loader
- Add the ability to pass the IMA measurement of kernel and bootloader
to the kexec-ed kernel
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLn770ACgkQEsHwGGHe
VUoOyA//R7ljAspkzqE+kY02GOXCvVo+Ix/WFbpeUMouSb71vxjyqJED6lMrWKvM
HPzXwuQ5C1bXIbvWW424l66q9O48Iu3FvnURGc05ngBvgnyLxw+IdfWREr3rhVtR
ZKdaMHCzj1RsxCRYXie4NIyW86D1Bd4V4W7KFG/u26LSo9VL2oY1JXd0vxXrh0e6
F4pwJsS+5TrgaFPwfSLm66HWlM2oxmqBVD/Fi8Pmzq7/ewb3KSgIWralOjew5X13
f4ob9GVLojM9yVPLSww0p2CRitlxypO5pv3rsrcwo77UhikflFk4Ruc4IeMd4792
ZszDCyWWCzFHZDizo2tni4IbcKtOx1lL389sYj/ZVsAYarGzeRRNYpN5TE6cSFXK
6hqurMMTDrmeczScBK3uQ4BFkMzWYGCYWy6JNrTmD43Onb5fe2usWIbpz+oFB0Kd
26Oa85lAKUhOUTnU1yM5aeRYBYiouyD80BRKgve5pcN00BXwO0OOny5sijFt3hvC
266k2g/+zY6wNawnEesNfLFkUvR09416xEbe5W3l64vlCGsjt9doB4vPKLkHBXq4
YilUVFFT3/djTvfLy50L2ta9oNdYXK7ECfGj0t2UCcnj0IrO4E0Cm0BlPN8r/a6L
gwE9I4txaYZmT8VRBG2kiyUljUSqZUj1UFHevMuCS09dzLonJN4=
=s9Om
-----END PGP SIGNATURE-----
Merge tag 'x86_kdump_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 kdump updates from Borislav Petkov:
- Add the ability to pass early an RNG seed to the kernel from the boot
loader
- Add the ability to pass the IMA measurement of kernel and bootloader
to the kexec-ed kernel
* tag 'x86_kdump_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/setup: Use rng seeds from setup_data
x86/kexec: Carry forward IMA measurement log on kexec
- Other Kbuild improvements and fixes
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnvZYACgkQEsHwGGHe
VUqCFA//T2b0IkFHk63x4Ln+kDwEhB+NFjeuwhEd9XTktEgT0tAU6pZcUruSAHMJ
MeQFNYGbqbqTNztRDvc9WSbJVQWxxTLJYbXi2HbJpk7cOBpGwQQW1dBeLH0W0eTt
YyAZN/bhpjQK7+/rTyFZlUxqjr8VgBWCrmK7OFV65kZxZW3K7Qjg54NotAHLwU7/
oywR+REyiU4soKPUJPtIA42kNXkxzrQDjMu42/ywdQHBS5PMCUp16rnvP8uw1ERN
9aO+yGZ907Xl6xQXTxnbo2ehlhbu25xK8IZMbgEXE66iSeEtWb27H3xGMktYBETn
LsG4OkiqQ0z7lYHCcWPduAlP1ZrHAOEjD6sJhDOtbGffHRyJG4AHHngQkxfeWxPR
evRsPJssEUui65fW30cB+zY0glnGXpsfb+Ma9i8/02B2DNq5N4ERv8q4rfrLJX9Y
l9hMGw8FqI57ALoDiXJWCTGHZbEvEHiLOUQh9lLEKQmf5hTqb4Trulv+uhlc/JVS
vrfUzfhVdpWU6XY0ba0jXdbkYBJV8xERG9dsBSYqvjGaXJES6TXILiZ7CeMHoXhN
srBPCM3QZUGp/gzhua2s7SctQfyMmx6CrCg39sMligBM2wl1o3vJML5y1h/RwN7g
LTVZTObvMPYDU6dn1APOZUh77DlW7JWg//DcsB0BrlfZCySRkfE=
=SMFp
-----END PGP SIGNATURE-----
Merge tag 'x86_build_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 build updates from Borislav Petkov:
- Fix stack protector builds when cross compiling with Clang
- Other Kbuild improvements and fixes
* tag 'x86_build_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/purgatory: Omit use of bin2c
x86/purgatory: Hard-code obj-y in Makefile
x86/build: Remove unused OBJECT_FILES_NON_STANDARD_test_nx.o
x86/Kconfig: Fix CONFIG_CC_HAS_SANE_STACKPROTECTOR when cross compiling with clang
- Free the pmem platform device on the registration error path
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnuOIACgkQEsHwGGHe
VUrY0Q/+JPlcOVTbneHaUazeG7i0EYugNLslPa42FzcM8B0NMnK241XjP8fubZML
cHh76LWWu7MjUdkpiXjiQoBwp9fJHF1amkUNJ2JBJ3Vcz8phvfnCeaiotMeKIrDZ
XsG7+UuQcUAL5C5C9UOJYWHAA32IlcuvaKA0xV76TF3qMo6vmI62AYdc8ddcQj7k
qvtdzwVwoJ1RAJ1jD54c5nHZHu1yuPAx9unYsGnE7v6X8geU9aZ6EsNsLO/vAmt7
0qmIuUYmR12QL3PwfAlOqIev/yIOjcac/sA3zEDOwOjZt4fS77d8GLG3mnj9x4GY
9v9n0d2ZJd8iDb6g27mzZTqzqTTcm60TckiW+asdlc+tWi+bLH6btpdmZ5RZD9M1
GgsbEXsXpnG33rMucLiGKWPseFhKty7jWH51ux0KWygHajFSRqZHyPL8LNSmohZJ
X45wvRKB5VuTbITHZ+Ix7mTna34IFYu1TiLT+Bd0oGFS4WUfee5vb7JDpIOXfV3W
0Fi7xM7JCJQnvj1K5ernx0W37t35AfWahPKLPMtZu0EFodXxyHDfGG0yWeV9THD4
zkrZTYudZbtUNLO1vep/ikPnFCJ/EhntVNhk4J2MvSZ2xdUMbyFpd8h3kVR+UL0r
aprdPGwhWEDmjycO41sp+ifC/t1e5QBxTilp5WzUzoVEH05rIUk=
=IY+U
-----END PGP SIGNATURE-----
Merge tag 'x86_misc_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 updates from Borislav Petkov:
- Add a bunch of PCI IDs for new AMD CPUs and use them in k10temp
- Free the pmem platform device on the registration error path
* tag 'x86_misc_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
hwmon: (k10temp): Add support for new family 17h and 19h models
x86/amd_nb: Add AMD PCI IDs for SMN communication
x86/pmem: Fix platform-device leak in error path
- Respect idle=nomwait when supplied on the kernel cmdline
- Two small cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLntx0ACgkQEsHwGGHe
VUqlRxAAkULobsk6Dx3wrQcYlpA8Mt/ctttTQXWiIQwhK1j7uP0zlGWBqImr5Wsk
T04g1s29azulnPs3PydCF2QlLqSyF4v2PyyUwnpKfTP6CPM+MLtz98Gm6Xcbkt+s
f28ISYgNP+15tskWdNqB5XIVGkuyBdNne9TiFwtnVrJYF47FSwqEWRyqMH+bIOGT
wSZUCfjcw7PtKwfIAmYq4beS2+wbY9bsfVyIz+H0ks2EVFQdjYWb/kH9PgUYEQFe
VEOBsPvTHDOJt0QXEXSJjmoSRUS77Wduw56Y3L2T4jWdXXQFWJ79rqNYDBvXGAdh
Y8BKM5IYFZpzrmfw2RB6jbDY/JWO5PPFvHTXogQf9+wttSerZEffVQdOeTwjT8VD
wc9/ZnNkT7915033VI90V+hdFkwarq8FXuFH8TkzcxP9DQNYG8CRTZBceq0UWBl0
5RpIDwNX9JxGrR+frJi0D24qxz//wLe56UqW9hLp73NP8QtEYEW1nb1q30Q2eM3N
iQblgmh63qQ/dy6JV1GFb3aePiWMUNQwcTrj1pd8YDfNlp4IsFsSswnsdAZWtr1A
l9qewHkBZbbzyTQkBjExUsaIdiaMywFwnUmcQNL+fHqznZIvMhJC/oCJeS0Pe/RH
alTUrYsk6Y87HFpxoXpd85a9+20m8yrA64uY8cSQguGZ9i5Lm8g=
=jkpj
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Borislav Petkov:
- Remove the vendor check when selecting MWAIT as the default idle
state
- Respect idle=nomwait when supplied on the kernel cmdline
