Main user visible change:
- User events can now have "multi formats"
The current user events have a single format. If another event is created
with a different format, it will fail to be created. That is, once an
event name is used, it cannot be used again with a different format. This
can cause issues if a library is using an event and updates its format.
An application using the older format will prevent an application using
the new library from registering its event.
A task could also DOS another application if it knows the event names, and
it creates events with different formats.
The multi-format event is in a different name space from the single
format. Both the event name and its format are the unique identifier.
This will allow two different applications to use the same user event name
but with different payloads.
- Added support to have ftrace_dump_on_oops dump out instances and
not just the main top level tracing buffer.
Other changes:
- Add eventfs_root_inode
Only the root inode has a dentry that is static (never goes away) and
stores it upon creation. There's no reason that the thousands of other
eventfs inodes should have a pointer that never gets set in its
descriptor. Create a eventfs_root_inode desciptor that has a eventfs_inode
descriptor and a dentry pointer, and only the root inode will use this.
- Added WARN_ON()s in eventfs
There's some conditionals remaining in eventfs that should never be hit,
but instead of removing them, add WARN_ON() around them to make sure that
they are never hit.
- Have saved_cmdlines allocation also include the map_cmdline_to_pid array
The saved_cmdlines structure allocates a large amount of data to hold its
mappings. Within it, it has three arrays. Two are already apart of it:
map_pid_to_cmdline[] and saved_cmdlines[]. More memory can be saved by
also including the map_cmdline_to_pid[] array as well.
- Restructure __string() and __assign_str() macros used in TRACE_EVENT().
Dynamic strings in TRACE_EVENT() are declared with:
__string(name, source)
And assigned with:
__assign_str(name, source)
In the tracepoint callback of the event, the __string() is used to get the
size needed to allocate on the ring buffer and __assign_str() is used to
copy the string into the ring buffer. There's a helper structure that is
created in the TRACE_EVENT() macro logic that will hold the string length
and its position in the ring buffer which is created by __string().
There are several trace events that have a function to create the string
to save. This function is executed twice. Once for __string() and again
for __assign_str(). There's no reason for this. The helper structure could
also save the string it used in __string() and simply copy that into
__assign_str() (it also already has its length).
By using the structure to store the source string for the assignment, it
means that the second argument to __assign_str() is no longer needed.
It will be removed in the next merge window, but for now add a warning if
the source string given to __string() is different than the source string
given to __assign_str(), as the source to __assign_str() isn't even used
and will be going away.
- Added checks to make sure that the source of __string() is also the
source of __assign_str() so that it can be safely removed in the next
merge window.
Included fixes that the above check found.
- Other minor clean ups and fixes
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCZfhbUBQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qrhJAP9bfnYO7tfNGZVNPmTT7Fz0z4zCU1Pb
P8M+24yiFTeFWwD/aIPlMFZONVkTdFAlLdffl6kJOKxZ7vW4XzUjfNWb6wo=
=z/D6
-----END PGP SIGNATURE-----
Merge tag 'trace-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace
Pull tracing updates from Steven Rostedt:
"Main user visible change:
- User events can now have "multi formats"
The current user events have a single format. If another event is
created with a different format, it will fail to be created. That
is, once an event name is used, it cannot be used again with a
different format. This can cause issues if a library is using an
event and updates its format. An application using the older format
will prevent an application using the new library from registering
its event.
A task could also DOS another application if it knows the event
names, and it creates events with different formats.
The multi-format event is in a different name space from the single
format. Both the event name and its format are the unique
identifier. This will allow two different applications to use the
same user event name but with different payloads.
- Added support to have ftrace_dump_on_oops dump out instances and
not just the main top level tracing buffer.
Other changes:
- Add eventfs_root_inode
Only the root inode has a dentry that is static (never goes away)
and stores it upon creation. There's no reason that the thousands
of other eventfs inodes should have a pointer that never gets set
in its descriptor. Create a eventfs_root_inode desciptor that has a
eventfs_inode descriptor and a dentry pointer, and only the root
inode will use this.
- Added WARN_ON()s in eventfs
There's some conditionals remaining in eventfs that should never be
hit, but instead of removing them, add WARN_ON() around them to
make sure that they are never hit.
- Have saved_cmdlines allocation also include the map_cmdline_to_pid
array
The saved_cmdlines structure allocates a large amount of data to
hold its mappings. Within it, it has three arrays. Two are already
apart of it: map_pid_to_cmdline[] and saved_cmdlines[]. More memory
can be saved by also including the map_cmdline_to_pid[] array as
well.
- Restructure __string() and __assign_str() macros used in
TRACE_EVENT()
Dynamic strings in TRACE_EVENT() are declared with:
__string(name, source)
And assigned with:
__assign_str(name, source)
In the tracepoint callback of the event, the __string() is used to
get the size needed to allocate on the ring buffer and
__assign_str() is used to copy the string into the ring buffer.
There's a helper structure that is created in the TRACE_EVENT()
macro logic that will hold the string length and its position in
the ring buffer which is created by __string().
There are several trace events that have a function to create the
string to save. This function is executed twice. Once for
__string() and again for __assign_str(). There's no reason for
this. The helper structure could also save the string it used in
__string() and simply copy that into __assign_str() (it also
already has its length).
By using the structure to store the source string for the
assignment, it means that the second argument to __assign_str() is
no longer needed.
It will be removed in the next merge window, but for now add a
warning if the source string given to __string() is different than
the source string given to __assign_str(), as the source to
__assign_str() isn't even used and will be going away.
- Added checks to make sure that the source of __string() is also the
source of __assign_str() so that it can be safely removed in the
next merge window.
Included fixes that the above check found.
- Other minor clean ups and fixes"
* tag 'trace-v6.9-2' of git://git.kernel.org/pub/scm/linux/kernel/git/trace/linux-trace: (34 commits)
tracing: Add __string_src() helper to help compilers not to get confused
tracing: Use strcmp() in __assign_str() WARN_ON() check
tracepoints: Use WARN() and not WARN_ON() for warnings
tracing: Use div64_u64() instead of do_div()
tracing: Support to dump instance traces by ftrace_dump_on_oops
tracing: Remove second parameter to __assign_rel_str()
tracing: Add warning if string in __assign_str() does not match __string()
tracing: Add __string_len() example
tracing: Remove __assign_str_len()
ftrace: Fix most kernel-doc warnings
tracing: Decrement the snapshot if the snapshot trigger fails to register
tracing: Fix snapshot counter going between two tracers that use it
tracing: Use EVENT_NULL_STR macro instead of open coding "(null)"
tracing: Use ? : shortcut in trace macros
tracing: Do not calculate strlen() twice for __string() fields
tracing: Rework __assign_str() and __string() to not duplicate getting the string
cxl/trace: Properly initialize cxl_poison region name
net: hns3: tracing: fix hclgevf trace event strings
drm/i915: Add missing ; to __assign_str() macros in tracepoint code
NFSD: Fix nfsd_clid_class use of __string_len() macro
...
Currently ftrace only dumps the global trace buffer on an OOPs. For
debugging a production usecase, instance trace will be helpful to
check specific problems since global trace buffer may be used for
other purposes.
This patch extend the ftrace_dump_on_oops parameter to dump a specific
or multiple trace instances:
- ftrace_dump_on_oops=0: as before -- don't dump
- ftrace_dump_on_oops[=1]: as before -- dump the global trace buffer
on all CPUs
- ftrace_dump_on_oops=2 or =orig_cpu: as before -- dump the global
trace buffer on CPU that triggered the oops
- ftrace_dump_on_oops=<instance_name>: new behavior -- dump the
tracing instance matching <instance_name>
- ftrace_dump_on_oops[=2/orig_cpu],<instance1_name>[=2/orig_cpu],
<instrance2_name>[=2/orig_cpu]: new behavior -- dump the global trace
buffer and multiple instance buffer on all CPUs, or only dump on CPU
that triggered the oops if =2 or =orig_cpu is given
Also, the sysctl node can handle the input accordingly.
Link: https://lore.kernel.org/linux-trace-kernel/20240223083126.1817731-1-quic_hyiwei@quicinc.com
Cc: Ross Zwisler <zwisler@google.com>
Cc: <mhiramat@kernel.org>
Cc: <mark.rutland@arm.com>
Cc: <mcgrof@kernel.org>
Cc: <keescook@chromium.org>
Cc: <j.granados@samsung.com>
Cc: <mathieu.desnoyers@efficios.com>
Cc: <corbet@lwn.net>
Signed-off-by: Huang Yiwei <quic_hyiwei@quicinc.com>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
heap optimizations".
- Kuan-Wei Chiu has also sped up the library sorting code in the series
"lib/sort: Optimize the number of swaps and comparisons".
- Alexey Gladkov has added the ability for code running within an IPC
namespace to alter its IPC and MQ limits. The series is "Allow to
change ipc/mq sysctls inside ipc namespace".
- Geert Uytterhoeven has contributed some dhrystone maintenance work in
the series "lib: dhry: miscellaneous cleanups".
- Ryusuke Konishi continues nilfs2 maintenance work in the series
"nilfs2: eliminate kmap and kmap_atomic calls"
"nilfs2: fix kernel bug at submit_bh_wbc()"
- Nathan Chancellor has updated our build tools requirements in the
series "Bump the minimum supported version of LLVM to 13.0.1".
- Muhammad Usama Anjum continues with the selftests maintenance work in
the series "selftests/mm: Improve run_vmtests.sh".
- Oleg Nesterov has done some maintenance work against the signal code
in the series "get_signal: minor cleanups and fix".
Plus the usual shower of singleton patches in various parts of the tree.
Please see the individual changelogs for details.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZfMnvgAKCRDdBJ7gKXxA
jjKMAP4/Upq07D4wjkMVPb+QrkipbbLpdcgJ++q3z6rba4zhPQD+M3SFriIJk/Xh
tKVmvihFxfAhdDthseXcIf1nBjMALwY=
=8rVc
-----END PGP SIGNATURE-----
Merge tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull non-MM updates from Andrew Morton:
- Kuan-Wei Chiu has developed the well-named series "lib min_heap: Min
heap optimizations".
- Kuan-Wei Chiu has also sped up the library sorting code in the series
"lib/sort: Optimize the number of swaps and comparisons".
- Alexey Gladkov has added the ability for code running within an IPC
namespace to alter its IPC and MQ limits. The series is "Allow to
change ipc/mq sysctls inside ipc namespace".
- Geert Uytterhoeven has contributed some dhrystone maintenance work in
the series "lib: dhry: miscellaneous cleanups".
- Ryusuke Konishi continues nilfs2 maintenance work in the series
"nilfs2: eliminate kmap and kmap_atomic calls"
"nilfs2: fix kernel bug at submit_bh_wbc()"
- Nathan Chancellor has updated our build tools requirements in the
series "Bump the minimum supported version of LLVM to 13.0.1".
- Muhammad Usama Anjum continues with the selftests maintenance work in
the series "selftests/mm: Improve run_vmtests.sh".
- Oleg Nesterov has done some maintenance work against the signal code
in the series "get_signal: minor cleanups and fix".
Plus the usual shower of singleton patches in various parts of the tree.
Please see the individual changelogs for details.
* tag 'mm-nonmm-stable-2024-03-14-09-36' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (77 commits)
nilfs2: prevent kernel bug at submit_bh_wbc()
nilfs2: fix failure to detect DAT corruption in btree and direct mappings
ocfs2: enable ocfs2_listxattr for special files
ocfs2: remove SLAB_MEM_SPREAD flag usage
assoc_array: fix the return value in assoc_array_insert_mid_shortcut()
buildid: use kmap_local_page()
watchdog/core: remove sysctl handlers from public header
nilfs2: use div64_ul() instead of do_div()
mul_u64_u64_div_u64: increase precision by conditionally swapping a and b
kexec: copy only happens before uchunk goes to zero
get_signal: don't initialize ksig->info if SIGNAL_GROUP_EXIT/group_exec_task
get_signal: hide_si_addr_tag_bits: fix the usage of uninitialized ksig
get_signal: don't abuse ksig->info.si_signo and ksig->sig
const_structs.checkpatch: add device_type
Normalise "name (ad@dr)" MODULE_AUTHORs to "name <ad@dr>"
dyndbg: replace kstrdup() + strchr() with kstrdup_and_replace()
list: leverage list_is_head() for list_entry_is_head()
nilfs2: MAINTAINERS: drop unreachable project mirror site
smp: make __smp_processor_id() 0-argument macro
fat: fix uninitialized field in nostale filehandles
...
