must be done before timeout to keep transmission alive.
When period is zero any ongoing CCM frame transmission
will be stopped.
IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV:
The transmitted CCM frame update with Interface Status TLV
is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV_VALUE:
The transmitted Interface Status TLV value field.
The type is u8.
IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV:
The transmitted CCM frame update with Port Status TLV is enabled
or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV_VALUE:
The transmitted Port Status TLV value field.
The type is u8.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is the implementation of CFM netlink configuration
set information interface.
Add new nested netlink attributes. These attributes are used by the
user space to create/delete/configure CFM instances.
SETLINK:
IFLA_BRIDGE_CFM:
Indicate that the following attributes are CFM.
IFLA_BRIDGE_CFM_MEP_CREATE:
This indicate that a MEP instance must be created.
IFLA_BRIDGE_CFM_MEP_DELETE:
This indicate that a MEP instance must be deleted.
IFLA_BRIDGE_CFM_MEP_CONFIG:
This indicate that a MEP instance must be configured.
IFLA_BRIDGE_CFM_CC_CONFIG:
This indicate that a MEP instance Continuity Check (CC)
functionality must be configured.
IFLA_BRIDGE_CFM_CC_PEER_MEP_ADD:
This indicate that a CC Peer MEP must be added.
IFLA_BRIDGE_CFM_CC_PEER_MEP_REMOVE:
This indicate that a CC Peer MEP must be removed.
IFLA_BRIDGE_CFM_CC_CCM_TX:
This indicate that the CC transmitted CCM PDU must be configured.
IFLA_BRIDGE_CFM_CC_RDI:
This indicate that the CC transmitted CCM PDU RDI must be
configured.
CFM nested attribute has the following attributes in next level.
SETLINK RTEXT_FILTER_CFM_CONFIG:
IFLA_BRIDGE_CFM_MEP_CREATE_INSTANCE:
The created MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CREATE_DOMAIN:
The created MEP domain.
The type is u32 (br_cfm_domain).
It must be BR_CFM_PORT.
This means that CFM frames are transmitted and received
directly on the port - untagged. Not in a VLAN.
IFLA_BRIDGE_CFM_MEP_CREATE_DIRECTION:
The created MEP direction.
The type is u32 (br_cfm_mep_direction).
It must be BR_CFM_MEP_DIRECTION_DOWN.
This means that CFM frames are transmitted and received on
the port. Not in the bridge.
IFLA_BRIDGE_CFM_MEP_CREATE_IFINDEX:
The created MEP residence port ifindex.
The type is u32 (ifindex).
IFLA_BRIDGE_CFM_MEP_DELETE_INSTANCE:
The deleted MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CONFIG_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_MEP_CONFIG_UNICAST_MAC:
The configured MEP unicast MAC address.
The type is 6*u8 (array).
This is used as SMAC in all transmitted CFM frames.
IFLA_BRIDGE_CFM_MEP_CONFIG_MDLEVEL:
The configured MEP unicast MD level.
The type is u32.
It must be in the range 1-7.
No CFM frames are passing through this MEP on lower levels.
IFLA_BRIDGE_CFM_MEP_CONFIG_MEPID:
The configured MEP ID.
The type is u32.
It must be in the range 0-0x1FFF.
This MEP ID is inserted in any transmitted CCM frame.
IFLA_BRIDGE_CFM_CC_CONFIG_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_CONFIG_ENABLE:
The Continuity Check (CC) functionality is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_INTERVAL:
The CC expected receive interval of CCM frames.
The type is u32 (br_cfm_ccm_interval).
This is also the transmission interval of CCM frames when enabled.
IFLA_BRIDGE_CFM_CC_CONFIG_EXP_MAID:
The CC expected receive MAID in CCM frames.
The type is CFM_MAID_LENGTH*u8.
This is MAID is also inserted in transmitted CCM frames.
IFLA_BRIDGE_CFM_CC_PEER_MEP_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_PEER_MEPID:
The CC Peer MEP ID added.
The type is u32.
When a Peer MEP ID is added and CC is enabled it is expected to
receive CCM frames from that Peer MEP.
IFLA_BRIDGE_CFM_CC_RDI_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_RDI_RDI:
The RDI that is inserted in transmitted CCM PDU.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_INSTANCE:
The configured MEP instance number.
The type is u32.
IFLA_BRIDGE_CFM_CC_CCM_TX_DMAC:
The transmitted CCM frame destination MAC address.
The type is 6*u8 (array).
This is used as DMAC in all transmitted CFM frames.
IFLA_BRIDGE_CFM_CC_CCM_TX_SEQ_NO_UPDATE:
The transmitted CCM frame update (increment) of sequence
number is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_PERIOD:
The period of time where CCM frame are transmitted.
The type is u32.
The time is given in seconds. SETLINK IFLA_BRIDGE_CFM_CC_CCM_TX
must be done before timeout to keep transmission alive.
When period is zero any ongoing CCM frame transmission
will be stopped.
IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV:
The transmitted CCM frame update with Interface Status TLV
is enabled or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_IF_TLV_VALUE:
The transmitted Interface Status TLV value field.
The type is u8.
IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV:
The transmitted CCM frame update with Port Status TLV is enabled
or disabled.
The type is u32 (bool).
IFLA_BRIDGE_CFM_CC_CCM_TX_PORT_TLV_VALUE:
The transmitted Port Status TLV value field.
The type is u8.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is the first commit of the implementation of the CFM protocol
according to 802.1Q section 12.14.
It contains MEP instance create, delete and configuration.
Connectivity Fault Management (CFM) comprises capabilities for
detecting, verifying, and isolating connectivity failures in
Virtual Bridged Networks. These capabilities can be used in
networks operated by multiple independent organizations, each
with restricted management access to each others equipment.
CFM functions are partitioned as follows:
- Path discovery
- Fault detection
- Fault verification and isolation
- Fault notification
- Fault recovery
Interface consists of these functions:
br_cfm_mep_create()
br_cfm_mep_delete()
br_cfm_mep_config_set()
br_cfm_cc_config_set()
br_cfm_cc_peer_mep_add()
br_cfm_cc_peer_mep_remove()
A MEP instance is created by br_cfm_mep_create()
-It is the Maintenance association End Point
described in 802.1Q section 19.2.
-It is created on a specific level (1-7) and is assuring
that no CFM frames are passing through this MEP on lower levels.
-It initiates and validates CFM frames on its level.
-It can only exist on a port that is related to a bridge.
-Attributes given cannot be changed until the instance is
deleted.
A MEP instance can be deleted by br_cfm_mep_delete().
A created MEP instance has attributes that can be
configured by br_cfm_mep_config_set().
A MEP Continuity Check feature can be configured by
br_cfm_cc_config_set()
The Continuity Check Receiver state machine can be
enabled and disabled.
According to 802.1Q section 19.2.8
A MEP can have Peer MEPs added and removed by
br_cfm_cc_peer_mep_add() and br_cfm_cc_peer_mep_remove()
The Continuity Check feature can maintain connectivity
status on each added Peer MEP.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This makes it possible to include or exclude the CFM
protocol according to 802.1Q section 12.14.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This patch extends the processing of frames in the bridge. Currently MRP
frames needs special processing and the current implementation doesn't
allow a nice way to process different frame types. Therefore try to
improve this by adding a list that contains frame types that need
special processing. This list is iterated for each input frame and if
there is a match based on frame type then these functions will be called
and decide what to do with the frame. It can process the frame then the
bridge doesn't need to do anything or don't process so then the bridge
will do normal forwarding.
Signed-off-by: Henrik Bjoernlund <henrik.bjoernlund@microchip.com>
Reviewed-by: Horatiu Vultur <horatiu.vultur@microchip.com>
Acked-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When excluding S,G entries we need a way to block a particular S,G,port.
The new port group flag is managed based on the source's timer as per
RFCs 3376 and 3810. When a source expires and its port group is in
EXCLUDE mode, it will be blocked.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to handle group filter mode transitions and initial state.
To change a port group's INCLUDE -> EXCLUDE mode (or when we have added
a new port group in EXCLUDE mode) we need to add that port to all of
*,G ports' S,G entries for proper replication. When the EXCLUDE state is
changed from IGMPv3 report, br_multicast_fwd_filter_exclude() must be
called after the source list processing because the assumption is that
all of the group's S,G entries will be created before transitioning to
EXCLUDE mode, i.e. most importantly its blocked entries will already be
added so it will not get automatically added to them.
The transition EXCLUDE -> INCLUDE happens only when a port group timer
expires, it requires us to remove that port from all of *,G ports' S,G
entries where it was automatically added previously.
Finally when we are adding a new S,G entry we must add all of *,G's
EXCLUDE ports to it.
In order to distinguish automatically added *,G EXCLUDE ports we have a
new port group flag - MDB_PG_FLAGS_STAR_EXCL.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This patch adds support for automatic install of S,G mdb entries based
on the port group's source list and the source entry's timer.
Once installed the S,G will be used when forwarding packets if the
approprate multicast/mld versions are set. A new source flag called
BR_SGRP_F_INSTALLED denotes if the source has a forwarding mdb entry
installed.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
To speedup S,G forward handling we need to be able to quickly find out
if a port is a member of an S,G group. To do that add a global S,G port
rhashtable with key: source addr, group addr, protocol, vid (all br_ip
fields) and port pointer.
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
We need to be able to differentiate between pg entries created by
user-space and the kernel when we start generating S,G entries for
IGMPv3/MLDv2's fast path. User-space entries are created by default as
RTPROT_STATIC and the kernel entries are RTPROT_KERNEL. Later we can
allow user-space to provide the entry rt_protocol so we can
differentiate between who added the entries specifically (e.g. clag,
admin, frr etc).
Signed-off-by: Nikolay Aleksandrov <nikolay@nvidia.com>
Signed-off-by: David S. Miller <davem@davemloft.net>