- Two small cleanups
* tag 'x86_cpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Use MSR_IA32_MISC_ENABLE constants
x86: Fix comment for X86_FEATURE_ZEN
x86: Remove vendor checks from prefer_mwait_c1_over_halt
x86: Handle idle=nomwait cmdline properly for x86_idle
be able to enter deeper low-power state
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnsksACgkQEsHwGGHe
VUpOOw//WAfkouWFd7kmACSiWtkgEQfXgImhhM7tw5Zzks+aEMtL2RrKqFYzkFg5
hJK+lMI8QDkBFU/bgI/nAZfFiAS7iBMPY4T2Uw4+jZCPLr3TmUheJ2Pe1CxlIzQC
MfjXQm/j5uTZcB2jEORjPT5dVE3p6k1KpSbvf5ZKCc9YTwdylv3VeYcfv5WEkihR
61bWU+T7Yse4A3Bx32ewabLmk7lwOcdS1vbfsqdvkpI1vE1gI8CThgTuNAt8JWij
27GIxiF2BQkyw3d/IPt3wGIPOgVowISXWdtMgpCr17Mw1m+44vXG9cjSuAKfqAUY
wNXrBzirdqzJgN85WVJEFIoJasFJicrz/oNLYbcHQa8+AruRu6in22cSkPYPvVGc
iNgSlQOZdoY9Vl6izEV4OawCccYnKjskEW7nEVIqfENrwRPYWB/IAnGxkla7q3Ch
q+T8dyOAWToumuPK13c5VoX0nd02bfwSJACYRxN+M22zq8s7+Jv1fNtQeAGLnmD1
jG3HR0wJWBOVVyira7AbFI7Mx667HayslIesftEGU33FfY0gZTcwZ7jsZ9GTSyOi
AgHN3PvHyJYQ648T8JzbyuNJe3dyDKf81OLaPHP6+nV9Dy3aCrERTML0jo8xWv2N
rDA61BV/q+hdQS3vzmLRVPzLLZksGRNCS2ZzIbkR4dGxLQAAB2M=
=w/wH
-----END PGP SIGNATURE-----
Merge tag 'x86_fpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fpu update from Borislav Petkov:
- Add machinery to initialize AMX register state in order for
AMX-capable CPUs to be able to enter deeper low-power state
* tag 'x86_fpu_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
intel_idle: Add a new flag to initialize the AMX state
x86/fpu: Add a helper to prepare AMX state for low-power CPU idle
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLnjdMACgkQEsHwGGHe
VUoNfw//W/eJCIdTZ4bYku0KVRvA2tP8xXqsevBaLGhi0yh4knoMI+b7pMUnUEYX
SlV2dAF0m85ICB7dN52TB6Bn0eyt1nGj9AHmgyiZ345R2IH+bvC5qig88JOR91gd
5o2HE+CICjXVvItOwwt+FMm8GrykZ2FrciAo92CTTt5TIcZyrkUXWJKwn9c1YNKd
bZFPOmAnrLUcMlweqeoZBTCVxu+yFm/CIYEs3eXISVitCEJ1JRVqxygJicycBwmw
kN1U7glF66ptJ5l1bas5ScsgKeDUbyFFiwKXrBMJI+T/FWU6YxYQW868+5E0/8g3
uhoKpDh4hECH36DdCO/DdEcpt2sBrPskx/3f1gY+LzX/uxWNB8+1996AQlOWyJSQ
W12hZED4HpyamJr6Z5BiVjSmCKhFG8kLk09D0dB35MBIsneBpFVbm4PHmnGm2X1e
0Cm92qMeIRj4unjGEK8rybJV1uy0b6mNzUgqdyXMzRagqespwi0/4rwNTn5uU9uW
gk5gsd7oV0HmbWKw83fHxE9MWj/L4t+9fW8UnVAYJMjehXhJohIUMK+B/dLQk61I
F0mX7XQDmrKgPOyBURGM36vkWqlgUPKISl2BlC/b7qgDOUnEDZmIdnv7Fnrplwt1
Ktwzsk7eTigi9iC4lpZ8mVs+m1ZXUlQnFlibXi2HB8fZe/4pWn4=
=e088
-----END PGP SIGNATURE-----
Merge tag 'x86_vmware_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 vmware cleanup from Borislav Petkov:
- A single statement simplification by using the BIT() macro
* tag 'x86_vmware_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/vmware: Use BIT() macro for shifting
when injecting errors on AMD platforms. In some cases, the platform
could prohibit those.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLni2gACgkQEsHwGGHe
VUq1uQ//SeO7mVATL+gtwbh3NGBUsLhYJeZkNOGaIxbiKSxEUiCuHwdUmIZukLIL
dTOAY60Wa9O7wuO9g1p2oeAK8SQO3ZyoIbKX5KZxy+eiCw0lgVyRv12l9qatj/bt
KL+ImDGkoUYp1GMrZP7Lp1B9vVc4lm73qkHSRseNrnjv8EKJbty62Ed6bhgjU+CN
jw+mbTHYGIO8M7XSPvzQhDmIBUSy1N6XVIUcBD2IqWoQCEgecW6woPUHvkoWlI/B
OwQ8KJjM5oRre/AqNN8t7COP5erYY1Qi3xX1+1QnFYlxx8/Z5w4V09X00MDN7NpG
1sJZPIctJ5lcEv6kSG+mI4D2TpmiMWDlWL1ifyZjY/p4Fu7bXEvtCpGTFGlsTWzN
kdiLEjjhA9D+ag2Ah52FBBgL3FpfJxrjDPoL8fYsVkxpzETiwXugqHr7MUh5HeHE
rQldU3aUdXvH94ilQn5Mx9bVwvVMY/egwCXMKQnz/Xzt+V4NnXPYs4didcPNsnDB
QlPpeiCkDmFsqdVQB+GDFq/bh9TeIHh6I+3zY+Esvi2y1m1IjzGbwwqjZgqhpmf3
9dVH7+bucn1muekA7uQL6R34AaPR6cST5QEEM2Lzp/77XnuQ35uvXLH80gHUT4BZ
a3UUiVXRELT5+xjx57efnnJj56NVuGsdTreC2QSA11fIPW91L84=
=Qz6G
-----END PGP SIGNATURE-----
Merge tag 'ras_core_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull RAS update from Borislav Petkov:
"A single RAS change:
- Probe whether hardware error injection (direct MSR writes) is
possible when injecting errors on AMD platforms. In some cases, the
platform could prohibit those"
* tag 'ras_core_for_v6.0_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mce: Check whether writes to MCA_STATUS are getting ignored
KVM/s390, KVM/x86 and common infrastructure changes for 5.20
x86:
* Permit guests to ignore single-bit ECC errors
* Fix races in gfn->pfn cache refresh; do not pin pages tracked by the cache
* Intel IPI virtualization
* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS
* PEBS virtualization
* Simplify PMU emulation by just using PERF_TYPE_RAW events
* More accurate event reinjection on SVM (avoid retrying instructions)
* Allow getting/setting the state of the speaker port data bit
* Refuse starting the kvm-intel module if VM-Entry/VM-Exit controls are inconsistent
* "Notify" VM exit (detect microarchitectural hangs) for Intel
* Cleanups for MCE MSR emulation
s390:
* add an interface to provide a hypervisor dump for secure guests
* improve selftests to use TAP interface
* enable interpretive execution of zPCI instructions (for PCI passthrough)
* First part of deferred teardown
* CPU Topology
* PV attestation
* Minor fixes
Generic:
* new selftests API using struct kvm_vcpu instead of a (vm, id) tuple
x86:
* Use try_cmpxchg64 instead of cmpxchg64
* Bugfixes
* Ignore benign host accesses to PMU MSRs when PMU is disabled