core:
- EDID cleanups
- scheduler error handling fixes
- managed: add drmm_release_action() with tests
- add ratelimited drm debug print
- DPCD PSR early transport macro
- DP tunneling and bandwidth allocation helpers
- remove built-in edids
- dp: Avoid AUX transfers on powered-down displays
- dp: Add VSC SDP helpers
cross drivers:
- use new drm print helpers
- switch to ->read_edid callback
- gem: add stats for shared buffers plus updates to amdgpu, i915, xe
syncobj:
- fixes to waiting and sleeping
ttm:
- add tests
- fix errno codes
- simply busy-placement handling
- fix page decryption
media:
- tc358743: fix v4l device registration
video:
- move all kernel parameters for video behind CONFIG_VIDEO
sound:
- remove <drm/drm_edid.h> include from header
ci:
- add tests for msm
- fix apq8016 runner
efifb:
- use copy of global screen_info state
vesafb:
- use copy of global screen_info state
simplefb:
- fix logging
bridge:
- ite-6505: fix DP link-training bug
- samsung-dsim: fix error checking in probe
- samsung-dsim: add bsh-smm-s2/pro boards
- tc358767: fix regmap usage
- imx: add i.MX8MP HDMI PVI plus DT bindings
- imx: add i.MX8MP HDMI TX plus DT bindings
- sii902x: fix probing and unregistration
- tc358767: limit pixel PLL input range
- switch to new drm_bridge_read_edid() interface
panel:
- ltk050h3146w: error-handling fixes
- panel-edp: support delay between power-on and enable; use put_sync in
unprepare; support Mediatek MT8173 Chromebooks, BOE NV116WHM-N49 V8.0,
BOE NV122WUM-N41, CSO MNC207QS1-1 plus DT bindings
- panel-lvds: support EDT ETML0700Z9NDHA plus DT bindings
- panel-novatek: FRIDA FRD400B25025-A-CTK plus DT bindings
- add BOE TH101MB31IG002-28A plus DT bindings
- add EDT ETML1010G3DRA plus DT bindings
- add Novatek NT36672E LCD DSI plus DT bindings
- nt36523: support 120Hz timings, fix includes
- simple: fix display timings on RK32FN48H
- visionox-vtdr6130: fix initialization
- add Powkiddy RGB10MAX3 plus DT bindings
- st7703: support panel rotation plus DT bindings
- add Himax HX83112A plus DT bindings
- ltk500hd1829: add support for ltk101b4029w and admatec 9904370
- simple: add BOE BP082WX1-100 8.2" panel plus DT bindungs
panel-orientation-quirks:
- GPD Win Mini
amdgpu:
- Validate DMABuf imports in compute VMs
- Add RAS ACA framework
- PSP 13 fixes
- Misc code cleanups
- Replay fixes
- Atom interpretor PS, WS bounds checking
- DML2 fixes
- Audio fixes
- DCN 3.5 Z state fixes
- Remove deprecated ida_simple usage
- UBSAN fixes
- RAS fixes
- Enable seq64 infrastructure
- DC color block enablement
- Documentation updates
- DC documentation updates
- DMCUB updates
- ATHUB 4.1 support
- LSDMA 7.0 support
- JPEG DPG support
- IH 7.0 support
- HDP 7.0 support
- VCN 5.0 support
- SMU 13.0.6 updates
- NBIO 7.11 updates
- SDMA 6.1 updates
- MMHUB 3.3 updates
- DCN 3.5.1 support
- NBIF 6.3.1 support
- VPE 6.1.1 support
amdkfd:
- Validate DMABuf imports in compute VMs
- SVM fixes
- Trap handler updates and enhancements
- Fix cache size reporting
- Relocate the trap handler
radeon:
- Atom interpretor PS, WS bounds checking
- Misc code cleanups
xe:
- new query for GuC submission version
- Remove unused persistent exec_queues
- Add vram frequency sysfs attributes
- Add the flag XE_VM_BIND_FLAG_DUMPABLE
- Drop pre-production workarounds
- Drop kunit tests for unsupported platforms
- Start pumbling SR-IOV support with memory based interrupts for VF
- Allow to map BO in GGTT with PAT index corresponding to
XE_CACHE_UC to work with memory based interrupts
- Add GuC Doorbells Manager as prep work SR-IOV
- Implement additional workarounds for xe2 and MTL
- Program a few registers according to perfomance guide spec for Xe2
- Fix remaining 32b build issues and enable it back
- Fix build with CONFIG_DEBUG_FS=n
- Fix warnings from GuC ABI headers
- Introduce Relay Communication for SR-IOV for VF <-> GuC <-> PF
- Release mmap mappings on rpm suspend
- Disable mid-thread preemption when not properly supported by hardware
- Fix xe_exec by reserving extra fence slot for CPU bind
- Fix xe_exec with full long running exec queue
- Canonicalize addresses where needed for Xe2 and add to devcoredum
- Toggle USM support for Xe2
- Only allow 1 ufence per exec / bind IOCTL
- Add GuC firmware loading for Lunar Lake
- Add XE_VMA_PTE_64K VMA flag
i915:
- Add more ADL-N PCI IDs
- Enable fastboot also on older platforms
- Early transport for panel replay and PSR
- New ARL PCI IDs
- DP TPS4 PHY test pattern support
- Unify and improve VSC SDP for PSR and non-PSR cases
- Refactor memory regions and improve debug logging
- Rework global state serialization
- Remove unused CDCLK divider fields
- Unify HDCP connector logging format
- Use display instead of graphics version in display code
- Move VBT and opregion debugfs next to the implementation
- Abstract opregion interface, use opaque type
- MTL fixes
- HPD handling fixes
- Add GuC submission interface version query
- Atomically invalidate userptr on mmu-notifier
- Update handling of MMIO triggered reports
- Don't make assumptions about intel_wakeref_t type
- Extend driver code of Xe_LPG to Xe_LPG+
- Add flex arrays to struct i915_syncmap
- Allow for very slow HuC loading
- DP tunneling and bandwidth allocation support
msm:
- Correct bindings for MSM8976 and SM8650 platforms
- Start migration of MDP5 platforms to DPU driver
- X1E80100 MDSS support
- DPU:
- Improve DSC allocation, fixing several important corner cases
- Add support for SDM630/SDM660 platforms
- Simplify dpu_encoder_phys_ops
- Apply fixes targeting DSC support with a single DSC encoder
- Apply fixes for HCTL_EN timing configuration
- X1E80100 support
- Add support for YUV420 over DP
- GPU:
- fix sc7180 UBWC config
- fix a7xx LLC config
- new gpu support: a305B, a750, a702
- machine support: SM7150 (different power levels than other a618)
- a7xx devcoredump support
habanalabs:
- configure IRQ affinity according to NUMA node
- move HBM MMU page tables inside the HBM
- improve device reset
- check extended PCIe errors
ivpu:
- updates to firmware API
- refactor BO allocation
imx:
- use devm_ functions during init
hisilicon:
- fix EDID includes
mgag200:
- improve ioremap usage
- convert to struct drm_edid
- Work around PCI write bursts
nouveau:
- disp: use kmemdup()
- fix EDID includes
- documentation fixes
qaic:
- fixes to BO handling
- make use of DRM managed release
- fix order of remove operations
rockchip:
- analogix_dp: get encoder port from DT
- inno_hdmi: support HDMI for RK3128
- lvds: error-handling fixes
ssd130x:
- support SSD133x plus DT bindings
tegra:
- fix error handling
tilcdc:
- make use of DRM managed release
v3d:
- show memory stats in debugfs
- Support display MMU page size
vc4:
- fix error handling in plane prepare_fb
- fix framebuffer test in plane helpers
virtio:
- add venus capset defines
vkms:
- fix OOB access when programming the LUT
- Kconfig improvements
vmwgfx:
- unmap surface before changing plane state
- fix memory leak in error handling
- documentation fixes
- list command SVGA_3D_CMD_DEFINE_GB_SURFACE_V4 as invalid
- fix null-pointer deref in execbuf
- refactor display-mode probing
- fix fencing for creating cursor MOBs
- fix cursor-memory lifetime
xlnx:
- fix live video input for ZynqMP DPSUB
lima:
- fix memory leak
loongson:
- fail if no VRAM present
meson:
- switch to new drm_bridge_read_edid() interface
renesas:
- add RZ/G2L DU support plus DT bindings
mxsfb:
- Use managed mode config
sun4i:
- HDMI: updates to atomic mode setting
mediatek:
- Add display driver for MT8188 VDOSYS1
- DSI driver cleanups
- Filter modes according to hardware capability
- Fix a null pointer crash in mtk_drm_crtc_finish_page_flip
etnaviv:
- enhancements for NPU and MRT support
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEEEKbZHaGwW9KfbeusDHTzWXnEhr4FAmXxI+AACgkQDHTzWXnE
hr5isxAApZ+DxesDbV8bd91KXL03vTfJtM5xVQuZoDzrr20KdTvu2EfQcCFnAUjl
YtY05U9arDT4Txq5nX70Xc6I5M9HN6lqSUfsWhI6xUcR9TUollPbYwEu8IdoMaCG
TRnspkiheye+DLFY6omLNH2aG1/k1IIefVWKaClFpbNPaaSHREDiY7/rkmErMBIS
hrN13+6IVzX7+6fmNgHugUfdyawDJ8J9Nsc8T3Zlioljq3p+VbtStLsGeABTHSEJ
MX18FwbGllI+QcXvaXM8gIg8NYKvSx/ZtlvKTpyPpTjZT3i3BpY+7yJqWDRQhiGM
VTX7di1f90yWgzlYE5T33MW7Imvw3q04N7qYJ+Z1LHD/A8VyjwPUKLeul8P9ousT
0qQLSQsnuXH5AMLDh8IeLG/i0hAMWJ2UbProFSAFhd/UQHP7QOm2mmCsf79me9It
qKFn6QZKvAKGZk/myTbQIVAmQWrDCpKq4i1aoKXEvcEuQUtM1lPvmMVsStVEfG+y
ACaI24zSJACViH6rfhVzr74giwZX/ay0NSXqwRXfD5kX8fXb050LxLGW93iYZoHv
FpdT2C8oTS1A5nsZpoxwVP35euUsp7D4J5YYbrZder2m0s0DDCVLMqdFrSVNdWDM
4ZQRiY3wCiJjSS8dpwppW0uaVGjtnGQnjQ5sQrIw0vKkwxee0TQ=
=WLj9
-----END PGP SIGNATURE-----
Merge tag 'drm-next-2024-03-13' of https://gitlab.freedesktop.org/drm/kernel
Pull drm updates from Dave Airlie:
"Highlights are usual, more AMD IP blocks for future hw, i915/xe
changes, Displayport tunnelling support for i915, msm YUV over DP
changes, new tests for ttm, but its mostly a lot of stuff all over the
place from lots of people.
core:
- EDID cleanups
- scheduler error handling fixes
- managed: add drmm_release_action() with tests
- add ratelimited drm debug print
- DPCD PSR early transport macro
- DP tunneling and bandwidth allocation helpers
- remove built-in edids
- dp: Avoid AUX transfers on powered-down displays
- dp: Add VSC SDP helpers
cross drivers:
- use new drm print helpers
- switch to ->read_edid callback
- gem: add stats for shared buffers plus updates to amdgpu, i915, xe
syncobj:
- fixes to waiting and sleeping
ttm:
- add tests
- fix errno codes
- simply busy-placement handling
- fix page decryption
media:
- tc358743: fix v4l device registration
video:
- move all kernel parameters for video behind CONFIG_VIDEO
sound:
- remove <drm/drm_edid.h> include from header
ci:
- add tests for msm
- fix apq8016 runner
efifb:
- use copy of global screen_info state
vesafb:
- use copy of global screen_info state
simplefb:
- fix logging
bridge:
- ite-6505: fix DP link-training bug
- samsung-dsim: fix error checking in probe
- samsung-dsim: add bsh-smm-s2/pro boards
- tc358767: fix regmap usage
- imx: add i.MX8MP HDMI PVI plus DT bindings
- imx: add i.MX8MP HDMI TX plus DT bindings
- sii902x: fix probing and unregistration
- tc358767: limit pixel PLL input range
- switch to new drm_bridge_read_edid() interface
panel:
- ltk050h3146w: error-handling fixes
- panel-edp: support delay between power-on and enable; use put_sync
in unprepare; support Mediatek MT8173 Chromebooks, BOE NV116WHM-N49
V8.0, BOE NV122WUM-N41, CSO MNC207QS1-1 plus DT bindings
- panel-lvds: support EDT ETML0700Z9NDHA plus DT bindings
- panel-novatek: FRIDA FRD400B25025-A-CTK plus DT bindings
- add BOE TH101MB31IG002-28A plus DT bindings
- add EDT ETML1010G3DRA plus DT bindings
- add Novatek NT36672E LCD DSI plus DT bindings
- nt36523: support 120Hz timings, fix includes
- simple: fix display timings on RK32FN48H
- visionox-vtdr6130: fix initialization
- add Powkiddy RGB10MAX3 plus DT bindings
- st7703: support panel rotation plus DT bindings
- add Himax HX83112A plus DT bindings
- ltk500hd1829: add support for ltk101b4029w and admatec 9904370
- simple: add BOE BP082WX1-100 8.2" panel plus DT bindungs
panel-orientation-quirks:
- GPD Win Mini
amdgpu:
- Validate DMABuf imports in compute VMs
- Add RAS ACA framework
- PSP 13 fixes
- Misc code cleanups
- Replay fixes
- Atom interpretor PS, WS bounds checking
- DML2 fixes
- Audio fixes
- DCN 3.5 Z state fixes
- Remove deprecated ida_simple usage
- UBSAN fixes
- RAS fixes
- Enable seq64 infrastructure
- DC color block enablement
- Documentation updates
- DC documentation updates
- DMCUB updates
- ATHUB 4.1 support
- LSDMA 7.0 support
- JPEG DPG support
- IH 7.0 support
- HDP 7.0 support
- VCN 5.0 support
- SMU 13.0.6 updates
- NBIO 7.11 updates
- SDMA 6.1 updates
- MMHUB 3.3 updates
- DCN 3.5.1 support
- NBIF 6.3.1 support
- VPE 6.1.1 support
amdkfd:
- Validate DMABuf imports in compute VMs
- SVM fixes
- Trap handler updates and enhancements
- Fix cache size reporting
- Relocate the trap handler
radeon:
- Atom interpretor PS, WS bounds checking
- Misc code cleanups
xe:
- new query for GuC submission version
- Remove unused persistent exec_queues
- Add vram frequency sysfs attributes
- Add the flag XE_VM_BIND_FLAG_DUMPABLE
- Drop pre-production workarounds
- Drop kunit tests for unsupported platforms
- Start pumbling SR-IOV support with memory based interrupts for VF
- Allow to map BO in GGTT with PAT index corresponding to XE_CACHE_UC
to work with memory based interrupts
- Add GuC Doorbells Manager as prep work SR-IOV
- Implement additional workarounds for xe2 and MTL
- Program a few registers according to perfomance guide spec for Xe2
- Fix remaining 32b build issues and enable it back
- Fix build with CONFIG_DEBUG_FS=n
- Fix warnings from GuC ABI headers
- Introduce Relay Communication for SR-IOV for VF <-> GuC <-> PF
- Release mmap mappings on rpm suspend
- Disable mid-thread preemption when not properly supported by
hardware
- Fix xe_exec by reserving extra fence slot for CPU bind
- Fix xe_exec with full long running exec queue
- Canonicalize addresses where needed for Xe2 and add to devcoredum
- Toggle USM support for Xe2
- Only allow 1 ufence per exec / bind IOCTL
- Add GuC firmware loading for Lunar Lake
- Add XE_VMA_PTE_64K VMA flag
i915:
- Add more ADL-N PCI IDs
- Enable fastboot also on older platforms
- Early transport for panel replay and PSR
- New ARL PCI IDs
- DP TPS4 PHY test pattern support
- Unify and improve VSC SDP for PSR and non-PSR cases
- Refactor memory regions and improve debug logging
- Rework global state serialization
- Remove unused CDCLK divider fields
- Unify HDCP connector logging format
- Use display instead of graphics version in display code
- Move VBT and opregion debugfs next to the implementation
- Abstract opregion interface, use opaque type
- MTL fixes
- HPD handling fixes
- Add GuC submission interface version query
- Atomically invalidate userptr on mmu-notifier
- Update handling of MMIO triggered reports
- Don't make assumptions about intel_wakeref_t type
- Extend driver code of Xe_LPG to Xe_LPG+
- Add flex arrays to struct i915_syncmap
- Allow for very slow HuC loading
- DP tunneling and bandwidth allocation support
msm:
- Correct bindings for MSM8976 and SM8650 platforms
- Start migration of MDP5 platforms to DPU driver
- X1E80100 MDSS support
- DPU:
- Improve DSC allocation, fixing several important corner cases
- Add support for SDM630/SDM660 platforms
- Simplify dpu_encoder_phys_ops
- Apply fixes targeting DSC support with a single DSC encoder
- Apply fixes for HCTL_EN timing configuration
- X1E80100 support
- Add support for YUV420 over DP
- GPU:
- fix sc7180 UBWC config
- fix a7xx LLC config
- new gpu support: a305B, a750, a702
- machine support: SM7150 (different power levels than other a618)
- a7xx devcoredump support
habanalabs:
- configure IRQ affinity according to NUMA node
- move HBM MMU page tables inside the HBM
- improve device reset
- check extended PCIe errors
ivpu:
- updates to firmware API
- refactor BO allocation
imx:
- use devm_ functions during init
hisilicon:
- fix EDID includes
mgag200:
- improve ioremap usage
- convert to struct drm_edid
- Work around PCI write bursts
nouveau:
- disp: use kmemdup()
- fix EDID includes
- documentation fixes
qaic:
- fixes to BO handling
- make use of DRM managed release
- fix order of remove operations
rockchip:
- analogix_dp: get encoder port from DT
- inno_hdmi: support HDMI for RK3128
- lvds: error-handling fixes
ssd130x:
- support SSD133x plus DT bindings
tegra:
- fix error handling
tilcdc:
- make use of DRM managed release
v3d:
- show memory stats in debugfs
- Support display MMU page size
vc4:
- fix error handling in plane prepare_fb
- fix framebuffer test in plane helpers
virtio:
- add venus capset defines
vkms:
- fix OOB access when programming the LUT
- Kconfig improvements
vmwgfx:
- unmap surface before changing plane state
- fix memory leak in error handling
- documentation fixes
- list command SVGA_3D_CMD_DEFINE_GB_SURFACE_V4 as invalid
- fix null-pointer deref in execbuf
- refactor display-mode probing
- fix fencing for creating cursor MOBs
- fix cursor-memory lifetime
xlnx:
- fix live video input for ZynqMP DPSUB
lima:
- fix memory leak
loongson:
- fail if no VRAM present
meson:
- switch to new drm_bridge_read_edid() interface
renesas:
- add RZ/G2L DU support plus DT bindings
mxsfb:
- Use managed mode config
sun4i:
- HDMI: updates to atomic mode setting
mediatek:
- Add display driver for MT8188 VDOSYS1
- DSI driver cleanups
- Filter modes according to hardware capability
- Fix a null pointer crash in mtk_drm_crtc_finish_page_flip
etnaviv:
- enhancements for NPU and MRT support"
* tag 'drm-next-2024-03-13' of https://gitlab.freedesktop.org/drm/kernel: (1420 commits)
drm/amd/display: Removed redundant @ symbol to fix kernel-doc warnings in -next repo
drm/amd/pm: wait for completion of the EnableGfxImu message
drm/amdgpu/soc21: add mode2 asic reset for SMU IP v14.0.1
drm/amdgpu: add smu 14.0.1 support
drm/amdgpu: add VPE 6.1.1 discovery support
drm/amdgpu/vpe: add VPE 6.1.1 support
drm/amdgpu/vpe: don't emit cond exec command under collaborate mode
drm/amdgpu/vpe: add collaborate mode support for VPE
drm/amdgpu/vpe: add PRED_EXE and COLLAB_SYNC OPCODE
drm/amdgpu/vpe: add multi instance VPE support
drm/amdgpu/discovery: add nbif v6_3_1 ip block
drm/amdgpu: Add nbif v6_3_1 ip block support
drm/amdgpu: Add pcie v6_1_0 ip headers (v5)
drm/amdgpu: Add nbif v6_3_1 ip headers (v5)
arch/powerpc: Remove <linux/fb.h> from backlight code
macintosh/via-pmu-backlight: Include <linux/backlight.h>
fbdev/chipsfb: Include <linux/backlight.h>
drm/etnaviv: Restore some id values
drm/amdkfd: make kfd_class constant
drm/amdgpu: add ring timeout information in devcoredump
...
- Allow the Energy Model to be updated dynamically (Lukasz Luba).
- Add support for LZ4 compression algorithm to the hibernation image
creation and loading code (Nikhil V).
- Fix and clean up system suspend statistics collection (Rafael
Wysocki).
- Simplify device suspend and resume handling in the power management
core code (Rafael Wysocki).
- Fix PCI hibernation support description (Yiwei Lin).
- Make hibernation take set_memory_ro() return values into account as
appropriate (Christophe Leroy).
- Set mem_sleep_current during kernel command line setup to avoid an
ordering issue with handling it (Maulik Shah).
- Fix wake IRQs handling when pm_runtime_force_suspend() is used as a
driver's system suspend callback (Qingliang Li).
- Simplify pm_runtime_get_if_active() usage and add a replacement for
pm_runtime_put_autosuspend() (Sakari Ailus).
- Add a tracepoint for runtime_status changes tracking (Vilas Bhat).
- Fix section title markdown in the runtime PM documentation (Yiwei
Lin).
- Enable preferred core support in the amd-pstate cpufreq driver (Meng
Li).
- Fix min_perf assignment in amd_pstate_adjust_perf() and make the
min/max limit perf values in amd-pstate always stay within the
(highest perf, lowest perf) range (Tor Vic, Meng Li).
- Allow intel_pstate to assign model-specific values to strings used in
the EPP sysfs interface and make it do so on Meteor Lake (Srinivas
Pandruvada).
- Drop long-unused cpudata::prev_cummulative_iowait from the
intel_pstate cpufreq driver (Jiri Slaby).
- Prevent scaling_cur_freq from exceeding scaling_max_freq when the
latter is an inefficient frequency (Shivnandan Kumar).
- Change default transition delay in cpufreq to 2ms (Qais Yousef).
- Remove references to 10ms minimum sampling rate from comments in the
cpufreq code (Pierre Gondois).
- Honour transition_latency over transition_delay_us in cpufreq (Qais
Yousef).
- Stop unregistering cpufreq cooling on CPU hot-remove (Viresh Kumar).
- General enhancements / cleanups to ARM cpufreq drivers (tianyu2,
Nícolas F. R. A. Prado, Erick Archer, Arnd Bergmann, Anastasia
Belova).
- Update cpufreq-dt-platdev to block/approve devices (Richard Acayan).
- Make the SCMI cpufreq driver get a transition delay value from
firmware (Pierre Gondois).
- Prevent the haltpoll cpuidle governor from shrinking guest
poll_limit_ns below grow_start (Parshuram Sangle).
- Avoid potential overflow in integer multiplication when computing
cpuidle state parameters (C Cheng).
- Adjust MWAIT hint target C-state computation in the ACPI cpuidle
driver and in intel_idle to return a correct value for C0 (He
Rongguang).
- Address multiple issues in the TPMI RAPL driver and add support for
new platforms (Lunar Lake-M, Arrow Lake) to Intel RAPL (Zhang Rui).
- Fix freq_qos_add_request() return value check in dtpm_cpu (Daniel
Lezcano).
- Fix kernel-doc for dtpm_create_hierarchy() (Yang Li).
- Fix file leak in get_pkg_num() in x86_energy_perf_policy (Samasth
Norway Ananda).
- Fix cpupower-frequency-info.1 man page typo (Jan Kratochvil).
- Fix a couple of warnings in the OPP core code related to W=1
builds (Viresh Kumar).
- Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h (Viresh
Kumar).
- Extend dev_pm_opp_data with turbo support (Sibi Sankar).
- dt-bindings: drop maxItems from inner items (David Heidelberg).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmXvI/ISHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRx24sP/jxg6fOGme8raHQvpTXG3/H56wlGzQ4P
YUvvKUXnfD3yf1zNISsUl7VQebZqDt8rygkwSdymXlUVZX1eubN0RpCFc0F8GZuc
THG/YQhYQr/9zro3FpKhfDj5evk21PCQzjf+dGvfQF9qVMxNPG1JzEFK6PnolT5X
2BvkonY1XFWZjCMbZ83B/jt35lTDb0cmeNbCpfD5UJgcnxmMOtZYpORdyfPWTJpG
GVCwmAFVVXxXlust/AIpt3mmOpKzSA9GnrtJkhtQe5GN+Y4OjnJiFJmTC7EfCctj
JlWgVUA716mtFMUrjXgjfI54firF2oQpqaSa2HG/V/A96JWQqjarGz5dAV1IrPEt
ZmYpvMe4E90S411wF1OWyrEqjXUuDnH1OWUvUdWSt4E7DhFw3esDi/jLW2tyVKAT
hIy+/O4wzbDSTX/h9Cgt1Qjhew6lKUIwvhEXclB3fuJ+JoviWNkC9lnK93e2H0A3
VYfkd/lpUD74035l0FrCJ/49MjX9kqrsn+TipHsIlSXAi8ZRdKbVvxOTD8RYudcI
GvCiDDrkMgNwGlyedgbtTBUepCvSg93b+vVmRj7YMPtBhioOUo3qCn6wpqhxfnth
9BCnPW7JxqUw/NJdlk9hKumaUZq+MK8G+kdYcIDg6xmAkWSUVP2QKlWavfMCxqRP
+dN6T2iHsKFe
=UePT
-----END PGP SIGNATURE-----
Merge tag 'pm-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"From the functional perspective, the most significant change here is
the addition of support for Energy Models that can be updated
dynamically at run time.
There is also the addition of LZ4 compression support for hibernation,
the new preferred core support in amd-pstate, new platforms support in
the Intel RAPL driver, new model-specific EPP handling in intel_pstate
and more.
Apart from that, the cpufreq default transition delay is reduced from
10 ms to 2 ms (along with some related adjustments), the system
suspend statistics code undergoes a significant rework and there is a
usual bunch of fixes and code cleanups all over.
Specifics:
- Allow the Energy Model to be updated dynamically (Lukasz Luba)
- Add support for LZ4 compression algorithm to the hibernation image
creation and loading code (Nikhil V)
- Fix and clean up system suspend statistics collection (Rafael
Wysocki)
- Simplify device suspend and resume handling in the power management
core code (Rafael Wysocki)
- Fix PCI hibernation support description (Yiwei Lin)
- Make hibernation take set_memory_ro() return values into account as
appropriate (Christophe Leroy)
- Set mem_sleep_current during kernel command line setup to avoid an
ordering issue with handling it (Maulik Shah)
- Fix wake IRQs handling when pm_runtime_force_suspend() is used as a
driver's system suspend callback (Qingliang Li)
- Simplify pm_runtime_get_if_active() usage and add a replacement for
pm_runtime_put_autosuspend() (Sakari Ailus)
- Add a tracepoint for runtime_status changes tracking (Vilas Bhat)
- Fix section title markdown in the runtime PM documentation (Yiwei
Lin)
- Enable preferred core support in the amd-pstate cpufreq driver
(Meng Li)
- Fix min_perf assignment in amd_pstate_adjust_perf() and make the
min/max limit perf values in amd-pstate always stay within the
(highest perf, lowest perf) range (Tor Vic, Meng Li)
- Allow intel_pstate to assign model-specific values to strings used
in the EPP sysfs interface and make it do so on Meteor Lake
(Srinivas Pandruvada)
- Drop long-unused cpudata::prev_cummulative_iowait from the
intel_pstate cpufreq driver (Jiri Slaby)
- Prevent scaling_cur_freq from exceeding scaling_max_freq when the
latter is an inefficient frequency (Shivnandan Kumar)
- Change default transition delay in cpufreq to 2ms (Qais Yousef)
- Remove references to 10ms minimum sampling rate from comments in
the cpufreq code (Pierre Gondois)
- Honour transition_latency over transition_delay_us in cpufreq (Qais
Yousef)
- Stop unregistering cpufreq cooling on CPU hot-remove (Viresh Kumar)
- General enhancements / cleanups to ARM cpufreq drivers (tianyu2,
Nícolas F. R. A. Prado, Erick Archer, Arnd Bergmann, Anastasia
Belova)
- Update cpufreq-dt-platdev to block/approve devices (Richard Acayan)
- Make the SCMI cpufreq driver get a transition delay value from
firmware (Pierre Gondois)
- Prevent the haltpoll cpuidle governor from shrinking guest
poll_limit_ns below grow_start (Parshuram Sangle)
- Avoid potential overflow in integer multiplication when computing
cpuidle state parameters (C Cheng)
- Adjust MWAIT hint target C-state computation in the ACPI cpuidle
driver and in intel_idle to return a correct value for C0 (He
Rongguang)
- Address multiple issues in the TPMI RAPL driver and add support for
new platforms (Lunar Lake-M, Arrow Lake) to Intel RAPL (Zhang Rui)
- Fix freq_qos_add_request() return value check in dtpm_cpu (Daniel
Lezcano)
- Fix kernel-doc for dtpm_create_hierarchy() (Yang Li)
- Fix file leak in get_pkg_num() in x86_energy_perf_policy (Samasth
Norway Ananda)
- Fix cpupower-frequency-info.1 man page typo (Jan Kratochvil)
- Fix a couple of warnings in the OPP core code related to W=1 builds
(Viresh Kumar)
- Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h (Viresh
Kumar)
- Extend dev_pm_opp_data with turbo support (Sibi Sankar)
- dt-bindings: drop maxItems from inner items (David Heidelberg)"
* tag 'pm-6.9-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (95 commits)
dt-bindings: opp: drop maxItems from inner items
OPP: debugfs: Fix warning around icc_get_name()
OPP: debugfs: Fix warning with W=1 builds
cpufreq: Move dev_pm_opp_{init|free}_cpufreq_table() to pm_opp.h
OPP: Extend dev_pm_opp_data with turbo support
Fix cpupower-frequency-info.1 man page typo
cpufreq: scmi: Set transition_delay_us
firmware: arm_scmi: Populate fast channel rate_limit
firmware: arm_scmi: Populate perf commands rate_limit
cpuidle: ACPI/intel: fix MWAIT hint target C-state computation
PM: sleep: wakeirq: fix wake irq warning in system suspend
powercap: dtpm: Fix kernel-doc for dtpm_create_hierarchy() function
cpufreq: Don't unregister cpufreq cooling on CPU hotplug
PM: suspend: Set mem_sleep_current during kernel command line setup
cpufreq: Honour transition_latency over transition_delay_us
cpufreq: Limit resolving a frequency to policy min/max
Documentation: PM: Fix runtime_pm.rst markdown syntax
cpufreq: amd-pstate: adjust min/max limit perf
cpufreq: Remove references to 10ms min sampling rate
cpufreq: intel_pstate: Update default EPPs for Meteor Lake
...
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEe7vIQRWZI0iWSE3xu+CwddJFiJoFAmXwH0wACgkQu+CwddJF
iJq3HAf6A/0m0pSr0QDcwjM8D7TVYQJ+Z/jPC6Mj+HfTcF8Otrgk8c0M6EsHGIGF
GQNnYJRKmBla3mpVFvDtsVZuiakEtRLCpoP5n23s8p8gY9ibJcl6bpn9NaMVMKrq
kBnhQ9VdLAgKVcTH8wz6jJqdWiZ7W4jGH5NWO+nr+r0H7vay7jfB0+tur1NO8J09
HE5I76XE6ArRvaKYxvsZmOx1pihSmsJ7CerXN6Y8U5qcuxNXdUO/9rf+uv5llDIV
gl54UAU79koZ9k88t5AiSKO2IZVhBgC/j66ds9MRRAFCf/ldxUtJIlsHTOnumfmy
FApqwtR0MYNPeMPZpzogQbv58oOcNw==
=XDxn
-----END PGP SIGNATURE-----
Merge tag 'slab-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab
Pull slab updates from Vlastimil Babka:
- Freelist loading optimization (Chengming Zhou)
When the per-cpu slab is depleted and a new one loaded from the cpu
partial list, optimize the loading to avoid an irq enable/disable
cycle. This results in a 3.5% performance improvement on the "perf
bench sched messaging" test.
- Kernel boot parameters cleanup after SLAB removal (Xiongwei Song)
Due to two different main slab implementations we've had boot
parameters prefixed either slab_ and slub_ with some later becoming
an alias as both implementations gained the same functionality (i.e.
slab_nomerge vs slub_nomerge). In order to eventually get rid of the
implementation-specific names, the canonical and documented
parameters are now all prefixed slab_ and the slub_ variants become
deprecated but still working aliases.
- SLAB_ kmem_cache creation flags cleanup (Vlastimil Babka)
The flags had hardcoded #define values which became tedious and
error-prone when adding new ones. Assign the values via an enum that
takes care of providing unique bit numbers. Also deprecate
SLAB_MEM_SPREAD which was only used by SLAB, so it's a no-op since
SLAB removal. Assign it an explicit zero value. The removals of the
flag usage are handled independently in the respective subsystems,
with a final removal of any leftover usage planned for the next
release.
- Misc cleanups and fixes (Chengming Zhou, Xiaolei Wang, Zheng Yejian)
Includes removal of unused code or function parameters and a fix of a
memleak.
* tag 'slab-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/vbabka/slab:
slab: remove PARTIAL_NODE slab_state
mm, slab: remove memcg_from_slab_obj()
mm, slab: remove the corner case of inc_slabs_node()
mm/slab: Fix a kmemleak in kmem_cache_destroy()
mm, slab, kasan: replace kasan_never_merge() with SLAB_NO_MERGE
mm, slab: use an enum to define SLAB_ cache creation flags
mm, slab: deprecate SLAB_MEM_SPREAD flag
mm, slab: fix the comment of cpu partial list
mm, slab: remove unused object_size parameter in kmem_cache_flags()
mm/slub: remove parameter 'flags' in create_kmalloc_caches()
mm/slub: remove unused parameter in next_freelist_entry()
mm/slub: remove full list manipulation for non-debug slab
mm/slub: directly load freelist from cpu partial slab in the likely case
mm/slub: make the description of slab_min_objects helpful in doc
mm/slub: replace slub_$params with slab_$params in slub.rst
mm/slub: unify all sl[au]b parameters with "slab_$param"
Documentation: kernel-parameters: remove noaliencache
- Some cleanup of the main index page for easier navigation
- Rework some of the other top-level pages for better readability and, with
luck, fewer merge conflicts in the future.
- Submit-checklist improvements, hopefully the first of many.
- New Italian translations
- A fair number of kernel-doc fixes and improvements. We have also dropped
the recommendation to use an old version of Sphinx.
- A new document from Thorsten on bisection
...and lots of fixes and updates.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmXvKVIACgkQF0NaE2wM
flik1gf/ZFS1mHwDdmHA/vpx8UxdUlFEo0Pms8V24iPSW5aEIqkZ406c9DSyMTtp
CXTzW+RSCfB1Q3ciYtakHBgv0RzZ5+RyaEZ1l7zVmMyw4nYvK6giYKmg8Y0EVPKI
fAVuPWo5iE7io0sNVbKBKJJkj9Z8QEScM48hv/CV1FblMvHYn0lie6muJrF9G6Ez
HND+hlYZtWkbRd5M86CDBiFeGMLVPx17T+psQyQIcbUYm9b+RUqZRHIVRLYbad7r
18r9+83DsOhXTVJCBBSfCSZwzF8yAm+eD1w47sxnSItF8OiIjqCzQgXs3BZe9TXH
h2YyeWbMN3xByA4mEgpmOPP44RW7Pg==
=SC60
-----END PGP SIGNATURE-----
Merge tag 'docs-6.9' of git://git.lwn.net/linux
Pull documentation updates from Jonathan Corbet:
"A moderatly busy cycle for development this time around.
- Some cleanup of the main index page for easier navigation
- Rework some of the other top-level pages for better readability
and, with luck, fewer merge conflicts in the future.
- Submit-checklist improvements, hopefully the first of many.
- New Italian translations
- A fair number of kernel-doc fixes and improvements. We have also
dropped the recommendation to use an old version of Sphinx.
- A new document from Thorsten on bisection
... and lots of fixes and updates"
* tag 'docs-6.9' of git://git.lwn.net/linux: (54 commits)
docs: verify/bisect: fixes, finetuning, and support for Arch
docs: Makefile: Add dependency to $(YNL_INDEX) for targets other than htmldocs
docs: Move ja_JP/howto.rst to ja_JP/process/howto.rst
docs: submit-checklist: use subheadings
docs: submit-checklist: structure by category
docs: new text on bisecting which also covers bug validation
docs: drop the version constraints for sphinx and dependencies
docs: kerneldoc-preamble.sty: Remove code for Sphinx <2.4
docs: Restore "smart quotes" for quotes
docs/zh_CN: accurate translation of "function"
docs: Include simplified link titles in main index
docs: Correct formatting of title in admin-guide/index.rst
docs: kernel_feat.py: fix build error for missing files
MAINTAINERS: Set the field name for subsystem profile section
kasan: Add documentation for CONFIG_KASAN_EXTRA_INFO
Fixed case issue with 'fault-injection' in documentation
kernel-doc: handle #if in enums as well
Documentation: update mailing list addresses
doc: kerneldoc.py: fix indentation
scripts/kernel-doc: simplify signature printing
...
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmXvZgoACgkQaDWVMHDJ
krC2Eg//aZKBp97/DSzRqXKDwJzVUr0sGJ9cii0gVT1sI+1U6ZZCh/roVH4xOT5/
HqtOOnQ+X0mwUx2VG3Yv2VPI7VW68sJ3/y9D8R4tnMEsyQ4CmDw96Pre3NyKr/Av
jmW7SK94fOkpNFJOMk3zpk7GtRUlCsVkS1P61dOmMYduguhel/V20rWlx83BgnAY
Rf/c3rBjqe8Ri3rzBP5icY/d6OgwoafuhME31DD/j6oKOh+EoQBvA4urj46yMTMX
/mrK7hCm/wqwuOOvgGbo7sfZNBLCYy3SZ3EyF4beDERhPF1DaSvCwOULpGVJroqu
SelFsKXAtEbYrDgsan+MYlx3bQv43q7PbHska1gjkH91plO4nAsssPr5VsusUKmT
sq8jyBaauZb40oLOSgooL4RqAHrfs8q5695Ouwh/DB/XovMezUI1N/BkpGFmqpJI
o2xH9P5q520pkB8pFhN9TbRuFSGe/dbWC24QTq1DUajo3M3RwcwX6ua9hoAKLtDF
pCV5DNcVcXHD3Cxp0M5dQ5JEAiCnW+ZpUWgxPQamGDNW5PEvjDmFwql2uWw/qOuW
lkheOIffq8ejUBQFbN8VXfIzzeeKQNFiIcViaqGITjIwhqdHAzVi28OuIGwtdh3g
ywLzSC8yvyzgKrNBgtFMr3ucKN0FoPxpBro253xt2H7w8srXW64=
=5V9t
-----END PGP SIGNATURE-----
Merge tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 RFDS mitigation from Dave Hansen:
"RFDS is a CPU vulnerability that may allow a malicious userspace to
infer stale register values from kernel space. Kernel registers can
have all kinds of secrets in them so the mitigation is basically to
wait until the kernel is about to return to userspace and has user
values in the registers. At that point there is little chance of
kernel secrets ending up in the registers and the microarchitectural
state can be cleared.
This leverages some recent robustness fixes for the existing MDS
vulnerability. Both MDS and RFDS use the VERW instruction for
mitigation"
* tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests
x86/rfds: Mitigate Register File Data Sampling (RFDS)
Documentation/hw-vuln: Add documentation for RFDS
x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set
- The biggest change is the rework of the percpu code,
to support the 'Named Address Spaces' GCC feature,
by Uros Bizjak:
- This allows C code to access GS and FS segment relative
memory via variables declared with such attributes,
which allows the compiler to better optimize those accesses
than the previous inline assembly code.