* Allow disabling KVM's "MONITOR/MWAIT are NOPs!" behavior
* x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
* Port eager page splitting to shadow MMU as well
* Enable CMCI capability by default and handle injected UCNA errors
* Expose pid of vcpu threads in debugfs
* x2AVIC support for AMD
* cleanup PIO emulation
* Fixes for LLDT/LTR emulation
* Don't require refcounted "struct page" to create huge SPTEs
x86 cleanups:
* Use separate namespaces for guest PTEs and shadow PTEs bitmasks
* PIO emulation
* Reorganize rmap API, mostly around rmap destruction
* Do not workaround very old KVM bugs for L0 that runs with nesting enabled
* new selftests API for CPUID
When a ftrace_bug happens (where ftrace fails to modify a location) it is
helpful to have what was at that location as well as what was expected to
be there.
But with the conversion to text_poke() the variable that assigns the
expected for debugging was dropped. Unfortunately, I noticed this when I
needed it. Add it back.
Link: https://lkml.kernel.org/r/20220726101851.069d2e70@gandalf.local.home
Cc: "x86@kernel.org" <x86@kernel.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: stable@vger.kernel.org
Fixes: 768ae4406a ("x86/ftrace: Use text_poke()")
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
The setup_profiling_timer() is mostly un-implemented by many
architectures. In many places it isn't guarded by CONFIG_PROFILE which is
needed for it to be used. Make it a weak symbol in kernel/profile.c and
remove the 'return -EINVAL' implementations from the kenrel.
There are a couple of architectures which do return 0 from the
setup_profiling_timer() function but they don't seem to do anything else
with it. To keep the /proc compatibility for now, leave these for a
future update or removal.
On ARM, this fixes the following sparse warning:
arch/arm/kernel/smp.c:793:5: warning: symbol 'setup_profiling_timer' was not declared. Should it be static?
Link: https://lkml.kernel.org/r/20220721195509.418205-1-ben-linux@fluff.org
Signed-off-by: Ben Dooks <ben-linux@fluff.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This reverts commit 007faec014.
Now that hyperv does its own protocol negotiation:
49d6a3c062 ("x86/Hyper-V: Add SEV negotiate protocol support in Isolation VM")
revert this exposure of the sev_es_ghcb_hv_call() helper.
Cc: Wei Liu <wei.liu@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by:Tianyu Lan <tiala@microsoft.com>
Link: https://lore.kernel.org/r/20220614014553.1915929-1-ltykernel@gmail.com
x86/kernel/cpu/cyrix.c now needs to include <linux/isa-dma.h> since the
'isa_dma_bridge_buggy' variable was moved to it.
Fixes this build error:
../arch/x86/kernel/cpu/cyrix.c: In function ‘init_cyrix’:
../arch/x86/kernel/cpu/cyrix.c:277:17: error: ‘isa_dma_bridge_buggy’ undeclared (first use in this function)
277 | isa_dma_bridge_buggy = 2;
Fixes: abb4970ac3 ("PCI: Move isa_dma_bridge_buggy out of asm/dma.h")
Link: https://lore.kernel.org/r/20220725202224.29269-1-rdunlap@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Acked-by: Stafford Horne <shorne@gmail.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: x86@kernel.org
The archrandom interface was originally designed for x86, which supplies
RDRAND/RDSEED for receiving random words into registers, resulting in
one function to generate an int and another to generate a long. However,
other architectures don't follow this.
On arm64, the SMCCC TRNG interface can return between one and three
longs. On s390, the CPACF TRNG interface can return arbitrary amounts,
with four longs having the same cost as one. On UML, the os_getrandom()
interface can return arbitrary amounts.
So change the api signature to take a "max_longs" parameter designating
the maximum number of longs requested, and then return the number of
longs generated.
Since callers need to check this return value and loop anyway, each arch
implementation does not bother implementing its own loop to try again to
fill the maximum number of longs. Additionally, all existing callers
pass in a constant max_longs parameter. Taken together, these two things
mean that the codegen doesn't really change much for one-word-at-a-time
platforms, while performance is greatly improved on platforms such as
s390.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
IBRS mitigation for spectre_v2 forces write to MSR_IA32_SPEC_CTRL at
every kernel entry/exit. On Enhanced IBRS parts setting
MSR_IA32_SPEC_CTRL[IBRS] only once at boot is sufficient. MSR writes at
every kernel entry/exit incur unnecessary performance loss.
When Enhanced IBRS feature is present, print a warning about this
unnecessary performance loss.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/2a5eaf54583c2bfe0edc4fea64006656256cca17.1657814857.git.pawan.kumar.gupta@linux.intel.com
Debugging missing return thunks is easier if we can see where they're
happening.
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/lkml/Ys66hwtFcGbYmoiZ@hirez.programming.kicks-ass.net/
Add support for SMN communication on family 17h model A0h and family 19h
models 60h-70h.