- The series also includes a number of micro-optimizations
for various percpu access methods, plus a number of
cleanups of %gs accesses in assembly code.
- These changes have been exposed to linux-next testing for
the last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally
working handling of FPU switching - which also generates
better code.
- Propagate more RIP-relative addressing in assembly code,
to generate slightly better code.
- Rework the CPU mitigations Kconfig space to be less idiosyncratic,
to make it easier for distros to follow & maintain these options.
- Rework the x86 idle code to cure RCU violations and
to clean up the logic.
- Clean up the vDSO Makefile logic.
- Misc cleanups and fixes.
[ Please note that there's a higher number of merge commits in
this branch (three) than is usual in x86 topic trees. This happened
due to the long testing lifecycle of the percpu changes that
involved 3 merge windows, which generated a longer history
and various interactions with other core x86 changes that we
felt better about to carry in a single branch. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
F/mednG0gGc=
=3v4F
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull core x86 updates from Ingo Molnar:
- The biggest change is the rework of the percpu code, to support the
'Named Address Spaces' GCC feature, by Uros Bizjak:
- This allows C code to access GS and FS segment relative memory
via variables declared with such attributes, which allows the
compiler to better optimize those accesses than the previous
inline assembly code.
- The series also includes a number of micro-optimizations for
various percpu access methods, plus a number of cleanups of %gs
accesses in assembly code.
- These changes have been exposed to linux-next testing for the
last ~5 months, with no known regressions in this area.
- Fix/clean up __switch_to()'s broken but accidentally working handling
of FPU switching - which also generates better code
- Propagate more RIP-relative addressing in assembly code, to generate
slightly better code
- Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
make it easier for distros to follow & maintain these options
- Rework the x86 idle code to cure RCU violations and to clean up the
logic
- Clean up the vDSO Makefile logic
- Misc cleanups and fixes
* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
x86/idle: Select idle routine only once
x86/idle: Let prefer_mwait_c1_over_halt() return bool
x86/idle: Cleanup idle_setup()
x86/idle: Clean up idle selection
x86/idle: Sanitize X86_BUG_AMD_E400 handling
sched/idle: Conditionally handle tick broadcast in default_idle_call()
x86: Increase brk randomness entropy for 64-bit systems
x86/vdso: Move vDSO to mmap region
x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
x86/retpoline: Ensure default return thunk isn't used at runtime
x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
x86/vdso: Use $(addprefix ) instead of $(foreach )
x86/vdso: Simplify obj-y addition
x86/vdso: Consolidate targets and clean-files
x86/bugs: Rename CONFIG_RETHUNK => CONFIG_MITIGATION_RETHUNK
x86/bugs: Rename CONFIG_CPU_SRSO => CONFIG_MITIGATION_SRSO
x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY => CONFIG_MITIGATION_IBRS_ENTRY
x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY => CONFIG_MITIGATION_UNRET_ENTRY
x86/bugs: Rename CONFIG_SLS => CONFIG_MITIGATION_SLS
...
not) a NMI handler
- Ratelimit unknown NMIs messages in order to not potentially slow down
the machine
- Other fixlets
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvN0wACgkQEsHwGGHe
VUqZLg//fo0puvI2XVjcyW2aNZXNyCWUID5J0HvIZqLveQQQzOopfuX4NLfgKSRR
GUX3k/jlfO9pku+gz6rQRYi8kaTlY8rScf9XpbUBgZZg3Pz2/ySel5uhPpHatgZ7
Zj455XALGVLA3T4bFKfCvUGKmRVmSTyXgPg3i/yFpfVzRZ8yhvAyJWJSWxJpFOpC
Eeg/cXUUPjlb2qOom0Bk9BEjG8Ez76yImAlN5ys/csG2Fe7iE3rU+DQ2IfU/yLfI
22QNZa8xGJY47c7iP1A/tGsxKGu5Pjsz4I2QvobWhteeiu+03g2NUWUcAaP+3/GN
6hj2IeiNAkhDcWaJMS9U5vaVAcfDZzTEErkPf896bk6lrR0UY1CRQlJzEQZLz1Vy
0ZVUuppY2hBcTj3YA9h65a/+sdsxAUG4BdsUJ63jHejJYEPN5YSFvL5wXZlxj3GO
XVVMsHMs9Lgnz1x+xzAB8SmmoPSj6qdMneY1Xp92cEtV6QQM/EinTfIcTUtvDACZ
9FJ77Iu6Up4hemftTGOC8eVqr+V0Q8M5x2Xs8NQAwlq9dnFVQCIwd/LjdRDyJ3Gw
ksFrq6Cv94Fi4bqmQi4CY04GH3kc5ua9sDeTM7rkBMm6RRSTO2NBgIOqHcBbrlOT
B3kSUqoUB6BEqlRRqP/YZ8YSOL5FWk2A2WDKtp8+ThkDYixGy1M=
=Jt9B
-----END PGP SIGNATURE-----
Merge tag 'x86_misc_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 fixes from Borislav Petkov:
- Fix a wrong check in the function reporting whether a CPU executes
(or not) a NMI handler
- Ratelimit unknown NMIs messages in order to not potentially slow down
the machine
- Other fixlets
* tag 'x86_misc_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/nmi: Fix the inverse "in NMI handler" check
Documentation/maintainer-tip: Add C++ tail comments exception
Documentation/maintainer-tip: Add Closes tag
x86/nmi: Rate limit unknown NMI messages
Documentation/kernel-parameters: Add spec_rstack_overflow to mitigations=off
kernel to be used as a KVM hypervisor capable of running SNP (Secure
Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal
of the AMD confidential computing side, providing the most
comprehensive confidential computing environment up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the next
cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvH0wACgkQEsHwGGHe
VUrzmA//VS/n6dhHRnm/nAGngr4PeegkgV1OhyKYFfiZ272rT6P9QvblQrgcY0dc
Ij1DOhEKlke51pTHvMOQ33B3P4Fuc0mx3dpCLY0up5V26kzQiKCjRKEkC4U1bcw8
W4GqMejaR89bE14bYibmwpSib9T/uVsV65eM3xf1iF5UvsnoUaTziymDoy+nb43a
B1pdd5vcl4mBNqXeEvt0qjg+xkMLpWUI9tJDB8mbMl/cnIFGgMZzBaY8oktHSROK
QpuUnKegOgp1RXpfLbNjmZ2Q4Rkk4MNazzDzWq3EIxaRjXL3Qp507ePK7yeA2qa0
J3jCBQc9E2j7lfrIkUgNIzOWhMAXM2YH5bvH6UrIcMi1qsWJYDmkp2MF1nUedjdf
Wj16/pJbeEw1aKKIywJGwsmViSQju158vY3SzXG83U/A/Iz7zZRHFmC/ALoxZptY
Bi7VhfcOSpz98PE3axnG8CvvxRDWMfzBr2FY1VmQbg6VBNo1Xl1aP/IH1I8iQNKg
/laBYl/qP+1286TygF1lthYROb1lfEIJprgi2xfO6jVYUqPb7/zq2sm78qZRfm7l
25PN/oHnuidfVfI/H3hzcGubjOG9Zwra8WWYBB2EEmelf21rT0OLqq+eS4T6pxFb
GNVfc0AzG77UmqbrpkAMuPqL7LrGaSee4NdU3hkEdSphlx1/YTo=
=c1ps
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV updates from Borislav Petkov:
- Add the x86 part of the SEV-SNP host support.
This will allow the kernel to be used as a KVM hypervisor capable of
running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP
is the ultimate goal of the AMD confidential computing side,
providing the most comprehensive confidential computing environment
up to date.
This is the x86 part and there is a KVM part which did not get ready
in time for the merge window so latter will be forthcoming in the
next cycle.
- Rework the early code's position-dependent SEV variable references in
order to allow building the kernel with clang and -fPIE/-fPIC and
-mcmodel=kernel
- The usual set of fixes, cleanups and improvements all over the place
* tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
x86/sev: Disable KMSAN for memory encryption TUs
x86/sev: Dump SEV_STATUS
crypto: ccp - Have it depend on AMD_IOMMU
iommu/amd: Fix failure return from snp_lookup_rmpentry()
x86/sev: Fix position dependent variable references in startup code
crypto: ccp: Make snp_range_list static
x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
Documentation: virt: Fix up pre-formatted text block for SEV ioctls
crypto: ccp: Add the SNP_SET_CONFIG command
crypto: ccp: Add the SNP_COMMIT command
crypto: ccp: Add the SNP_PLATFORM_STATUS command
x86/cpufeatures: Enable/unmask SEV-SNP CPU feature
KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe
crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown
crypto: ccp: Handle legacy SEV commands when SNP is enabled
crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled
crypto: ccp: Handle the legacy TMR allocation when SNP is enabled
x86/sev: Introduce an SNP leaked pages list
crypto: ccp: Provide an API to issue SEV and SNP commands
...
FRED is a replacement for IDT event delivery on x86 and addresses most of
the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved in
nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested exceptions
as the interrupt stack mechanism rewinds the stack on each entry which
requires a massive effort in the low level entry of #NMI code to handle
this.
3) No hardware distinction between entry from kernel or from user which
makes establishing kernel context more complex than it needs to be
especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which is a
problem when the perf NMI takes a fault when collecting a stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion on
large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save exception
cause registers. This ensures that the meta information for each
exception is preserved on stack and avoids the extra complexity of
preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS BASE
handling which is required to establish kernel context for per CPU
variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the return
from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design because it
uses a central entry points for kernel and user space and the CPUstores
the entry type (exception, trap, interrupt, syscall) on the entry stack
along with the vector number. The entry code has to demultiplex this
information, but this removes the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have information
pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs. the existing IDT
implementation to the extent possible and the deviation in hot paths like
context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the extended
stack frame and the hardware based GS BASE swichting and therefore have no
impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are know outstanding problems.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuKPgTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWyUEACevJMHU+Ot9zqBPizSWxByM1uunHbp
bjQXhaFeskd3mt7k7HU6GsPRSmC3q4lliP1Y9ypfbU0DvYSI2h/PhMWizjhmot2y
nIvFpl51r/NsI+JHx1oXcFetz0eGHEqBui/4YQ/swgOCMymYgfqgHhazXTdldV3g
KpH9/8W3AeGvw79uzXFH9tjBzTkbvywpam3v0LYNDJWTCuDkilyo8PjhsgRZD4x3
V9f1nLD7nSHZW8XLoktdJJ38bKwI2Lhao91NQ0ErwopekA4/9WphZEKsDpidUSXJ
sn1O148oQ8X92IO2OaQje8XC5pLGr5GqQBGPWzRH56P/Vd3+WOwBxaFoU6Drxc5s
tIe23ZjkVcpA8EEG7BQBZV1Un/NX7XaCCnMniOt0RauXw+1NaslX7t/tnUAh5F1V
TWCH4D0I0oJ0qJ7kNliGn2BP3agYXOVg81xVEUjT6KfHcYU4ImUrwi+BkeNXuXtL
Ch5ADnbYAcUjWLFnAmEmaRtfmfNGY5T7PeGFHW2RRkaOJ88v5g14Voo6gPJaDUPn
wMQ0nLq1xN4xZWF6ZgfRqAhArvh20k38ZujRku5vXEqnhOugQ76TF2UYiFEwOXbQ
8jcM+yEBLGgBz7tGMwmIAml6kfxaFF1KPpdrtcPxNkGlbE6KTSuIolLx2YGUvlSU
6/O8nwZy49ckmQ==
=Ib7w
-----END PGP SIGNATURE-----
Merge tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 FRED support from Thomas Gleixner:
"Support for x86 Fast Return and Event Delivery (FRED).
FRED is a replacement for IDT event delivery on x86 and addresses most
of the technical nightmares which IDT exposes:
1) Exception cause registers like CR2 need to be manually preserved
in nested exception scenarios.
2) Hardware interrupt stack switching is suboptimal for nested
exceptions as the interrupt stack mechanism rewinds the stack on
each entry which requires a massive effort in the low level entry
of #NMI code to handle this.
3) No hardware distinction between entry from kernel or from user
which makes establishing kernel context more complex than it needs
to be especially for unconditionally nestable exceptions like NMI.
4) NMI nesting caused by IRET unconditionally reenabling NMIs, which
is a problem when the perf NMI takes a fault when collecting a
stack trace.
5) Partial restore of ESP when returning to a 16-bit segment
6) Limitation of the vector space which can cause vector exhaustion
on large systems.
7) Inability to differentiate NMI sources
FRED addresses these shortcomings by:
1) An extended exception stack frame which the CPU uses to save
exception cause registers. This ensures that the meta information
for each exception is preserved on stack and avoids the extra
complexity of preserving it in software.
2) Hardware interrupt stack switching is non-rewinding if a nested
exception uses the currently interrupt stack.
3) The entry points for kernel and user context are separate and GS
BASE handling which is required to establish kernel context for
per CPU variable access is done in hardware.
4) NMIs are now nesting protected. They are only reenabled on the
return from NMI.
5) FRED guarantees full restore of ESP
6) FRED does not put a limitation on the vector space by design
because it uses a central entry points for kernel and user space
and the CPUstores the entry type (exception, trap, interrupt,
syscall) on the entry stack along with the vector number. The
entry code has to demultiplex this information, but this removes
the vector space restriction.
The first hardware implementations will still have the current
restricted vector space because lifting this limitation requires
further changes to the local APIC.
7) FRED stores the vector number and meta information on stack which
allows having more than one NMI vector in future hardware when the
required local APIC changes are in place.
The series implements the initial FRED support by:
- Reworking the existing entry and IDT handling infrastructure to
accomodate for the alternative entry mechanism.
- Expanding the stack frame to accomodate for the extra 16 bytes FRED
requires to store context and meta information
- Providing FRED specific C entry points for events which have
information pushed to the extended stack frame, e.g. #PF and #DB.
- Providing FRED specific C entry points for #NMI and #MCE
- Implementing the FRED specific ASM entry points and the C code to
demultiplex the events
- Providing detection and initialization mechanisms and the necessary
tweaks in context switching, GS BASE handling etc.
The FRED integration aims for maximum code reuse vs the existing IDT
implementation to the extent possible and the deviation in hot paths
like context switching are handled with alternatives to minimalize the
impact. The low level entry and exit paths are seperate due to the
extended stack frame and the hardware based GS BASE swichting and
therefore have no impact on IDT based systems.
It has been extensively tested on existing systems and on the FRED
simulation and as of now there are no outstanding problems"
* tag 'x86-fred-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (38 commits)
x86/fred: Fix init_task thread stack pointer initialization
MAINTAINERS: Add a maintainer entry for FRED
x86/fred: Fix a build warning with allmodconfig due to 'inline' failing to inline properly
x86/fred: Invoke FRED initialization code to enable FRED
x86/fred: Add FRED initialization functions
x86/syscall: Split IDT syscall setup code into idt_syscall_init()
KVM: VMX: Call fred_entry_from_kvm() for IRQ/NMI handling
x86/entry: Add fred_entry_from_kvm() for VMX to handle IRQ/NMI
x86/entry/calling: Allow PUSH_AND_CLEAR_REGS being used beyond actual entry code
x86/fred: Fixup fault on ERETU by jumping to fred_entrypoint_user
x86/fred: Let ret_from_fork_asm() jmp to asm_fred_exit_user when FRED is enabled
x86/traps: Add sysvec_install() to install a system interrupt handler
x86/fred: FRED entry/exit and dispatch code
x86/fred: Add a machine check entry stub for FRED
x86/fred: Add a NMI entry stub for FRED
x86/fred: Add a debug fault entry stub for FRED
x86/idtentry: Incorporate definitions/declarations of the FRED entries
x86/fred: Make exc_page_fault() work for FRED
x86/fred: Allow single-step trap and NMI when starting a new task
x86/fred: No ESPFIX needed when FRED is enabled
...
The current implementation has a couple of shortcomings:
- It fails to handle hybrid systems correctly.
- The APIC registration code which handles CPU number assignents is in
the middle of the APIC code and detached from the topology evaluation.
- The various mechanisms which enumerate APICs, ACPI, MPPARSE and guest
specific ones, tweak global variables as they see fit or in case of
XENPV just hack around the generic mechanisms completely.
- The CPUID topology evaluation code is sprinkled all over the vendor
code and reevaluates global variables on every hotplug operation.
- There is no way to analyze topology on the boot CPU before bringing up
the APs. This causes problems for infrastructure like PERF which needs
to size certain aspects upfront or could be simplified if that would be
possible.
- The APIC admission and CPU number association logic is incomprehensible
and overly complex and needs to be kept around after boot instead of
completing this right after the APIC enumeration.
This update addresses these shortcomings with the following changes:
- Rework the CPUID evaluation code so it is common for all vendors and
provides information about the APIC ID segments in a uniform way
independent of the number of segments (Thread, Core, Module, ..., Die,
Package) so that this information can be computed instead of rewriting
global variables of dubious value over and over.
- A few cleanups and simplifcations of the APIC, IO/APIC and related
interfaces to prepare for the topology evaluation changes.
- Seperation of the parser stages so the early evaluation which tries to
find the APIC address can be seperately overridden from the late
evaluation which enumerates and registers the local APIC as further
preparation for sanitizing the topology evaluation.
- A new registration and admission logic which
- encapsulates the inner workings so that parsers and guest logic
cannot longer fiddle in it
- uses the APIC ID segments to build topology bitmaps at registration
time
- provides a sane admission logic
- allows to detect the crash kernel case, where CPU0 does not run on
the real BSP, automatically. This is required to prevent sending
INIT/SIPI sequences to the real BSP which would reset the whole
machine. This was so far handled by a tedious command line
parameter, which does not even work in nested crash scenarios.