[ bp: Merge into a single patch. ]
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Yazen Ghannam <yazen.ghannam@amd.com>
Acked-by: Bjorn Helgaas <bhelgaas@google.com> # pci_ids.h
Acked-by: Guenter Roeck <linux@roeck-us.net>
Link: https://lore.kernel.org/r/20220719195256.1516-1-mario.limonciello@amd.com
Instead of the magic numbers 1<<11 and 1<<12 use the constants
from msr-index.h. This makes it obvious where those bits
of MSR_IA32_MISC_ENABLE are consumed (and in fact that Linux
consumes them at all) to simple minds that grep for
MSR_IA32_MISC_ENABLE_.*_UNAVAIL.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220719174714.2410374-1-pbonzini@redhat.com
When a CPU enters an idle state, a non-initialized AMX register state may
be the cause of preventing a deeper low-power state. Other extended
register states whether initialized or not do not impact the CPU idle
state.
The new helper can ensure the AMX state is initialized before the CPU is
idle, and it will be used by the intel idle driver.
Check the AMX_TILE feature bit before using XGETBV1 as a chain of
dependencies was established via cpuid_deps[]: AMX->XFD->XGETBV1.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20220608164748.11864-2-chang.seok.bae@intel.com
On AMD IBRS does not prevent Retbleed; as such use IBPB before a
firmware call to flush the branch history state.
And because in order to do an EFI call, the kernel maps a whole lot of
the kernel page table into the EFI page table, do an IBPB just in case
in order to prevent the scenario of poisoning the BTB and causing an EFI
call using the unprotected RET there.
[ bp: Massage. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20220715194550.793957-1-cascardo@canonical.com
The decision of whether or not to trust RDRAND is controlled by the
"random.trust_cpu" boot time parameter or the CONFIG_RANDOM_TRUST_CPU
compile time default. The "nordrand" flag was added during the early
days of RDRAND, when there were worries that merely using its values
could compromise the RNG. However, these days, RDRAND values are not
used directly but always go through the RNG's hash function, making
"nordrand" no longer useful.
Rather, the correct switch is "random.trust_cpu", which not only handles
the relevant trust issue directly, but also is general to multiple CPU
types, not just x86.
However, x86 RDRAND does have a history of being occasionally
problematic. Prior, when the kernel would notice something strange, it'd
warn in dmesg and suggest enabling "nordrand". We can improve on that by
making the test a little bit better and then taking the step of
automatically disabling RDRAND if we detect it's problematic.
Also disable RDSEED if the RDRAND test fails.
Cc: x86@kernel.org
Cc: Theodore Ts'o <tytso@mit.edu>
Suggested-by: H. Peter Anvin <hpa@zytor.com>
Suggested-by: Borislav Petkov <bp@suse.de>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
When RDRAND was introduced, there was much discussion on whether it
should be trusted and how the kernel should handle that. Initially, two
mechanisms cropped up, CONFIG_ARCH_RANDOM, a compile time switch, and
"nordrand", a boot-time switch.
Later the thinking evolved. With a properly designed RNG, using RDRAND
values alone won't harm anything, even if the outputs are malicious.
Rather, the issue is whether those values are being *trusted* to be good
or not. And so a new set of options were introduced as the real
ones that people use -- CONFIG_RANDOM_TRUST_CPU and "random.trust_cpu".
With these options, RDRAND is used, but it's not always credited. So in
the worst case, it does nothing, and in the best case, maybe it helps.
Along the way, CONFIG_ARCH_RANDOM's meaning got sort of pulled into the
center and became something certain platforms force-select.
The old options don't really help with much, and it's a bit odd to have
special handling for these instructions when the kernel can deal fine
with the existence or untrusted existence or broken existence or
non-existence of that CPU capability.
Simplify the situation by removing CONFIG_ARCH_RANDOM and using the
ordinary asm-generic fallback pattern instead, keeping the two options
that are actually used. For now it leaves "nordrand" for now, as the
removal of that will take a different route.
Acked-by: Michael Ellerman <mpe@ellerman.id.au>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Borislav Petkov <bp@suse.de>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Patch series "cpumask: Fix invalid uniprocessor assumptions", v4.
On uniprocessor builds, it is currently assumed that any cpumask will
contain the single CPU: cpu0. This assumption is used to provide
optimised implementations.
The current assumption also appears to be wrong, by ignoring the fact that
users can provide empty cpumasks. This can result in bugs as explained in
[1] - for_each_cpu() will run one iteration of the loop even when passed
an empty cpumask.
This series introduces some basic tests, and updates the optimisations for
uniprocessor builds.
The x86 patch was written after the kernel test robot [2] ran into a
failed build. I have tried to list the files potentially affected by the
changes to cpumask.h, in an attempt to find any other cases that fail on
!SMP. I've gone through some of the files manually, and ran a few cross
builds, but nothing else popped up. I (build) checked about half of the
potientally affected files, but I do not have the resources to do them
all. I hope we can fix other issues if/when they pop up later.
[1] https://lore.kernel.org/all/20220530082552.46113-1-sander@svanheule.net/
[2] https://lore.kernel.org/all/202206060858.wA0FOzRy-lkp@intel.com/
This patch (of 5):
The maps to keep track of shared caches between CPUs on SMP systems are
declared in asm/smp.h, among them specifically cpu_llc_shared_map. These
maps are externally defined in cpu/smpboot.c. The latter is only compiled
on CONFIG_SMP=y, which means the declared extern symbols from asm/smp.h do
not have a corresponding definition on uniprocessor builds.
The inline cpu_llc_shared_mask() function from asm/smp.h refers to the map
declaration mentioned above. This function is referenced in cacheinfo.c
inside for_each_cpu() loop macros, to provide cpumask for the loop. On
uniprocessor builds, the symbol for the cpu_llc_shared_map does not exist.
However, the current implementation of for_each_cpu() also (wrongly)
ignores the provided mask.
By sheer luck, the compiler thus optimises out this unused reference to
cpu_llc_shared_map, and the linker therefore does not require the
cpu_llc_shared_mask to actually exist on uniprocessor builds. Only on SMP
bulids does smpboot.o exist to provide the required symbols.
To no longer rely on compiler optimisations for successful uniprocessor
builds, move the definitions of cpu_llc_shared_map and cpu_l2c_shared_map
from smpboot.c to cacheinfo.c.