- Associates CPU number after the enumeration completed and prevents
the late registration of APICs, which was somehow tolerated before.
- Converting all parsers and guest enumeration mechanisms over to the
new interfaces.
This allows to get rid of all global variable tweaking from the parsers
and enumeration mechanisms and sanitizes the XEN[PV] handling so it can
use CPUID evaluation for the first time.
- Mopping up existing sins by taking the information from the APIC ID
segment bitmaps.
This evaluates hybrid systems correctly on the boot CPU and allows for
cleanups and fixes in the related drivers, e.g. PERF.
The series has been extensively tested and the minimal late fallout due to
a broken ACPI/MADT table has been addressed by tightening the admission
logic further.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuDawTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYobE7EACngItF+UOTCoCV6och2lL6HVoIdZD1
Y5oaAgD+WzQSz/lBkH6b9kZSyvjlMo6O9GlnGX+ii+VUnijDp4VrspnxbJDaKEq3
gOfsSg2Tk+ps50HqMcZawjjBYJb/TmvKwEV2XuzIBPOONSWLNjvN7nBSzLl1eF9/
8uCE39/8aB5K3GXryRyXdo2uLu6eHTVC0aYFu/kLX1/BbVqF5NMD3sz9E9w8+D/U
MIIMEMXy4Fn+P2o0vVH+gjUlwI76mJbB1WqCX/sqbVacXrjl3KfNJRiisTFIOOYV
8o+rIV0ef5X9xmZqtOXAdyZQzj++Gwmz9+4TU1M4YHtS7UkYn6AluOjvVekCc+gc
qXE3WhqKfCK2/carRMLQxAMxNeRylkZG+Wuv1Qtyjpe9JX2dTqtems0f4DMp9DKf
b7InO3z39kJanpqcUG2Sx+GWanetfnX+0Ho2Moqu6Xi+2ATr1PfMG/Wyr5/WWOfV
qApaHSTwa+J43mSzP6BsXngEv085EHSGM5tPe7u46MCYFqB21+bMl+qH82KjMkOe
c6uZovFQMmX2WBlqJSYGVCH+Jhgvqq8HFeRs19Hd4enOt3e6LE3E74RBVD1AyfLV
1b/m8tYB/o871ZlEZwDCGVrV/LNnA7PxmFpq5ZHLpUt39g2/V0RH1puBVz1e97pU
YsTT7hBCUYzgjQ==
=/5oR
-----END PGP SIGNATURE-----
Merge tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC updates from Thomas Gleixner:
"Rework of APIC enumeration and topology evaluation.
The current implementation has a couple of shortcomings:
- It fails to handle hybrid systems correctly.
- The APIC registration code which handles CPU number assignents is
in the middle of the APIC code and detached from the topology
evaluation.
- The various mechanisms which enumerate APICs, ACPI, MPPARSE and
guest specific ones, tweak global variables as they see fit or in
case of XENPV just hack around the generic mechanisms completely.
- The CPUID topology evaluation code is sprinkled all over the vendor
code and reevaluates global variables on every hotplug operation.
- There is no way to analyze topology on the boot CPU before bringing
up the APs. This causes problems for infrastructure like PERF which
needs to size certain aspects upfront or could be simplified if
that would be possible.
- The APIC admission and CPU number association logic is
incomprehensible and overly complex and needs to be kept around
after boot instead of completing this right after the APIC
enumeration.
This update addresses these shortcomings with the following changes:
- Rework the CPUID evaluation code so it is common for all vendors
and provides information about the APIC ID segments in a uniform
way independent of the number of segments (Thread, Core, Module,
..., Die, Package) so that this information can be computed instead
of rewriting global variables of dubious value over and over.
- A few cleanups and simplifcations of the APIC, IO/APIC and related
interfaces to prepare for the topology evaluation changes.
- Seperation of the parser stages so the early evaluation which tries
to find the APIC address can be seperately overridden from the late
evaluation which enumerates and registers the local APIC as further
preparation for sanitizing the topology evaluation.
- A new registration and admission logic which
- encapsulates the inner workings so that parsers and guest logic
cannot longer fiddle in it
- uses the APIC ID segments to build topology bitmaps at
registration time
- provides a sane admission logic
- allows to detect the crash kernel case, where CPU0 does not run
on the real BSP, automatically. This is required to prevent
sending INIT/SIPI sequences to the real BSP which would reset
the whole machine. This was so far handled by a tedious command
line parameter, which does not even work in nested crash
scenarios.
- Associates CPU number after the enumeration completed and
prevents the late registration of APICs, which was somehow
tolerated before.
- Converting all parsers and guest enumeration mechanisms over to the
new interfaces.
This allows to get rid of all global variable tweaking from the
parsers and enumeration mechanisms and sanitizes the XEN[PV]
handling so it can use CPUID evaluation for the first time.
- Mopping up existing sins by taking the information from the APIC ID
segment bitmaps.
This evaluates hybrid systems correctly on the boot CPU and allows
for cleanups and fixes in the related drivers, e.g. PERF.
The series has been extensively tested and the minimal late fallout
due to a broken ACPI/MADT table has been addressed by tightening the
admission logic further"
* tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
x86/topology: Ignore non-present APIC IDs in a present package
x86/apic: Build the x86 topology enumeration functions on UP APIC builds too
smp: Provide 'setup_max_cpus' definition on UP too
smp: Avoid 'setup_max_cpus' namespace collision/shadowing
x86/bugs: Use fixed addressing for VERW operand
x86/cpu/topology: Get rid of cpuinfo::x86_max_cores
x86/cpu/topology: Provide __num_[cores|threads]_per_package
x86/cpu/topology: Rename topology_max_die_per_package()
x86/cpu/topology: Rename smp_num_siblings
x86/cpu/topology: Retrieve cores per package from topology bitmaps
x86/cpu/topology: Use topology logical mapping mechanism
x86/cpu/topology: Provide logical pkg/die mapping
x86/cpu/topology: Simplify cpu_mark_primary_thread()
x86/cpu/topology: Mop up primary thread mask handling
x86/cpu/topology: Use topology bitmaps for sizing
x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT
x86/xen/smp_pv: Count number of vCPUs early
x86/cpu/topology: Assign hotpluggable CPUIDs during init
x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug
x86/topology: Add a mechanism to track topology via APIC IDs
...
- The hierarchical timer pull model
When timer wheel timers are armed they are placed into the timer wheel
of a CPU which is likely to be busy at the time of expiry. This is done
to avoid wakeups on potentially idle CPUs.
This is wrong in several aspects:
1) The heuristics to select the target CPU are wrong by
definition as the chance to get the prediction right is close
to zero.
2) Due to #1 it is possible that timers are accumulated on a
single target CPU
3) The required computation in the enqueue path is just overhead for
dubious value especially under the consideration that the vast
majority of timer wheel timers are either canceled or rearmed
before they expire.
The timer pull model avoids the above by removing the target
computation on enqueue and queueing timers always on the CPU on which
they get armed.
This is achieved by having separate wheels for CPU pinned timers and
global timers which do not care about where they expire.
As long as a CPU is busy it handles both the pinned and the global
timers which are queued on the CPU local timer wheels.
When a CPU goes idle it evaluates its own timer wheels:
- If the first expiring timer is a pinned timer, then the global
timers can be ignored as the CPU will wake up before they expire.
- If the first expiring timer is a global timer, then the expiry time
is propagated into the timer pull hierarchy and the CPU makes sure
to wake up for the first pinned timer.
The timer pull hierarchy organizes CPUs in groups of eight at the
lowest level and at the next levels groups of eight groups up to the
point where no further aggregation of groups is required, i.e. the
number of levels is log8(NR_CPUS). The magic number of eight has been
established by experimention, but can be adjusted if needed.
In each group one busy CPU acts as the migrator. It's only one CPU to
avoid lock contention on remote timer wheels.
The migrator CPU checks in its own timer wheel handling whether there
are other CPUs in the group which have gone idle and have global timers
to expire. If there are global timers to expire, the migrator locks the
remote CPU timer wheel and handles the expiry.
Depending on the group level in the hierarchy this handling can require
to walk the hierarchy downwards to the CPU level.
Special care is taken when the last CPU goes idle. At this point the
CPU is the systemwide migrator at the top of the hierarchy and it
therefore cannot delegate to the hierarchy. It needs to arm its own
timer device to expire either at the first expiring timer in the
hierarchy or at the first CPU local timer, which ever expires first.
This completely removes the overhead from the enqueue path, which is
e.g. for networking a true hotpath and trades it for a slightly more
complex idle path.
This has been in development for a couple of years and the final series
has been extensively tested by various teams from silicon vendors and
ran through extensive CI.
There have been slight performance improvements observed on network
centric workloads and an Intel team confirmed that this allows them to
power down a die completely on a mult-die socket for the first time in
a mostly idle scenario.
There is only one outstanding ~1.5% regression on a specific overloaded
netperf test which is currently investigated, but the rest is either
positive or neutral performance wise and positive on the power
management side.
- Fixes for the timekeeping interpolation code for cross-timestamps:
cross-timestamps are used for PTP to get snapshots from hardware timers
and interpolated them back to clock MONOTONIC. The changes address a
few corner cases in the interpolation code which got the math and logic
wrong.
- Simplifcation of the clocksource watchdog retry logic to automatically
adjust to handle larger systems correctly instead of having more
incomprehensible command line parameters.
- Treewide consolidation of the VDSO data structures.
- The usual small improvements and cleanups all over the place.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuAN0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoVKXEADIR45rjR1Xtz32js7B53Y65O4WNoOQ
6/ycWcswuGzg/h4QUpPSJ6gOGVmKSWwZi4n0P/VadCiXGSPPm0aUKsoRUt9DZsPY
mtj2wjCSXKXiyhTl9OtrZME86ZAIGO1dQXa/sOHsiP5PCjgQkD0b5CYi1+B6eHDt
1/Uo2Tb9g8VAPppq20V5Uo93GrPf642oyi3FCFrR1M112Uuak5DmqHJYiDpreNcG
D5SgI+ykSiaUaVyHifvqijoJk0rYXkqEC6evl02477lJ/X0vVo2/M8XPS95BxHST
s5Iruo4rP+qeAy8QvhZpoPX59fO0m/AgA7cf77XXAtOpVdLH+bs4ILsEbouAIOtv
lsmRkcYt+TpvrZFHPAxks+6g3afuROiDtxD5sXXpVWxvofi8FwWqubdlqdsbw9MP
ZCTNyzNyKL47QeDwBfSynYUL1RSyqsphtIwk4oeQklH9rwMAnW21hi30z15hQ0pQ
FOVkmcwi79JNvl/G+jRkDzw7r8/zcHshWdSjyUM04CDjjnCDjQOFWSIjEPwbQjjz
S4HXpJKJW963dBgs9Z84/Ctw1GwoBk1qedDWDJE1257Qvmo/Wpe/7GddWcazOGnN
RRFMzGPbOqBDbjtErOKGU+iCisgNEvz2XK+TI16uRjWde7DxZpiTVYgNDrZ+/Pyh
rQ23UBms6ZRR+A==
=iQlu
-----END PGP SIGNATURE-----
Merge tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"A large set of updates and features for timers and timekeeping:
- The hierarchical timer pull model
When timer wheel timers are armed they are placed into the timer
wheel of a CPU which is likely to be busy at the time of expiry.
This is done to avoid wakeups on potentially idle CPUs.
This is wrong in several aspects:
1) The heuristics to select the target CPU are wrong by
definition as the chance to get the prediction right is
close to zero.
2) Due to #1 it is possible that timers are accumulated on
a single target CPU
3) The required computation in the enqueue path is just overhead
for dubious value especially under the consideration that the
vast majority of timer wheel timers are either canceled or
rearmed before they expire.
The timer pull model avoids the above by removing the target
computation on enqueue and queueing timers always on the CPU on
which they get armed.
This is achieved by having separate wheels for CPU pinned timers
and global timers which do not care about where they expire.
As long as a CPU is busy it handles both the pinned and the global
timers which are queued on the CPU local timer wheels.
When a CPU goes idle it evaluates its own timer wheels:
- If the first expiring timer is a pinned timer, then the global
timers can be ignored as the CPU will wake up before they
expire.
- If the first expiring timer is a global timer, then the expiry
time is propagated into the timer pull hierarchy and the CPU
makes sure to wake up for the first pinned timer.
The timer pull hierarchy organizes CPUs in groups of eight at the
lowest level and at the next levels groups of eight groups up to
the point where no further aggregation of groups is required, i.e.
the number of levels is log8(NR_CPUS). The magic number of eight
has been established by experimention, but can be adjusted if
needed.
In each group one busy CPU acts as the migrator. It's only one CPU
to avoid lock contention on remote timer wheels.
The migrator CPU checks in its own timer wheel handling whether
there are other CPUs in the group which have gone idle and have
global timers to expire. If there are global timers to expire, the
migrator locks the remote CPU timer wheel and handles the expiry.
Depending on the group level in the hierarchy this handling can
require to walk the hierarchy downwards to the CPU level.
Special care is taken when the last CPU goes idle. At this point
the CPU is the systemwide migrator at the top of the hierarchy and
it therefore cannot delegate to the hierarchy. It needs to arm its
own timer device to expire either at the first expiring timer in
the hierarchy or at the first CPU local timer, which ever expires
first.
This completely removes the overhead from the enqueue path, which
is e.g. for networking a true hotpath and trades it for a slightly
more complex idle path.
This has been in development for a couple of years and the final
series has been extensively tested by various teams from silicon
vendors and ran through extensive CI.
There have been slight performance improvements observed on network
centric workloads and an Intel team confirmed that this allows them
to power down a die completely on a mult-die socket for the first
time in a mostly idle scenario.
There is only one outstanding ~1.5% regression on a specific
overloaded netperf test which is currently investigated, but the
rest is either positive or neutral performance wise and positive on
the power management side.
- Fixes for the timekeeping interpolation code for cross-timestamps:
cross-timestamps are used for PTP to get snapshots from hardware
timers and interpolated them back to clock MONOTONIC. The changes
address a few corner cases in the interpolation code which got the
math and logic wrong.
- Simplifcation of the clocksource watchdog retry logic to
automatically adjust to handle larger systems correctly instead of
having more incomprehensible command line parameters.
- Treewide consolidation of the VDSO data structures.
- The usual small improvements and cleanups all over the place"
* tag 'timers-core-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (62 commits)
timer/migration: Fix quick check reporting late expiry
tick/sched: Fix build failure for CONFIG_NO_HZ_COMMON=n
vdso/datapage: Quick fix - use asm/page-def.h for ARM64
timers: Assert no next dyntick timer look-up while CPU is offline
tick: Assume timekeeping is correctly handed over upon last offline idle call
tick: Shut down low-res tick from dying CPU
tick: Split nohz and highres features from nohz_mode
tick: Move individual bit features to debuggable mask accesses
tick: Move got_idle_tick away from common flags
tick: Assume the tick can't be stopped in NOHZ_MODE_INACTIVE mode
tick: Move broadcast cancellation up to CPUHP_AP_TICK_DYING
tick: Move tick cancellation up to CPUHP_AP_TICK_DYING
tick: Start centralizing tick related CPU hotplug operations
tick/sched: Don't clear ts::next_tick again in can_stop_idle_tick()
tick/sched: Rename tick_nohz_stop_sched_tick() to tick_nohz_full_stop_tick()
tick: Use IS_ENABLED() whenever possible
tick/sched: Remove useless oneshot ifdeffery
tick/nohz: Remove duplicate between lowres and highres handlers
tick/nohz: Remove duplicate between tick_nohz_switch_to_nohz() and tick_setup_sched_timer()
hrtimer: Select housekeeping CPU during migration
...
RFDS is a CPU vulnerability that may allow userspace to infer kernel
stale data previously used in floating point registers, vector registers
and integer registers. RFDS only affects certain Intel Atom processors.
Intel released a microcode update that uses VERW instruction to clear
the affected CPU buffers. Unlike MDS, none of the affected cores support
SMT.
Add RFDS bug infrastructure and enable the VERW based mitigation by
default, that clears the affected buffers just before exiting to
userspace. Also add sysfs reporting and cmdline parameter
"reg_file_data_sampling" to control the mitigation.
For details see:
Documentation/admin-guide/hw-vuln/reg-file-data-sampling.rst
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
This cycle, a lot of workqueue changes including some that are significant
and invasive.
- During v6.6 cycle, unbound workqueues were updated so that they are more
topology aware and flexible, which among other things improved workqueue
behavior on modern multi-L3 CPUs. In the process, 636b927eba
("workqueue: Make unbound workqueues to use per-cpu pool_workqueues")
switched unbound workqueues to use per-CPU frontend pool_workqueues as a
part of increasing front-back mapping flexibility.
An unwelcome side effect of this change was that this made max concurrency
enforcement per-CPU blowing up the maximum number of allowed concurrent
executions. I incorrectly assumed that this wouldn't cause practical
problems as most unbound workqueue users are self-regulate max
concurrency; however, there definitely are which don't (e.g. on IO paths)
and the drastic increase in the allowed max concurrency led to noticeable
perf regressions in some use cases.
This is now addressed by separating out max concurrency enforcement to a
separate struct - wq_node_nr_active - which makes @max_active consistently
mean system-wide max concurrency regardless of the number of CPUs or
(finally) NUMA nodes. This is a rather invasive and, in places, a bit
clunky; however, the clunkiness rises from the the inherent requirement to
handle the disagreement between the execution locality domain and max
concurrency enforcement domain on some modern machines. See 5797b1c189
("workqueue: Implement system-wide nr_active enforcement for unbound
workqueues") for more details.
- BH workqueue support is added. They are similar to per-CPU workqueues but
execute work items in the softirq context. This is expected to replace
tasklet. However, currently, it's missing the ability to disable and
enable work items which is needed to convert many tasklet users. To avoid
crowding this merge window too much, this will be included in the next
merge window. A separate pull request will be sent for the couple
conversion patches that are currently pending.
- Waiman plugged a long-standing hole in workqueue CPU isolation where
ordered workqueues didn't follow wq_unbound_cpumask updates. Ordered
workqueues now follow the same rules as other unbound workqueues.
- More CPU isolation improvements: Juri fixed another deficit in workqueue
isolation where unbound rescuers don't respect wq_unbound_cpumask.
Leonardo fixed delayed_work timers firing on isolated CPUs.
- Other misc changes.
-----BEGIN PGP SIGNATURE-----
iIQEABYKACwWIQTfIjM1kS57o3GsC/uxYfJx3gVYGQUCZe7JCQ4cdGpAa2VybmVs
Lm9yZwAKCRCxYfJx3gVYGcnqAP9UP8zEM1la19cilhboDumxmRWyRpV/egFOqsMP
Y5PuoAEAtsBJtQWtm5w46+y+fk3nK2ugXlQio2gH0qQcxX6SdgQ=
=/ovv
-----END PGP SIGNATURE-----
Merge tag 'wq-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue updates from Tejun Heo:
"This cycle, a lot of workqueue changes including some that are
significant and invasive.
- During v6.6 cycle, unbound workqueues were updated so that they are
more topology aware and flexible, which among other things improved
workqueue behavior on modern multi-L3 CPUs. In the process, commit
636b927eba ("workqueue: Make unbound workqueues to use per-cpu
pool_workqueues") switched unbound workqueues to use per-CPU
frontend pool_workqueues as a part of increasing front-back mapping
flexibility.
An unwelcome side effect of this change was that this made max
concurrency enforcement per-CPU blowing up the maximum number of
allowed concurrent executions. I incorrectly assumed that this
wouldn't cause practical problems as most unbound workqueue users
are self-regulate max concurrency; however, there definitely are
which don't (e.g. on IO paths) and the drastic increase in the
allowed max concurrency led to noticeable perf regressions in some
use cases.
This is now addressed by separating out max concurrency enforcement
to a separate struct - wq_node_nr_active - which makes @max_active
consistently mean system-wide max concurrency regardless of the
number of CPUs or (finally) NUMA nodes. This is a rather invasive
and, in places, a bit clunky; however, the clunkiness rises from
the the inherent requirement to handle the disagreement between the
execution locality domain and max concurrency enforcement domain on
some modern machines.
See commit 5797b1c189 ("workqueue: Implement system-wide
nr_active enforcement for unbound workqueues") for more details.
- BH workqueue support is added.
They are similar to per-CPU workqueues but execute work items in
the softirq context. This is expected to replace tasklet. However,
currently, it's missing the ability to disable and enable work
items which is needed to convert many tasklet users. To avoid
crowding this merge window too much, this will be included in the
next merge window. A separate pull request will be sent for the
couple conversion patches that are currently pending.
- Waiman plugged a long-standing hole in workqueue CPU isolation
where ordered workqueues didn't follow wq_unbound_cpumask updates.
Ordered workqueues now follow the same rules as other unbound
workqueues.
- More CPU isolation improvements: Juri fixed another deficit in
workqueue isolation where unbound rescuers don't respect
wq_unbound_cpumask. Leonardo fixed delayed_work timers firing on
isolated CPUs.
- Other misc changes"
* tag 'wq-for-6.9' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq: (54 commits)
workqueue: Drain BH work items on hot-unplugged CPUs
workqueue: Introduce from_work() helper for cleaner callback declarations
workqueue: Control intensive warning threshold through cmdline
workqueue: Make @flags handling consistent across set_work_data() and friends
workqueue: Remove clear_work_data()
workqueue: Factor out work_grab_pending() from __cancel_work_sync()
workqueue: Clean up enum work_bits and related constants
workqueue: Introduce work_cancel_flags
workqueue: Use variable name irq_flags for saving local irq flags
workqueue: Reorganize flush and cancel[_sync] functions
workqueue: Rename __cancel_work_timer() to __cancel_timer_sync()
workqueue: Use rcu_read_lock_any_held() instead of rcu_read_lock_held()
workqueue: Cosmetic changes
workqueue, irq_work: Build fix for !CONFIG_IRQ_WORK
workqueue: Fix queue_work_on() with BH workqueues
async: Use a dedicated unbound workqueue with raised min_active
workqueue: Implement workqueue_set_min_active()
workqueue: Fix kernel-doc comment of unplug_oldest_pwq()
workqueue: Bind unbound workqueue rescuer to wq_unbound_cpumask
kernel/workqueue: Let rescuers follow unbound wq cpumask changes
...
Merge cpufreq changes for 6.9-rc1:
- Enable preferred core support in the amd-pstate cpufreq driver (Meng
Li).
- Fix min_perf assignment in amd_pstate_adjust_perf() and make the
min/max limit perf values in amd-pstate always stay within the
(highest perf, lowest perf) range (Tor Vic, Meng Li).
- Change default transition delay in cpufreq to 2ms (Qais Yousef).
- Drop long-unused cpudata::prev_cummulative_iowait from the
intel_pstate cpufreq driver (Jiri Slaby).
- Allow intel_pstate to assign model-specific values to strings used in
the EPP sysfs interface and make it do so on Meteor Lake (Srinivas
Pandruvada).
- Remove references to 10ms minimum sampling rate from comments in the
cpufreq code (Pierre Gondois).
- Prevent scaling_cur_freq from exceeding scaling_max_freq when the
latter is an inefficient frequency (Shivnandan Kumar).
- Honour transition_latency over transition_delay_us in cpufreq (Qais
Yousef).
- Stop unregistering cpufreq cooling on CPU hot-remove (Viresh Kumar).
- General enhancements / cleanups to ARM cpufreq drivers (tianyu2,
Nícolas F. R. A. Prado, Erick Archer, Arnd Bergmann, Anastasia
Belova).
- Update cpufreq-dt-platdev to block/approve devices (Richard Acayan).
- Make the SCMI cpufreq driver get a transition delay value from
firmware (Pierre Gondois).
* pm-cpufreq: (28 commits)
cpufreq: scmi: Set transition_delay_us
firmware: arm_scmi: Populate fast channel rate_limit
firmware: arm_scmi: Populate perf commands rate_limit
cpufreq: Don't unregister cpufreq cooling on CPU hotplug
cpufreq: Honour transition_latency over transition_delay_us
cpufreq: Limit resolving a frequency to policy min/max
cpufreq: amd-pstate: adjust min/max limit perf
cpufreq: Remove references to 10ms min sampling rate
cpufreq: intel_pstate: Update default EPPs for Meteor Lake
cpufreq: intel_pstate: Allow model specific EPPs
cpufreq: qcom-hw: add CONFIG_COMMON_CLK dependency
cpufreq: dt-platdev: block SDM670 in cpufreq-dt-platdev
cpufreq: intel_pstate: remove cpudata::prev_cummulative_iowait
cpufreq: Change default transition delay to 2ms
cpufreq: amd-pstate: Fix min_perf assignment in amd_pstate_adjust_perf()
Documentation: PM: amd-pstate: Fix section title underline
Documentation: introduce amd-pstate preferrd core mode kernel command line options
Documentation: amd-pstate: introduce amd-pstate preferred core
cpufreq: amd-pstate: Update amd-pstate preferred core ranking dynamically
ACPI: cpufreq: Add highest perf change notification
...
The EDID firmware loading mechanism introduced a few built-in EDIDs that
could be forced on any connector, bypassing the EDIDs it exposes.
While convenient, this limited set of EDIDs doesn't take into account
the connector type, and we can end up with an EDID that is completely
invalid for a given connector.
For example, the edid/800x600.bin file matches the following EDID:
edid-decode (hex):
00 ff ff ff ff ff ff 00 31 d8 00 00 00 00 00 00
05 16 01 03 6d 1b 14 78 ea 5e c0 a4 59 4a 98 25
20 50 54 01 00 00 45 40 01 01 01 01 01 01 01 01
01 01 01 01 01 01 a0 0f 20 00 31 58 1c 20 28 80
14 00 15 d0 10 00 00 1e 00 00 00 ff 00 4c 69 6e
75 78 20 23 30 0a 20 20 20 20 00 00 00 fd 00 3b
3d 24 26 05 00 0a 20 20 20 20 20 20 00 00 00 fc
00 4c 69 6e 75 78 20 53 56 47 41 0a 20 20 00 c2
----------------
Block 0, Base EDID:
EDID Structure Version & Revision: 1.3
Vendor & Product Identification:
Manufacturer: LNX
Model: 0
Made in: week 5 of 2012
Basic Display Parameters & Features:
Analog display
Signal Level Standard: 0.700 : 0.000 : 0.700 V p-p
Blank level equals black level
Sync: Separate Composite Serration
Maximum image size: 27 cm x 20 cm
Gamma: 2.20
DPMS levels: Standby Suspend Off
RGB color display
First detailed timing is the preferred timing
Color Characteristics:
Red : 0.6416, 0.3486
Green: 0.2919, 0.5957
Blue : 0.1474, 0.1250
White: 0.3125, 0.3281
Established Timings I & II:
DMT 0x09: 800x600 60.316541 Hz 4:3 37.879 kHz 40.000000 MHz
Standard Timings:
DMT 0x09: 800x600 60.316541 Hz 4:3 37.879 kHz 40.000000 MHz
Detailed Timing Descriptors:
DTD 1: 800x600 60.316541 Hz 4:3 37.879 kHz 40.000000 MHz (277 mm x 208 mm)
Hfront 40 Hsync 128 Hback 88 Hpol P
Vfront 1 Vsync 4 Vback 23 Vpol P
Display Product Serial Number: 'Linux #0'
Display Range Limits:
Monitor ranges (GTF): 59-61 Hz V, 36-38 kHz H, max dotclock 50 MHz
Display Product Name: 'Linux SVGA'
Checksum: 0xc2
So, an analog monitor EDID. However, if the connector was an HDMI
monitor for example, it breaks the HDMI specification that requires,
among other things, a digital display, the VIC 1 mode and an HDMI Forum
Vendor Specific Data Block in an CTA-861 extension.
We thus end up with a completely invalid EDID, which thus might confuse
HDMI-related code that could parse it.
After some discussions on IRC, we identified mainly two ways to fix
this:
- We can either create more EDIDs for each connector type to provide
a built-in EDID that matches the resolution passed in the name, and
still be a sensible EDID for that connector type;
- Or we can just prevent the EDID to be exposed to userspace if it's
built-in.
Or possibly both.
However, the conclusion was that maybe we just don't need the built-in
EDIDs at all and we should just get rid of them. So here we are.
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Pekka Paalanen <pekka.paalanen@collabora.com>
Acked-by: Thomas Zimmermann <tzimmermann@suse.de>
Signed-off-by: Maxime Ripard <mripard@kernel.org>
Link: https://patchwork.freedesktop.org/patch/msgid/20240221092636.691701-1-mripard@kernel.org
For debugging kernel panics and other bugs, there is already an option of
panic_print to dump all tasks' call stacks. On today's large servers
running many containers, there could be thousands of tasks or more, and
this will print out huge amount of call stacks, taking a lot of time (for
serial console which is main target user case of panic_print).
And in many cases, only those several tasks being blocked are key for the
panic, so add an option to only dump blocked tasks' call stacks.
[akpm@linux-foundation.org: clarify documentation a little]
Link: https://lkml.kernel.org/r/20240202132042.3609657-1-feng.tang@intel.com
Signed-off-by: Feng Tang <feng.tang@intel.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently the default compression algorithm is selected based on
compile time options. Introduce a module parameter "hibernate.compressor"
to override this behaviour.
Different compression algorithms have different characteristics and
hibernation may benefit when it uses any of these algorithms, especially
when a secondary algorithm(LZ4) offers better decompression speeds over
a default algorithm(LZO), which in turn reduces hibernation image
restore time.
Users can override the default algorithm in two ways:
1) Passing "hibernate.compressor" as kernel command line parameter.
Usage:
LZO: hibernate.compressor=lzo
LZ4: hibernate.compressor=lz4
2) Specifying the algorithm at runtime.
Usage:
LZO: echo lzo > /sys/module/hibernate/parameters/compressor
LZ4: echo lz4 > /sys/module/hibernate/parameters/compressor
Currently LZO and LZ4 are the supported algorithms. LZO is the default
compression algorithm used with hibernation.
Signed-off-by: Nikhil V <quic_nprakash@quicinc.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
When CONFIG_WQ_CPU_INTENSIVE_REPORT is set, the kernel will report
the work functions which violate the intensive_threshold_us repeatedly.
And now, only when the violate times exceed 4 and is a power of 2,
the kernel warning could be triggered.
However, sometimes, even if a long work execution time occurs only once,
it may cause other work to be delayed for a long time. This may also
cause some problems sometimes.
In order to freely control the threshold of warninging, a boot argument
is added so that the user can control the warning threshold to be printed.
At the same time, keep the exponential backoff to prevent reporting too much.
By default, the warning threshold is 4.
tj: Updated kernel-parameters.txt description.
Signed-off-by: Xuewen Yan <xuewen.yan@unisoc.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
On a 8-socket server the TSC is wrongly marked as 'unstable' and disabled
during boot time on about one out of 120 boot attempts:
clocksource: timekeeping watchdog on CPU227: wd-tsc-wd excessive read-back delay of 153560ns vs. limit of 125000ns,
wd-wd read-back delay only 11440ns, attempt 3, marking tsc unstable
tsc: Marking TSC unstable due to clocksource watchdog
TSC found unstable after boot, most likely due to broken BIOS. Use 'tsc=unstable'.
sched_clock: Marking unstable (119294969739, 159204297)<-(125446229205, -5992055152)
clocksource: Checking clocksource tsc synchronization from CPU 319 to CPUs 0,99,136,180,210,542,601,896.
clocksource: Switched to clocksource hpet
The reason is that for platform with a large number of CPUs, there are
sporadic big or huge read latencies while reading the watchog/clocksource
during boot or when system is under stress work load, and the frequency and
maximum value of the latency goes up with the number of online CPUs.
The cCurrent code already has logic to detect and filter such high latency
case by reading the watchdog twice and checking the two deltas. Due to the
randomness of the latency, there is a low probabilty that the first delta
(latency) is big, but the second delta is small and looks valid. The
watchdog code retries the readouts by default twice, which is not
necessarily sufficient for systems with a large number of CPUs.
There is a command line parameter 'max_cswd_read_retries' which allows to
increase the number of retries, but that's not user friendly as it needs to
be tweaked per system. As the number of required retries is proportional to
the number of online CPUs, this parameter can be calculated at runtime.
Scale and enlarge the number of retries according to the number of online
CPUs and remove the command line parameter completely.
[ tglx: Massaged change log and comments ]
Signed-off-by: Feng Tang <feng.tang@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Jin Wang <jin1.wang@intel.com>
Tested-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Waiman Long <longman@redhat.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20240221060859.1027450-1-feng.tang@intel.com
When a kdump kernel is started from a crashing CPU then there is no
guarantee that this CPU is the real boot CPU (BSP). If the kdump kernel
tries to online the BSP then the INIT sequence will reset the machine.
There is a command line option to prevent this, but in case of nested kdump
kernels this is wrong.
But that command line option is not required at all because the real
BSP is enumerated as the first CPU by firmware. Support for the only
known system which was different (Voyager) got removed long ago.
Detect whether the boot CPU APIC ID is the first APIC ID enumerated by
the firmware. If the first APIC ID enumerated is not matching the boot
CPU APIC ID then skip registering it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.348542071@linutronix.de
To allow more flexible arrangements while still provide a single kernel
for distros, provide a boot time parameter to enable/disable lazy RCU.
Specify:
rcutree.enable_rcu_lazy=[y|1|n|0]
Which also requires
rcu_nocbs=all
at boot time to enable/disable lazy RCU.
To disable it by default at build time when CONFIG_RCU_LAZY=y, the new
CONFIG_RCU_LAZY_DEFAULT_OFF can be used.
Signed-off-by: Qais Yousef (Google) <qyousef@layalina.io>
Tested-by: Andrea Righi <andrea.righi@canonical.com>
Reviewed-by: Paul E. McKenney <paulmck@kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
Kernel boot parameters declared with early_param() are parsed before
embedded parameters are extracted from initrd, and early_param()
parameters are not helpful when embedded in initrd. Therefore,
mark early_param() kernel boot parameters with "EARLY" in
kernel-parameters.txt.