Link: https://lkml.kernel.org/r/cover.1656777646.git.sander@svanheule.net
Link: https://lkml.kernel.org/r/e8167ddb570f56744a3dc12c2149a660a324d969.1656777646.git.sander@svanheule.net
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Cc: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
Cc: Marco Elver <elver@google.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Valentin Schneider <vschneid@redhat.com>
Cc: Yury Norov <yury.norov@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
can accomodate a XenPV guest due to how the latter is setting up the PAT
machinery
Now that the retbleed nightmare is public, here's the first round of
fallout fixes:
- Fix a build failure on 32-bit due to missing include
- Remove an untraining point in espfix64 return path
- other small cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLTudcACgkQEsHwGGHe
VUrY4BAAtWm7wC6T8rzovbsyticj6kcehRMBEXxtlEP5LOeltR0dbNaIGskrS2Li
Q9YxxtQhbZPXqzqB+xeHVhDPThzsd3+wRvvetmR4fW/c3XCYr+fLLFjHj0NEvX0P
lQzuY8GKWGU/QTrjKSKclGvqyB692Fvdu4YImlnrGSbR6ywwVttditd3YNJR0w1q
7S4zq90uwWuX6cTLqXIcbKbhssOjcR1Agj9+bE8i+rzyB2VtNoihJCJh0pTJAn3P
RaXnxI/7J6Y+5imPf5/ywu8gxhvGBTy5MU/1v2pw939EurU9tmhVkNVWdO2g/qYY
V+Y1nj9xV0ucL4hlUBqAFdM+5jFC89Ey1X2tSgUgSl+44L/d8IIjVCp6inVoyCzE
Olbc6q7A/V8PNXfo4g6gDwVc3Ii53Fwgtu8xVHkwPGfjly6+yZ9O/RUBXcBAOnpU
jfS9LSc/Ro7kxqFy32beUgB7wwhMpkYuHe6ECxrvXj1IK13y3OkdxFzm03ty7S/E
BwjrkltDia9BQ6i4Ywy+qSBYkSH6+sxxt4pboB+ft6/p2JIw4YJIp9PRqzPAG0jx
JTjcZ9YAr7zPNlWp5e30BjGawgbuKPq0wkF1r6QD+3VzNf9+SSDmtkYGWeAyTTP2
SkzLy5QCNBTeeq0FZVYZFm/vcF7wccQhQdwNcezxygKAmihH0xw=
=ND3p
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.19_rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Improve the check whether the kernel supports WP mappings so that it
can accomodate a XenPV guest due to how the latter is setting up the
PAT machinery
- Now that the retbleed nightmare is public, here's the first round of
fallout fixes:
* Fix a build failure on 32-bit due to missing include
* Remove an untraining point in espfix64 return path
* other small cleanups
* tag 'x86_urgent_for_v5.19_rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/bugs: Remove apostrophe typo
um: Add missing apply_returns()
x86/entry: Remove UNTRAIN_RET from native_irq_return_ldt
x86/bugs: Mark retbleed_strings static
x86/pat: Fix x86_has_pat_wp()
x86/asm/32: Fix ANNOTATE_UNRET_SAFE use on 32-bit
Fix more fallout from recent changes of the ACPI CPPC handling on AMD
platforms (Mario Limonciello).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmLRsmYSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxw7AP/i0f3x8wTGby77H9aFHxqYD1az5/nUco
Ymp8+l1Bm9TNbfBa1EqmwGwleho5X2GXUzFX2K3cKqNNp3fG/R0fsp7/+/h8YDmd
DzwidRaIQPMsqdUzjIncB83UNIhFeh3/gix0n+iZM+cVw2dBdluXHiq88HtDjOFz
ZkCF0ka5QcJyLJ4DgIbF5/CV/q3hd0ZT3xKLC0HfedZ7YwPRTL1yefUK3sosLZTW
qDWYL/86+XwoFBntBQ6gfGYS/xQ7nQ50QKa+SD8cqLCSrQFYswLkRnQpDg1XJlMT
XPc5WRrlbMC5VV+daY5/uMflRVdDLSuBKt5uTyFrvgguvw9S0Bgct8l/tABa8KRL
AGDMoqW6V0Lc3z1Jyu4xjjTY6lrhyTB+any8K/roGrAxSYqZveMiAgyyMLbZfxNa
dU1IAIw41g/ucBB/pE0T1jfrVrAIsLVoKXSl4ixpu50yC1DjJrv85zQfOyEVI9jM
/okPONeRLTbXnB7+xRCA8AB5nXgPOqPqpLYPW7IDHghskacqZiAo6fm7tWEC5ijX
epiI/JvwU7Pbt9UuS/7Kui9yC/33ErZEdYRC4QOhBQS4vLVpzQMRFRjdF8d50Jzk
Qm73OzFKDZNm/8ladAWSdyvmvl/Ch8PjAqIBqmZNQYAoBYmWjN1LhuN+d17/ro2I
jE05pwY8TXQL
=Y0dz
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fix from Rafael Wysocki:
"Fix more fallout from recent changes of the ACPI CPPC handling on AMD
platforms (Mario Limonciello)"
* tag 'acpi-5.19-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: CPPC: Fix enabling CPPC on AMD systems with shared memory
Remove a superfluous ' in the mitigation string.
Fixes: e8ec1b6e08 ("x86/bugs: Enable STIBP for JMP2RET")
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
commit 278311e417 ("kexec, KEYS: Make use of platform keyring for
signature verify") adds platform keyring support on x86 kexec but not
arm64.
The code in bzImage64_verify_sig uses the keys on the
.builtin_trusted_keys, .machine, if configured and enabled,
.secondary_trusted_keys, also if configured, and .platform keyrings
to verify the signed kernel image as PE file.
Cc: kexec@lists.infradead.org
Cc: keyrings@vger.kernel.org
Cc: linux-security-module@vger.kernel.org
Reviewed-by: Michal Suchanek <msuchanek@suse.de>
Signed-off-by: Coiby Xu <coxu@redhat.com>
Signed-off-by: Mimi Zohar <zohar@linux.ibm.com>
tboot_force_iommu() is only called by the Intel IOMMU driver. Move the
helper into that driver. No functional change intended.
Signed-off-by: Lu Baolu <baolu.lu@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Jason Gunthorpe <jgg@nvidia.com>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20220514014322.2927339-7-baolu.lu@linux.intel.com
Signed-off-by: Joerg Roedel <jroedel@suse.de>
When commit 72f2ecb7ec ("ACPI: bus: Set CPPC _OSC bits for all
and when CPPC_LIB is supported") was introduced, we found collateral
damage that a number of AMD systems that supported CPPC but
didn't advertise support in _OSC stopped having a functional
amd-pstate driver. The _OSC was only enforced on Intel systems at that
time.
This was fixed for the MSR based designs by commit 8b356e536e
("ACPI: CPPC: Don't require _OSC if X86_FEATURE_CPPC is supported")
but some shared memory based designs also support CPPC but haven't
advertised support in the _OSC. Add support for those designs as well by
hardcoding the list of systems.
Fixes: 72f2ecb7ec ("ACPI: bus: Set CPPC _OSC bits for all and when CPPC_LIB is supported")
Fixes: 8b356e536e ("ACPI: CPPC: Don't require _OSC if X86_FEATURE_CPPC is supported")
Link: https://lore.kernel.org/all/3559249.JlDtxWtqDm@natalenko.name/
Cc: 5.18+ <stable@vger.kernel.org> # 5.18+
Reported-and-tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The build on x86_32 currently fails after commit
9bb2ec608a (objtool: Update Retpoline validation)
with:
arch/x86/kernel/../../x86/xen/xen-head.S:35: Error: no such instruction: `annotate_unret_safe'
ANNOTATE_UNRET_SAFE is defined in nospec-branch.h. And head_32.S is
missing this include. Fix this.
Fixes: 9bb2ec608a ("objtool: Update Retpoline validation")
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/63e23f80-033f-f64e-7522-2816debbc367@kernel.org
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the now
pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLNdDYACgkQEsHwGGHe
VUrNAw/+OTFF7md0+17Ju6vvagc/nXfUxk/r0lWU9/KzbRXvPTZdPKTW4NN5c0IS
VnogyUGFFpzU3dKU2os9ejTD4kHNx0oLuBfQt4w7t4qR+g3+nAH0ywNjH/N1VTJt
iDpww7CxqloV+i9RCsWV+zQPMPfc2VMUhe6xqNB2CgEDrruzFrDASZR6zzarsKxY
x4rwHn0ZkV7zNJfcNpV2323qktqHgBtAFf7GlZK8hBsgsiSk+xDk9CODkfxfWIV7
o4BNvNmaUKDJL51hpuzvIzYwDSiRO5AXdjxHG/0CHc3r3dtA6Xt1elHbERAyUMuM
P+6XievP5ZV/xXXjoZ5Vla67o3bbGKmTo2WluvVGeg8ahzQEwyPGqeXn77hk+of+
BtasZyLgfdwSeWExxp0n5Nhh972TMpy5K4gqOFXcxvPSuTl6tTw77F1u0UQLaVVH
QzHNu+RO/2iQ/P30cOM11IbZ9sfcBOj+5mjfoDoR4qCtoCQfyfHK+HlwXjZ+uk98
xU/FnQbOKPRVxiyCVhrbKFxjW7iL7AIb0nRgxHzGGoIJ6A71Tbwa/5gGakE7WEBz
e7ce8NW2JFucGBFYyiBab6I6fB7lbvmqbNPerYEVoU5YxZkMu+xxyToqBnsyPfHZ
lxgEGREUaY8aZmGDfrD9EYyhhtQU/MwdpN+FY3xXQdUJkvkNaLg=
=0Ca0
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull lockdep fix for x86 retbleed from Borislav Petkov:
- Fix lockdep complaint for __static_call_fixup()
* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/static_call: Serialize __static_call_fixup() properly
__static_call_fixup() invokes __static_call_transform() without holding
text_mutex, which causes lockdep to complain in text_poke_bp().
Adding the proper locking cures that, but as this is either used during
early boot or during module finalizing, it's not required to use
text_poke_bp(). Add an argument to __static_call_transform() which tells
it to use text_poke_early() for it.
Fixes: ee88d363d1 ("x86,static_call: Use alternative RET encoding")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the now
pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLKqAgACgkQEsHwGGHe
VUoM5w/8CSvwPZ3otkhmu8MrJPtWc7eLDPjYN4qQP+19e+bt094MoozxeeWG2wmp
hkDJAYHT2Oik/qDuEdhFgNYwS7XGgbV3Py3B8syO4//5SD5dkOSG+QqFXvXMdFri
YsVqqNkjJOWk/YL9Ql5RS/xQewsrr0OqEyWWocuI6XAvfWV4kKvlRSd+6oPqtZEO
qYlAHTXElyIrA/gjmxChk1HTt5HZtK3uJLf4twNlUfzw7LYFf3+sw3bdNuiXlyMr
WcLXMwGpS0idURwP3mJa7JRuiVBzb4+kt8mWwWqA02FkKV45FRRRFhFUsy667r00
cdZBaWdy+b7dvXeliO3FN/x1bZwIEUxmaNy1iAClph4Ifh0ySPUkxAr8EIER7YBy
bstDJEaIqgYg8NIaD4oF1UrG0ZbL0ImuxVaFdhG1hopQsh4IwLSTLgmZYDhfn/0i
oSqU0Le+A7QW9s2A2j6qi7BoAbRW+gmBuCgg8f8ECYRkFX1ZF6mkUtnQxYrU7RTq
rJWGW9nhwM9nRxwgntZiTjUUJ2HtyXEgYyCNjLFCbEBfeG5QTg7XSGFhqDbgoymH
85vsmSXYxgTgQ/kTW7Fs26tOqnP2h1OtLJZDL8rg49KijLAnISClEgohYW01CWQf
ZKMHtz3DM0WBiLvSAmfGifScgSrLB5AjtvFHT0hF+5/okEkinVk=
=09fW
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 retbleed fixes from Borislav Petkov:
"Just when you thought that all the speculation bugs were addressed and
solved and the nightmare is complete, here's the next one: speculating
after RET instructions and leaking privileged information using the
now pretty much classical covert channels.
It is called RETBleed and the mitigation effort and controlling
functionality has been modelled similar to what already existing
mitigations provide"
* tag 'x86_bugs_retbleed' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (54 commits)
x86/speculation: Disable RRSBA behavior
x86/kexec: Disable RET on kexec
x86/bugs: Do not enable IBPB-on-entry when IBPB is not supported
x86/entry: Move PUSH_AND_CLEAR_REGS() back into error_entry
x86/bugs: Add Cannon lake to RETBleed affected CPU list
x86/retbleed: Add fine grained Kconfig knobs
x86/cpu/amd: Enumerate BTC_NO
x86/common: Stamp out the stepping madness
KVM: VMX: Prevent RSB underflow before vmenter
x86/speculation: Fill RSB on vmexit for IBRS
KVM: VMX: Fix IBRS handling after vmexit
KVM: VMX: Prevent guest RSB poisoning attacks with eIBRS
KVM: VMX: Convert launched argument to flags
KVM: VMX: Flatten __vmx_vcpu_run()
objtool: Re-add UNWIND_HINT_{SAVE_RESTORE}
x86/speculation: Remove x86_spec_ctrl_mask
x86/speculation: Use cached host SPEC_CTRL value for guest entry/exit
x86/speculation: Fix SPEC_CTRL write on SMT state change
x86/speculation: Fix firmware entry SPEC_CTRL handling
x86/speculation: Fix RSB filling with CONFIG_RETPOLINE=n
...
Currently, the only way x86 can get an early boot RNG seed is via EFI,
which is generally always used now for physical machines, but is very
rarely used in VMs, especially VMs that are optimized for starting
"instantaneously", such as Firecracker's MicroVM. For tiny fast booting
VMs, EFI is not something you generally need or want.
Rather, the image loader or firmware should be able to pass a single
random seed, exactly as device tree platforms do with the "rng-seed"
property. Additionally, this is something that bootloaders can append,
with their own seed file management, which is something every other
major OS ecosystem has that Linux does not (yet).
Add SETUP_RNG_SEED, similar to the other eight setup_data entries that
are parsed at boot. It also takes care to zero out the seed immediately
after using, in order to retain forward secrecy. This all takes about 7
trivial lines of code.
Then, on kexec_file_load(), a new fresh seed is generated and passed to
the next kernel, just as is done on device tree architectures when
using kexec. And, importantly, I've tested that QEMU is able to properly
pass SETUP_RNG_SEED as well, making this work for every step of the way.
This code too is pretty straight forward.