The following early_param() calls declare kernel boot parameters that
are undocumented:
early_param("atmel.pm_modes", at91_pm_modes_select);
early_param("mem_fclk_21285", early_fclk);
early_param("ecc", early_ecc);
early_param("cachepolicy", early_cachepolicy);
early_param("nodebugmon", early_debug_disable);
early_param("kfence.sample_interval", parse_kfence_early_init);
early_param("additional_cpus", setup_additional_cpus);
early_param("stram_pool", atari_stram_setup);
early_param("disable_octeon_edac", disable_octeon_edac);
early_param("rd_start", rd_start_early);
early_param("rd_size", rd_size_early);
early_param("coherentio", setcoherentio);
early_param("nocoherentio", setnocoherentio);
early_param("fadump", early_fadump_param);
early_param("fadump_reserve_mem", early_fadump_reserve_mem);
early_param("no_stf_barrier", handle_no_stf_barrier);
early_param("no_rfi_flush", handle_no_rfi_flush);
early_param("smt-enabled", early_smt_enabled);
early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
early_param("ps3fb", early_parse_ps3fb);
early_param("ps3flash", early_parse_ps3flash);
early_param("novx", disable_vector_extension);
early_param("nobp", nobp_setup_early);
early_param("nospec", nospec_setup_early);
early_param("possible_cpus", _setup_possible_cpus);
early_param("stp", early_parse_stp);
early_param("nopfault", nopfault);
early_param("nmi_mode", nmi_mode_setup);
early_param("sh_mv", early_parse_mv);
early_param("pmb", early_pmb);
early_param("hvirq", early_hvirq_major);
early_param("cfi", cfi_parse_cmdline);
early_param("disableapic", setup_disableapic);
early_param("noapictimer", parse_disable_apic_timer);
early_param("disable_cpu_apicid", apic_set_disabled_cpu_apicid);
early_param("uv_memblksize", parse_mem_block_size);
early_param("retbleed", retbleed_parse_cmdline);
early_param("no-kvmclock-vsyscall", parse_no_kvmclock_vsyscall);
early_param("update_mptable", update_mptable_setup);
early_param("alloc_mptable", parse_alloc_mptable_opt);
early_param("possible_cpus", _setup_possible_cpus);
early_param("lsmsi", early_parse_ls_scfg_msi);
early_param("nokgdbroundup", opt_nokgdbroundup);
early_param("kgdbcon", opt_kgdb_con);
early_param("kasan", early_kasan_flag);
early_param("kasan.mode", early_kasan_mode);
early_param("kasan.vmalloc", early_kasan_flag_vmalloc);
early_param("kasan.page_alloc.sample", early_kasan_flag_page_alloc_sample);
early_param("kasan.page_alloc.sample.order", early_kasan_flag_page_alloc_sample_order);
early_param("kasan.fault", early_kasan_fault);
early_param("kasan.stacktrace", early_kasan_flag_stacktrace);
early_param("kasan.stack_ring_size", early_kasan_flag_stack_ring_size);
early_param("accept_memory", accept_memory_parse);
early_param("page_table_check", early_page_table_check_param);
sh_early_platform_init("earlytimer", &sh_cmt_device_driver);
early_param_on_off("gbpages", "nogbpages", direct_gbpages, CONFIG_X86_DIRECT_GBPAGES);
These are not necessarily bugs, given that some kernel boot parameters
are intended for deep debugging rather than general use.
This work does not cover all of the kernel boot parameters declared using
cmdline_find_option() and cmdline_find_option_bool(). If these are in
fact guaranteed to be early (which appears to be the case), they can be
added in a later version of this patch.
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Petr Malat <oss@malat.biz>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: <linux-doc@vger.kernel.org>
Cc: <linux-arch@vger.kernel.org>
Signed-off-by: Boqun Feng <boqun.feng@gmail.com>
The number of possible CPUs is set be kernel in early boot time through
some discovery mechanisms, like ACPI in x86. We have a parameter both
in x86 and S390 to override that - there are some cases of BIOSes exposing
more possible CPUs than the available ones, so this parameter is a good
testing mechanism, but for some reason wasn't mentioned so far in the
kernel parameters guide - let's fix that.
Cc: Changwoo Min <changwoo@igalia.com>
Signed-off-by: "Guilherme G. Piccoli" <gpiccoli@igalia.com>
Reviewed-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20240203152208.1461293-1-gpiccoli@igalia.com
Let command line option "fred" accept multiple options to make it
easier to tweak its behavior.
Currently, two options 'on' and 'off' are allowed, and the default
behavior is to disable FRED. To enable FRED, append "fred=on" to the
kernel command line.
[ bp: Use cpu_feature_enabled(), touch ups. ]
Signed-off-by: Xin Li <xin3.li@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Tested-by: Shan Kang <shan.kang@intel.com>
Link: https://lore.kernel.org/r/20231205105030.8698-9-xin3.li@intel.com
Since the SLAB allocator has been removed, so we can clean up the
sl[au]b_$params. With only one slab allocator left, it's better to use the
generic "slab" term instead of "slub" which is an implementation detail,
which is pointed out by Vlastimil Babka. For more information please see
[1]. Hence, we are going to use "slab_$param" as the primary prefix.
This patch is changing the following slab parameters
- slub_max_order
- slub_min_order
- slub_min_objects
- slub_debug
to
- slab_max_order
- slab_min_order
- slab_min_objects
- slab_debug
as the primary slab parameters for all references of them in docs and
comments. But this patch won't change variables and functions inside
slub as we will have wider slub/slab change.
Meanwhile, "slub_$params" can also be passed by command line, which is
to keep backward compatibility. Also mark all "slub_$params" as legacy.
Remove the separate descriptions for slub_[no]merge, append legacy tip
for them at the end of descriptions of slab_[no]merge.
[1] https://lore.kernel.org/linux-mm/7512b350-4317-21a0-fab3-4101bc4d8f7a@suse.cz/
Signed-off-by: Xiongwei Song <xiongwei.song@windriver.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Since slab allocator has already been removed. There is no users of
the noaliencache parameter, so let's remove it.
Suggested-by: Hyeonggon Yoo <42.hyeyoo@gmail.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Xiongwei Song <xiongwei.song@windriver.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
1, Raise minimum clang version to 18.0.0;
2, Enable initial Rust support for LoongArch;
3, Add built-in dtb support for LoongArch;
4, Use generic interface to support crashkernel=X,[high,low];
5, Some bug fixes and other small changes;
6, Update the default config file.
-----BEGIN PGP SIGNATURE-----
iQJKBAABCAA0FiEEzOlt8mkP+tbeiYy5AoYrw/LiJnoFAmWnW9cWHGNoZW5odWFj
YWlAa2VybmVsLm9yZwAKCRAChivD8uImel3CD/0Wnd2VOhoPubJkCXd+v7SdPDFB
+BlkevAdmKQXkxNVXHRwfirsEBnUdQTfSN/5hMd69ZWUTayYq3WFxOcaPs27AAyn
cXmGAzxfCjanSj+zxK8Gcmef5kppx3PRSbFdnWgc42Povu0xTOH3M31HXx5WXGtv
hZK439DspNGHlF1Bsbs3J8xbS76jc/HDZAqnIjLuefQUaWM8nhsYxJIwVeGKUX1T
IyEgBwhHhsY9ho/86yk8VXgordAN4dnMVmAHbR63HqjLo/8sck4IiPNxWKFCHex8
vgxp0zGxfBBts284EfSofDQHrSrrWl4+e2fW2QJ81BBDSS0wPCs4TAnzH+x9X7Wb
MJuh8WIJqhfXdPFxs5fdnUeykEm1V/oWFfkWORk4jbQkpY9aZbk/iv6uxsmRhmhv
2WPWvjF+7B2zSXtMcjgm71ymb/nU95W2FZO02GlwTnbGJRKA2xLkjn9rCXoHWjd3
IlxgIgZJ1vkPvFPS/sbekaTUEG+6/qTPGGa2Ol3Q5ZTTLk9serfDa8ay1xCZeOny
+fRBgLsuQAOGO2pvxfXjs+uvboZNUHeKrAi7XeR61GcbNpQDkjuwNJXQMiMQ+f66
jWM6H+hV+6sQ/W43KVrGCyBqTX4J9PSN/gX/Cq0PL74Yheop6neYXZTl5uDNYDe9
WYxiS9j/FoYgj8lxYQ==
=GzFR
-----END PGP SIGNATURE-----
Merge tag 'loongarch-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson
Pull LoongArch updates from Huacai Chen:
- Raise minimum clang version to 18.0.0
- Enable initial Rust support for LoongArch
- Add built-in dtb support for LoongArch
- Use generic interface to support crashkernel=X,[high,low]
- Some bug fixes and other small changes
- Update the default config file.
* tag 'loongarch-6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson: (22 commits)
MAINTAINERS: Add BPF JIT for LOONGARCH entry
LoongArch: Update Loongson-3 default config file
LoongArch: BPF: Prevent out-of-bounds memory access
LoongArch: BPF: Support 64-bit pointers to kfuncs
LoongArch: Fix definition of ftrace_regs_set_instruction_pointer()
LoongArch: Use generic interface to support crashkernel=X,[high,low]
LoongArch: Fix and simplify fcsr initialization on execve()
LoongArch: Let cores_io_master cover the largest NR_CPUS
LoongArch: Change SHMLBA from SZ_64K to PAGE_SIZE
LoongArch: Add a missing call to efi_esrt_init()
LoongArch: Parsing CPU-related information from DTS
LoongArch: dts: DeviceTree for Loongson-2K2000
LoongArch: dts: DeviceTree for Loongson-2K1000
LoongArch: dts: DeviceTree for Loongson-2K0500
LoongArch: Allow device trees be built into the kernel
dt-bindings: interrupt-controller: loongson,liointc: Fix dtbs_check warning for interrupt-names
dt-bindings: interrupt-controller: loongson,liointc: Fix dtbs_check warning for reg-names
dt-bindings: loongarch: Add Loongson SoC boards compatibles
dt-bindings: loongarch: Add CPU bindings for LoongArch
LoongArch: Enable initial Rust support
...
Here is the big set of USB and Thunderbolt changes for 6.8-rc1.
Included in here are the following:
- Thunderbolt subsystem and driver updates for USB 4 hardware and
issues reported by real devices
- xhci driver updates
- dwc3 driver updates
- uvc_video gadget driver updates
- typec driver updates
- gadget string functions cleaned up
- other small changes
All of these have been in the linux-next tree for a while with no
reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZaedng8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+yndHACfX3SA2ipK5umpMsWOoLMCBV6VyrwAn3t+FPd/
z4mNiCuNUhbEnU7RinK0
=k/E9
-----END PGP SIGNATURE-----
Merge tag 'usb-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb
Pull USB / Thunderbolt updates from Greg KH:
"Here is the big set of USB and Thunderbolt changes for 6.8-rc1.
Included in here are the following:
- Thunderbolt subsystem and driver updates for USB 4 hardware and
issues reported by real devices
- xhci driver updates
- dwc3 driver updates
- uvc_video gadget driver updates
- typec driver updates
- gadget string functions cleaned up
- other small changes
All of these have been in the linux-next tree for a while with no
reported issues"
* tag 'usb-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/usb: (169 commits)
usb: typec: tipd: fix use of device-specific init function
usb: typec: tipd: Separate reset for TPS6598x
usb: mon: Fix atomicity violation in mon_bin_vma_fault
usb: gadget: uvc: Remove nested locking
usb: gadget: uvc: Fix use are free during STREAMOFF
usb: typec: class: fix typec_altmode_put_partner to put plugs
dt-bindings: usb: dwc3: Limit num-hc-interrupters definition
dt-bindings: usb: xhci: Add num-hc-interrupters definition
xhci: add support to allocate several interrupters
USB: core: Use device_driver directly in struct usb_driver and usb_device_driver
arm64: dts: mediatek: mt8195: Add 'rx-fifo-depth' for cherry
usb: xhci-mtk: fix a short packet issue of gen1 isoc-in transfer
dt-bindings: usb: mtk-xhci: add a property for Gen1 isoc-in transfer issue
arm64: dts: qcom: msm8996: Remove PNoC clock from MSS
arm64: dts: qcom: msm8996: Remove AGGRE2 clock from SLPI
arm64: dts: qcom: msm8998: Remove AGGRE2 clock from SLPI
arm64: dts: qcom: msm8939: Drop RPM bus clocks
arm64: dts: qcom: sdm630: Drop RPM bus clocks
arm64: dts: qcom: qcs404: Drop RPM bus clocks
arm64: dts: qcom: msm8996: Drop RPM bus clocks
...
Here are the set of driver core and kernfs changes for 6.8-rc1. Nothing
major in here this release cycle, just lots of small cleanups and some
tweaks on kernfs that in the very end, got reverted and will come back
in a safer way next release cycle.
Included in here are:
- more driver core 'const' cleanups and fixes
- fw_devlink=rpm is now the default behavior
- kernfs tiny changes to remove some string functions
- cpu handling in the driver core is updated to work better on many
systems that add topologies and cpus after booting
- other minor changes and cleanups
All of the cpu handling patches have been acked by the respective
maintainers and are coming in here in one series. Everything has been
in linux-next for a while with no reported issues.
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
-----BEGIN PGP SIGNATURE-----
iG0EABECAC0WIQT0tgzFv3jCIUoxPcsxR9QN2y37KQUCZaeOrg8cZ3JlZ0Brcm9h
aC5jb20ACgkQMUfUDdst+ymtcwCffzvKKkSY9qAp6+0v2WQNkZm1JWoAoJCPYUwF
If6wEoPLWvRfKx4gIoq9
=D96r
-----END PGP SIGNATURE-----
Merge tag 'driver-core-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull driver core updates from Greg KH:
"Here are the set of driver core and kernfs changes for 6.8-rc1.
Nothing major in here this release cycle, just lots of small cleanups
and some tweaks on kernfs that in the very end, got reverted and will
come back in a safer way next release cycle.
Included in here are:
- more driver core 'const' cleanups and fixes
- fw_devlink=rpm is now the default behavior
- kernfs tiny changes to remove some string functions
- cpu handling in the driver core is updated to work better on many
systems that add topologies and cpus after booting
- other minor changes and cleanups
All of the cpu handling patches have been acked by the respective
maintainers and are coming in here in one series. Everything has been
in linux-next for a while with no reported issues"
* tag 'driver-core-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core: (51 commits)
Revert "kernfs: convert kernfs_idr_lock to an irq safe raw spinlock"
kernfs: convert kernfs_idr_lock to an irq safe raw spinlock
class: fix use-after-free in class_register()
PM: clk: make pm_clk_add_notifier() take a const pointer
EDAC: constantify the struct bus_type usage
kernfs: fix reference to renamed function
driver core: device.h: fix Excess kernel-doc description warning
driver core: class: fix Excess kernel-doc description warning
driver core: mark remaining local bus_type variables as const
driver core: container: make container_subsys const
driver core: bus: constantify subsys_register() calls
driver core: bus: make bus_sort_breadthfirst() take a const pointer
kernfs: d_obtain_alias(NULL) will do the right thing...
driver core: Better advertise dev_err_probe()
kernfs: Convert kernfs_path_from_node_locked() from strlcpy() to strscpy()
kernfs: Convert kernfs_name_locked() from strlcpy() to strscpy()
kernfs: Convert kernfs_walk_ns() from strlcpy() to strscpy()
initramfs: Expose retained initrd as sysfs file
fs/kernfs/dir: obey S_ISGID
kernel/cgroup: use kernfs_create_dir_ns()
...
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
LoongArch already supports two crashkernel regions in kexec-tools, so we
can directly use the common interface to support crashkernel=X,[high,low]
after commit 0ab97169aa ("crash_core: add generic function to do
reservation").
With the help of newly changed function parse_crashkernel() and generic
reserve_crashkernel_generic(), crashkernel reservation can be simplified
by steps:
1) Add a new header file <asm/crash_core.h>, then define CRASH_ALIGN,
CRASH_ADDR_LOW_MAX and CRASH_ADDR_HIGH_MAX and in <asm/crash_core.h>;
2) Add arch_reserve_crashkernel() to call parse_crashkernel() and
reserve_crashkernel_generic();
3) Add ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION Kconfig in
arch/loongarch/Kconfig.
One can reserve the crash kernel from high memory above DMA zone range
by explicitly passing "crashkernel=X,high"; or reserve a memory range
below 4G with "crashkernel=X,low". Besides, there are few rules need to
take notice:
1) "crashkernel=X,[high,low]" will be ignored if "crashkernel=size" is
specified.
2) "crashkernel=X,low" is valid only when "crashkernel=X,high" is passed
and there is enough memory to be allocated under 4G.
3) When allocating crashkernel above 4G and no "crashkernel=X,low" is
specified, a 128M low memory will be allocated automatically for
swiotlb bounce buffer.
See Documentation/admin-guide/kernel-parameters.txt for more information.