Together these measures ensure that VMs and nested kexec()'d kernels
always receive a proper boot time RNG seed at the earliest possible
stage from their parents:
- Host [already has strongly initialized RNG]
- QEMU [passes fresh seed in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- Linux [uses parent's seed and gathers entropy of its own]
- kexec [passes this in SETUP_RNG_SEED field]
- ...
I've verified in several scenarios that this works quite well from a
host kernel to QEMU and down inwards, mixing and matching loaders, with
every layer providing a seed to the next.
[ bp: Massage commit message. ]
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: H. Peter Anvin (Intel) <hpa@zytor.com>
Link: https://lore.kernel.org/r/20220630113300.1892799-1-Jason@zx2c4.com
failures where the hypervisor verifies page tables and uninitialized
data in that range leads to bogus failures in those checks
- Add any potential setup_data entries supplied at boot to the identity
pagetable mappings to prevent kexec kernel boot failures. Usually, this
is not a problem for the normal kernel as those mappings are part of
the initially mapped 2M pages but if kexec gets to allocate the second
kernel somewhere else, those setup_data entries need to be mapped there
too.
- Fix objtool not to discard text references from the __tracepoints
section so that ENDBR validation still works
- Correct the setup_data types limit as it is user-visible, before 5.19
releases
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmLKpf8ACgkQEsHwGGHe
VUrc5w/8DIVLQ8w+Balf2TGfp5Sl3mPkg+eoARH29qtXhvVBs5KJB9sbT1IGnxao
nE4yNeiIKhH5SEd17l11E7eWuUtNgZENLsUb3aiAdsItNS+MzOWQuEOPbnAwgJmk
oKdxiI1SHiVoPy5KVXOcyAS90PSJIkhhxwgR5MInGdmpSUzEFsx5SY82ZfOjOkZU
L7zCsJzeDfhJdWiR4N0MXWRaFbIvRxI1uXyqgv+Lo6JK5l8dyUUSEdWyLUqZ7E4M
GFo6LwR3lskQM2bE9vBWS0h1X00d5oDMzfono8kZzRGA/11plZHRI007PCez8yZh
4sUnnxsfCy2YF8/8hs4IhrHZdcWW9XoN4gTUsjD0wekGTHhOEqu5qpAnVSrXbvvM
ZfPF8vM+DLPTWQqAT0a4aj1vd1RflDIQPSXKDzJDjeF49zouAj1ae/3KSOYJDzN9
V6NGiKBnzj1rbtm0+8jOsTQusmh/oDage7uLlmel3hTfNOc2Ay0LXrJWcvqhj66V
4CtCd12sLeavin+mGptni6lXbsue61EolRtH44RvZJsXLVY8iclM4onl728xOrxj
CBtJo6bd3oQYy0SQsysXGDVR7BSXtwAYfArYR8BrMTtgHxuyULt/BDoew4r7XADB
Xxz7ADJZ3DI3Gqza5H6r89Tj6Oi3yXiBWUVUNXFCMYc6ZrqvZc0=
=tOvF
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Prepare for and clear .brk early in order to address XenPV guests
failures where the hypervisor verifies page tables and uninitialized
data in that range leads to bogus failures in those checks
- Add any potential setup_data entries supplied at boot to the identity
pagetable mappings to prevent kexec kernel boot failures. Usually,
this is not a problem for the normal kernel as those mappings are
part of the initially mapped 2M pages but if kexec gets to allocate
the second kernel somewhere else, those setup_data entries need to be
mapped there too.
- Fix objtool not to discard text references from the __tracepoints
section so that ENDBR validation still works
- Correct the setup_data types limit as it is user-visible, before 5.19
releases
* tag 'x86_urgent_for_v5.19_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/boot: Fix the setup data types max limit
x86/ibt, objtool: Don't discard text references from tracepoint section
x86/compressed/64: Add identity mappings for setup_data entries
x86: Fix .brk attribute in linker script
x86: Clear .brk area at early boot
x86/xen: Use clear_bss() for Xen PV guests
Some Intel processors may use alternate predictors for RETs on
RSB-underflow. This condition may be vulnerable to Branch History
Injection (BHI) and intramode-BTI.
Kernel earlier added spectre_v2 mitigation modes (eIBRS+Retpolines,
eIBRS+LFENCE, Retpolines) which protect indirect CALLs and JMPs against
such attacks. However, on RSB-underflow, RET target prediction may
fallback to alternate predictors. As a result, RET's predicted target
may get influenced by branch history.
A new MSR_IA32_SPEC_CTRL bit (RRSBA_DIS_S) controls this fallback
behavior when in kernel mode. When set, RETs will not take predictions
from alternate predictors, hence mitigating RETs as well. Support for
this is enumerated by CPUID.7.2.EDX[RRSBA_CTRL] (bit2).
For spectre v2 mitigation, when a user selects a mitigation that
protects indirect CALLs and JMPs against BHI and intramode-BTI, set
RRSBA_DIS_S also to protect RETs for RSB-underflow case.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
All the invocations unroll to __x86_return_thunk and this file
must be PIC independent.
This fixes kexec on 64-bit AMD boxes.
[ bp: Fix 32-bit build. ]
Reported-by: Edward Tran <edward.tran@oracle.com>
Reported-by: Awais Tanveer <awais.tanveer@oracle.com>
Suggested-by: Ankur Arora <ankur.a.arora@oracle.com>
Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Storing the 'page_index' value in the sgx_backing struct is
dead code and no longer needed.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lkml.kernel.org/r/20220708162124.8442-1-kristen@linux.intel.com
There are some VM configurations which have Skylake model but do not
support IBPB. In those cases, when using retbleed=ibpb, userspace is going
to be killed and kernel is going to panic.
If the CPU does not support IBPB, warn and proceed with the auto option. Also,
do not fallback to IBPB on AMD/Hygon systems if it is not supported.
Fixes: 3ebc170068 ("x86/bugs: Add retbleed=ibpb")
Signed-off-by: Thadeu Lima de Souza Cascardo <cascardo@canonical.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
The page reclaimer ensures availability of EPC pages across all
enclaves. In support of this it runs independently from the
individual enclaves in order to take locks from the different
enclaves as it writes pages to swap.
When needing to load a page from swap an EPC page needs to be
available for its contents to be loaded into. Loading an existing
enclave page from swap does not reclaim EPC pages directly if
none are available, instead the reclaimer is woken when the
available EPC pages are found to be below a watermark.
When iterating over a large number of pages in an oversubscribed
environment there is a race between the reclaimer woken up and
EPC pages reclaimed fast enough for the page operations to proceed.
Ensure there are EPC pages available before attempting to load
a page that may potentially be pulled from swap into an available
EPC page.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/a0d8f037c4a075d56bf79f432438412985f7ff7a.1652137848.git.reinette.chatre@intel.com
The SGX2 page removal flow was introduced in previous patch and is
as follows:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES introduced in
previous patch.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES introduced here.