Following test cases have been performed as expected:
1) crashkernel=256M //low=256M
2) crashkernel=1G //low=1G
3) crashkernel=4G //high=4G, low=128M(default)
4) crashkernel=4G crashkernel=256M,high //high=4G, low=128M(default), high is ignored
5) crashkernel=4G crashkernel=256M,low //high=4G, low=128M(default), low is ignored
6) crashkernel=4G,high //high=4G, low=128M(default)
7) crashkernel=256M,low //low=0M, invalid
8) crashkernel=4G,high crashkernel=256M,low //high=4G, low=256M
9) crashkernel=4G,high crashkernel=4G,low //high=0M, low=0M, invalid
10) crashkernel=512M@2560M //low=512M
11) crashkernel=1G,high crashkernel=0M,low //high=1G, low=0M
Recommended usage in general:
1) In the case of small memory: crashkernel=512M
2) In the case of large memory: crashkernel=1024M,high crashkernel=128M,low
Signed-off-by: Youling Tang <tangyouling@kylinos.cn>
Signed-off-by: Huacai Chen <chenhuacai@loongson.cn>
This pull request contains the following branches:
doc.2023.12.13a: Documentation and comment updates.
torture.2023.11.23a: RCU torture, locktorture updates that include
cleanups; nolibc init build support for mips, ppc and rv64;
testing of mid stall duration scenario and fixing fqs task
creation conditions.
fixes.2023.12.13a: Misc fixes, most notably restricting usage of
RCU CPU stall notifiers, to confine their usage primarily
to debug kernels.
rcu-tasks.2023.12.12b: RCU tasks minor fixes.
srcu.2023.12.13a: lockdep annotation fix for NMI-safe accesses,
callback advancing/acceleration cleanup and documentation
improvements.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSi2tPIQIc2VEtjarIAHS7/6Z0wpQUCZYUS0AAKCRAAHS7/6Z0w
pRXgAQD+k8oqjvKL6la61ppWm5Y7NLjdj/IbV+cOd42jKnM6PAEAyavNhX0n7zGx
o9cDlvIDxJfHnFrOTc5WLH9yEs3IiQQ=
=8rdu
-----END PGP SIGNATURE-----
Merge tag 'rcu.release.v6.8' of https://github.com/neeraju/linux
Pull RCU updates from Neeraj Upadhyay:
- Documentation and comment updates
- RCU torture, locktorture updates that include cleanups; nolibc init
build support for mips, ppc and rv64; testing of mid stall duration
scenario and fixing fqs task creation conditions
- Misc fixes, most notably restricting usage of RCU CPU stall
notifiers, to confine their usage primarily to debug kernels
- RCU tasks minor fixes
- lockdep annotation fix for NMI-safe accesses, callback
advancing/acceleration cleanup and documentation improvements
* tag 'rcu.release.v6.8' of https://github.com/neeraju/linux:
rcu: Force quiescent states only for ongoing grace period
doc: Clarify historical disclaimers in memory-barriers.txt
doc: Mention address and data dependencies in rcu_dereference.rst
doc: Clarify RCU Tasks reader/updater checklist
rculist.h: docs: Fix wrong function summary
Documentation: RCU: Remove repeated word in comments
srcu: Use try-lock lockdep annotation for NMI-safe access.
srcu: Explain why callbacks invocations can't run concurrently
srcu: No need to advance/accelerate if no callback enqueued
srcu: Remove superfluous callbacks advancing from srcu_gp_start()
rcu: Remove unused macros from rcupdate.h
rcu: Restrict access to RCU CPU stall notifiers
rcu-tasks: Mark RCU Tasks accesses to current->rcu_tasks_idle_cpu
rcutorture: Add fqs_holdoff check before fqs_task is created
rcutorture: Add mid-sized stall to TREE07
rcutorture: add nolibc init support for mips, ppc and rv64
locktorture: Increase Hamming distance between call_rcu_chain and rcu_call_chains
- The minimum Sphinx requirement has been raised to 2.4.4, following a
warning that was added in 6.2.
- Some reworking of the Documentation/process front page to, hopefully,
make it more useful.
- Various kernel-doc tweaks to, for example, make it deal properly with
__counted_by annotations.
- We have also restored a warning for documentation of nonexistent
structure members that disappeared a while back. That had the delightful
consequence of adding some 600 warnings to the docs build. A sustained
effort by Randy, Vegard, and myself has addressed almost all of those,
bringing the documentation back into sync with the code. The fixes are
going through the appropriate maintainer trees.
- Various improvements to the HTML rendered docs, including automatic links
to Git revisions and a nice new pulldown to make translations easy to
access.
- Speaking of translations, more of those for Spanish and Chinese.
...plus the usual stream of documentation updates and typo fixes.
-----BEGIN PGP SIGNATURE-----
iQFDBAABCAAtFiEEIw+MvkEiF49krdp9F0NaE2wMflgFAmWcRKMPHGNvcmJldEBs
d24ubmV0AAoJEBdDWhNsDH5YTKIH/AxBt/3iWt40dPf18arZHLU6tdUbmg01ttef
CNKWkniCmABGKc//KYDXvjZMRDt0YlrS0KgUzrb8nIQTBlZG40D+88EwjXE0HeGP
xt1Fk7OPOiJEqBZ3HEe0PDVfOiA+4yR6CmDKklCJuKg77X9atklneBwPUw/cOASk
CWj+BdbwPBiSNQv48Lp87rGusKwnH/g0MN2uS0z9MPr1DYjM1K8+ngZjGW24lZHt
qs5yhP43mlZGBF/lwNJXQp/xhnKAqJ9XwylBX9Wmaoxaz9yyzNVsADGvROMudgzi
9YB+Jdy7Z0JSrVoLIRhUuDOv7aW8vk+8qLmGJt2aTIsqehbQ6pk=
=fCtT
-----END PGP SIGNATURE-----
Merge tag 'docs-6.8' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet:
"Another moderately busy cycle for documentation, including:
- The minimum Sphinx requirement has been raised to 2.4.4, following
a warning that was added in 6.2
- Some reworking of the Documentation/process front page to,
hopefully, make it more useful
- Various kernel-doc tweaks to, for example, make it deal properly
with __counted_by annotations
- We have also restored a warning for documentation of nonexistent
structure members that disappeared a while back. That had the
delightful consequence of adding some 600 warnings to the docs
build. A sustained effort by Randy, Vegard, and myself has
addressed almost all of those, bringing the documentation back into
sync with the code. The fixes are going through the appropriate
maintainer trees
- Various improvements to the HTML rendered docs, including automatic
links to Git revisions and a nice new pulldown to make translations
easy to access
- Speaking of translations, more of those for Spanish and Chinese
... plus the usual stream of documentation updates and typo fixes"
* tag 'docs-6.8' of git://git.lwn.net/linux: (57 commits)
MAINTAINERS: use tabs for indent of CONFIDENTIAL COMPUTING THREAT MODEL
A reworked process/index.rst
ring-buffer/Documentation: Add documentation on buffer_percent file
Translated the RISC-V architecture boot documentation.
Docs: remove mentions of fdformat from util-linux
Docs/zh_CN: Fix the meaning of DEBUG to pr_debug()
Documentation: move driver-api/dcdbas to userspace-api/
Documentation: move driver-api/isapnp to userspace-api/
Documentation/core-api : fix typo in workqueue
Documentation/trace: Fixed typos in the ftrace FLAGS section
kernel-doc: handle a void function without producing a warning
scripts/get_abi.pl: ignore some temp files
docs: kernel_abi.py: fix command injection
scripts/get_abi: fix source path leak
CREDITS, MAINTAINERS, docs/process/howto: Update man-pages' maintainer
docs: translations: add translations links when they exist
kernel-doc: Align quick help and the code
MAINTAINERS: add reviewer for Spanish translations
docs: ignore __counted_by attribute in structure definitions
scripts: kernel-doc: Clarify missing struct member description
..
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options.
[ mingo: Converted a few more uses in comments/messages as well. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ariel Miculas <amiculas@cisco.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
The main updates for this release are around monitoring of regulators,
largely for error handling purposes. We allow the stream of regulator
events to be seen by userspace as netlink events and allow system
integrators to describe individual regulators as system critical with
information on how long the system is expected to last on error. The
system level error handling is very much about best effort problem
mitigation rather than providing something fully robust, the initial
drive was to provide a mechanism for trying to avoid initiating any new
writes to flash once we notice the power going out.
Otherwise it's very quiet, mainly several new Qualcomm devices.
- Support for marking regulators as system critical and providing
information on how long the system might last with those regulators
in a failure state, hooked into the existing critical shutdown error
handling.
- Optional support for generating netlink events for events, there are
use cases for system monitoring UIs and error handling.
- A command line option to leave unused controllable regulators
enabled, useful for debugging. We already only disable regulators we
were explicitly given permission to control.
- Support for Quacomm MP5496, PM8010 and PM8937.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCgAdFiEEreZoqmdXGLWf4p/qJNaLcl1Uh9AFAmWbJAkACgkQJNaLcl1U
h9AmPwf/SXOxx0sp8xfmt1iJU30dg0L/0MNETf76dPFmCR8Oy1G9PLUqyzNQkTRf
bvDrLf9amRRhY4FDCT74VoEiGo7fcduHmjDfYbK/A8bwY1l1UDn0d7hLwgqoyydf
p07JbJzCHXAc1PhhMMdgOfdcpYs1Tah91CXOIdbe36pwgGJ8jwodJFD55uhXTsUZ
R4PcNs/M2A8rW8SaggopOEzDExdne/ZogpGwclTTWau0OIze2SuPVSsQfrOtAabY
BIxaMYKU5tSRdAJOSBNaL9NssUYzyO4q4hXs3Cms1p8XQlzZOVfMZznefdNHoVnw
VXlJyEvMREpg8ilwlz7KOyvyF7rshg==
=DADk
-----END PGP SIGNATURE-----
Merge tag 'regulator-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator
Pull regulator updates from Mark Brown:
"The main updates for this release are around monitoring of regulators,
largely for error handling purposes. We allow the stream of regulator
events to be seen by userspace as netlink events and allow system
integrators to describe individual regulators as system critical with
information on how long the system is expected to last on error. The
system level error handling is very much about best effort problem
mitigation rather than providing something fully robust, the initial
drive was to provide a mechanism for trying to avoid initiating any
new writes to flash once we notice the power going out.
Otherwise it's very quiet, mainly several new Qualcomm devices.
- Support for marking regulators as system critical and providing
information on how long the system might last with those regulators
in a failure state, hooked into the existing critical shutdown
error handling.
- Optional support for generating netlink events for events, there
are use cases for system monitoring UIs and error handling.
- A command line option to leave unused controllable regulators
enabled, useful for debugging. We already only disable regulators
we were explicitly given permission to control.
- Support for Quacomm MP5496, PM8010 and PM8937"
* tag 'regulator-v6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/broonie/regulator: (31 commits)
regulator: event: Ensure atomicity for sequence number
uapi: regulator: Fix typo
regulator: Reuse LINEAR_RANGE() in REGULATOR_LINEAR_RANGE()
dt-bindings: regulator: qcom,usb-vbus-regulator: clean up example
regulator: qcom_smd: Add LDO5 MP5496 regulator
regulator: qcom-rpmh: add support for pm8010 regulators
regulator: dt-bindings: qcom,rpmh: add compatible for pm8010
regulator: qcom-rpmh: extend to support multiple linear voltage ranges
regulator: wm8350: Convert to platform remove callback returning void
regulator: virtual: Convert to platform remove callback returning void
regulator: userspace-consumer: Convert to platform remove callback returning void
regulator: uniphier: Convert to platform remove callback returning void
regulator: stm32-vrefbuf: Convert to platform remove callback returning void
regulator: db8500-prcmu: Convert to platform remove callback returning void
regulator: bd9571mwv: Convert to platform remove callback returning void
regulator: arizona-ldo1: Convert to platform remove callback returning void
regulator: event: Add regulator netlink event support
regulator: event: Add regulator netlink event support
regulator: stpmic1: Fix kernel-doc notation warnings
regulator: palmas: remove redundant initialization of pointer pdata
...
commit 23baf831a3 ("mm, treewide: redefine MAX_ORDER sanely") has
changed the definition of MAX_ORDER to be inclusive. This has caused
issues with code that was not yet upstream and depended on the previous
definition.
To draw attention to the altered meaning of the define, rename MAX_ORDER
to MAX_PAGE_ORDER.
Link: https://lkml.kernel.org/r/20231228144704.14033-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Add the files and functions needed to support paravirt time on
RISC-V. Also include the common code needed for the first
application of pv-time, which is steal-time. In the next
patches we'll complete the functions to fully enable steal-time
support.
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Reviewed-by: Anup Patel <anup@brainfault.org>
Reviewed-by: Atish Patra <atishp@rivosinc.com>
Signed-off-by: Andrew Jones <ajones@ventanamicro.com>
Signed-off-by: Anup Patel <anup@brainfault.org>
The accept_memory kernel parameter was added in commit dcdfdd40fa
("mm: Add support for unaccepted memory") but not listed in the
kernel-parameters doc. Add it there.
Acked-by: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Signed-off-by: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Jonathan Corbet <corbet@lwn.net>
Link: https://lore.kernel.org/r/20231214-accept_memory_param-v2-1-f38cd20a0247@suse.cz
When the kernel command line option "retain_initrd" is set, we do not
free the initrd memory. However, we also don't expose it to anyone for
consumption. That leaves us in a weird situation where the only user of
this feature is ppc64 and arm64 specific kexec tooling.
To make it more generally useful, this patch adds a kobject to the
firmware object that contains the initrd context when "retain_initrd"
is set. That way, we can access the initrd any time after boot from
user space and for example hand it into kexec as --initrd parameter
if we want to reboot the same initrd. Or inspect it directly locally.
With this patch applied, there is a new /sys/firmware/initrd file when
the kernel was booted with an initrd and "retain_initrd" command line
option is set.
Signed-off-by: Alexander Graf <graf@amazon.com>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Link: https://lore.kernel.org/r/20231207235654.16622-1-graf@amazon.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Although the RCU CPU stall notifiers can be useful for dumping state when
tracking down delicate forward-progress bugs where NUMA effects cause
cache lines to be delivered to a given CPU regularly, but always in a
state that prevents that CPU from making forward progress. These bugs can
be detected by the RCU CPU stall-warning mechanism, but in some cases,
the stall-warnings printk()s disrupt the forward-progress bug before
any useful state can be obtained.
Unfortunately, the notifier mechanism added by commit 5b404fdaba ("rcu:
Add RCU CPU stall notifier") can make matters worse if used at all
carelessly. For example, if the stall warning was caused by a lock not
being released, then any attempt to acquire that lock in the notifier
will hang. This will prevent not only the notifier from producing any
useful output, but it will also prevent the stall-warning message from
ever appearing.
This commit therefore hides this new RCU CPU stall notifier
mechanism under a new RCU_CPU_STALL_NOTIFIER Kconfig option that
depends on both DEBUG_KERNEL and RCU_EXPERT. In addition, the
rcupdate.rcu_cpu_stall_notifiers=1 kernel boot parameter must also
be specified. The RCU_CPU_STALL_NOTIFIER Kconfig option's help text
contains a warning and explains the dangers of careless use, recommending
lockless notifier code. In addition, a WARN() is triggered each time
that an attempt is made to register a stall-warning notifier in kernels
built with CONFIG_RCU_CPU_STALL_NOTIFIER=y.
This combination of measures will keep use of this mechanism confined to
debug kernels and away from routine deployments.
[ paulmck: Apply Dan Carpenter feedback. ]
Fixes: 5b404fdaba ("rcu: Add RCU CPU stall notifier")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Paul E. McKenney <paulmck@kernel.org>
Reviewed-by: Joel Fernandes (Google) <joel@joelfernandes.org>
Signed-off-by: Neeraj Upadhyay (AMD) <neeraj.iitr10@gmail.com>
This patch introduces a new USB quirk,
USB_QUIRK_SHORT_SET_ADDRESS_REQ_TIMEOUT, which modifies the timeout value
for the SET_ADDRESS request. The standard timeout for USB request/command
is 5000 ms, as recommended in the USB 3.2 specification (section 9.2.6.1).
However, certain scenarios, such as connecting devices through an APTIV
hub, can lead to timeout errors when the device enumerates as full speed
initially and later switches to high speed during chirp negotiation.
In such cases, USB analyzer logs reveal that the bus suspends for
5 seconds due to incorrect chirp parsing and resumes only after two
consecutive timeout errors trigger a hub driver reset.
Packet(54) Dir(?) Full Speed J(997.100 us) Idle( 2.850 us)
_______| Time Stamp(28 . 105 910 682)
_______|_____________________________________________________________Ch0
Packet(55) Dir(?) Full Speed J(997.118 us) Idle( 2.850 us)
_______| Time Stamp(28 . 106 910 632)
_______|_____________________________________________________________Ch0
Packet(56) Dir(?) Full Speed J(399.650 us) Idle(222.582 us)
_______| Time Stamp(28 . 107 910 600)
_______|_____________________________________________________________Ch0
Packet(57) Dir Chirp J( 23.955 ms) Idle(115.169 ms)
_______| Time Stamp(28 . 108 532 832)
_______|_____________________________________________________________Ch0
Packet(58) Dir(?) Full Speed J (Suspend)( 5.347 sec) Idle( 5.366 us)
_______| Time Stamp(28 . 247 657 600)
_______|_____________________________________________________________Ch0
This 5-second delay in device enumeration is undesirable, particularly
in automotive applications where quick enumeration is crucial
(ideally within 3 seconds).
The newly introduced quirks provide the flexibility to align with a
3-second time limit, as required in specific contexts like automotive
applications.
By reducing the SET_ADDRESS request timeout to 500 ms, the
system can respond more swiftly to errors, initiate rapid recovery, and
ensure efficient device enumeration. This change is vital for scenarios
where rapid smartphone enumeration and screen projection are essential.
To use the quirk, please write "vendor_id:product_id:p" to
/sys/bus/usb/drivers/hub/module/parameter/quirks
For example,
echo "0x2c48:0x0132:p" > /sys/bus/usb/drivers/hub/module/parameters/quirks"
Signed-off-by: Hardik Gajjar <hgajjar@de.adit-jv.com>
Reviewed-by: Alan Stern <stern@rowland.harvard.edu>
Link: https://lore.kernel.org/r/20231027152029.104363-2-hgajjar@de.adit-jv.com
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
This may be useful for debugging and develompent purposes, when there are
drivers that depend on regulators to be enabled but do not request them.
It is inspired from the clk_ignore_unused and pd_ignore_unused parameters,
that are used to keep firmware-enabled clocks and power domains on even if
these are not used by drivers.
The parameter is not expected to be used in normal cases and should not be
needed on a platform with proper driver support.
Signed-off-by: Javier Martinez Canillas <javierm@redhat.com>
Reviewed-by: Brian Masney <bmasney@redhat.com>
Acked-by: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
Link: https://lore.kernel.org/r/20231107190926.1185326-1-javierm@redhat.com
Signed-off-by: Mark Brown <broonie@kernel.org>