Support the final step of the SGX2 page removal flow with ioctl()
SGX_IOC_ENCLAVE_REMOVE_PAGES. With this ioctl() the user specifies
a page range that should be removed. All pages in the provided
range should have the SGX_PAGE_TYPE_TRIM page type and the request
will fail with EPERM (Operation not permitted) if a page that does
not have the correct type is encountered. Page removal can fail
on any page within the provided range. Support partial success by
returning the number of pages that were successfully removed.
Since actual page removal will succeed even if ENCLU[EACCEPT] was not
run from within the enclave the ENCLU[EMODPR] instruction with RWX
permissions is used as a no-op mechanism to ensure ENCLU[EACCEPT] was
successfully run from within the enclave before the enclave page is
removed.
If the user omits running SGX_IOC_ENCLAVE_REMOVE_PAGES the pages will
still be removed when the enclave is unloaded.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/b75ee93e96774e38bb44a24b8e9bbfb67b08b51b.1652137848.git.reinette.chatre@intel.com
Every enclave contains one or more Thread Control Structures (TCS). The
TCS contains meta-data used by the hardware to save and restore thread
specific information when entering/exiting the enclave. With SGX1 an
enclave needs to be created with enough TCSs to support the largest
number of threads expecting to use the enclave and enough enclave pages
to meet all its anticipated memory demands. In SGX1 all pages remain in
the enclave until the enclave is unloaded.
SGX2 introduces a new function, ENCLS[EMODT], that is used to change
the type of an enclave page from a regular (SGX_PAGE_TYPE_REG) enclave
page to a TCS (SGX_PAGE_TYPE_TCS) page or change the type from a
regular (SGX_PAGE_TYPE_REG) or TCS (SGX_PAGE_TYPE_TCS)
page to a trimmed (SGX_PAGE_TYPE_TRIM) page (setting it up for later
removal).
With the existing support of dynamically adding regular enclave pages
to an initialized enclave and changing the page type to TCS it is
possible to dynamically increase the number of threads supported by an
enclave.
Changing the enclave page type to SGX_PAGE_TYPE_TRIM is the first step
of dynamically removing pages from an initialized enclave. The complete
page removal flow is:
1) Change the type of the pages to be removed to SGX_PAGE_TYPE_TRIM
using the SGX_IOC_ENCLAVE_MODIFY_TYPES ioctl() introduced here.
2) Approve the page removal by running ENCLU[EACCEPT] from within
the enclave.
3) Initiate actual page removal using the ioctl() introduced in the
following patch.
Add ioctl() SGX_IOC_ENCLAVE_MODIFY_TYPES to support changing SGX
enclave page types within an initialized enclave. With
SGX_IOC_ENCLAVE_MODIFY_TYPES the user specifies a page range and the
enclave page type to be applied to all pages in the provided range.
The ioctl() itself can return an error code based on failures
encountered by the kernel. It is also possible for SGX specific
failures to be encountered. Add a result output parameter to
communicate the SGX return code. It is possible for the enclave page
type change request to fail on any page within the provided range.
Support partial success by returning the number of pages that were
successfully changed.
After the page type is changed the page continues to be accessible
from the kernel perspective with page table entries and internal
state. The page may be moved to swap. Any access until ENCLU[EACCEPT]
will encounter a page fault with SGX flag set in error code.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/babe39318c5bf16fc65fbfb38896cdee72161575.1652137848.git.reinette.chatre@intel.com
Before an enclave is initialized the enclave's memory range is unknown.
The enclave's memory range is learned at the time it is created via the
SGX_IOC_ENCLAVE_CREATE ioctl() where the provided memory range is
obtained from an earlier mmap() of /dev/sgx_enclave. After an enclave
is initialized its memory can be mapped into user space (mmap()) from
where it can be entered at its defined entry points.
With the enclave's memory range known after it is initialized there is
no reason why it should be possible to map memory outside this range.
Lock down access to the initialized enclave's memory range by denying
any attempt to map memory outside its memory range.
Locking down the memory range also makes adding pages to an initialized
enclave more efficient. Pages are added to an initialized enclave by
accessing memory that belongs to the enclave's memory range but not yet
backed by an enclave page. If it is possible for user space to map
memory that does not form part of the enclave then an access to this
memory would eventually fail. Failures range from a prompt general
protection fault if the access was an ENCLU[EACCEPT] from within the
enclave, or a page fault via the vDSO if it was another access from
within the enclave, or a SIGBUS (also resulting from a page fault) if
the access was from outside the enclave.
Disallowing invalid memory to be mapped in the first place avoids
preventable failures.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/6391460d75ae79cea2e81eef0f6ffc03c6e9cfe7.1652137848.git.reinette.chatre@intel.com
With SGX1 an enclave needs to be created with its maximum memory demands
allocated. Pages cannot be added to an enclave after it is initialized.
SGX2 introduces a new function, ENCLS[EAUG], that can be used to add
pages to an initialized enclave. With SGX2 the enclave still needs to
set aside address space for its maximum memory demands during enclave
creation, but all pages need not be added before enclave initialization.
Pages can be added during enclave runtime.
Add support for dynamically adding pages to an initialized enclave,
architecturally limited to RW permission at creation but allowed to
obtain RWX permissions after trusted enclave runs EMODPE. Add pages
via the page fault handler at the time an enclave address without a
backing enclave page is accessed, potentially directly reclaiming
pages if no free pages are available.
The enclave is still required to run ENCLU[EACCEPT] on the page before
it can be used. A useful flow is for the enclave to run ENCLU[EACCEPT]
on an uninitialized address. This will trigger the page fault handler
that will add the enclave page and return execution to the enclave to
repeat the ENCLU[EACCEPT] instruction, this time successful.
If the enclave accesses an uninitialized address in another way, for
example by expanding the enclave stack to a page that has not yet been
added, then the page fault handler would add the page on the first
write but upon returning to the enclave the instruction that triggered
the page fault would be repeated and since ENCLU[EACCEPT] was not run
yet it would trigger a second page fault, this time with the SGX flag
set in the page fault error code. This can only be recovered by entering
the enclave again and directly running the ENCLU[EACCEPT] instruction on
the now initialized address.
Accessing an uninitialized address from outside the enclave also
triggers this flow but the page will remain inaccessible (access will
result in #PF) until accepted from within the enclave via
ENCLU[EACCEPT].
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/a254a58eabea053803277449b24b6e4963a3883b.1652137848.git.reinette.chatre@intel.com
In the initial (SGX1) version of SGX, pages in an enclave need to be
created with permissions that support all usages of the pages, from the
time the enclave is initialized until it is unloaded. For example,
pages used by a JIT compiler or when code needs to otherwise be
relocated need to always have RWX permissions.
SGX2 includes a new function ENCLS[EMODPR] that is run from the kernel
and can be used to restrict the EPCM permissions of regular enclave
pages within an initialized enclave.
Introduce ioctl() SGX_IOC_ENCLAVE_RESTRICT_PERMISSIONS to support
restricting EPCM permissions. With this ioctl() the user specifies
a page range and the EPCM permissions to be applied to all pages in
the provided range. ENCLS[EMODPR] is run to restrict the EPCM
permissions followed by the ENCLS[ETRACK] flow that will ensure
no cached linear-to-physical address mappings to the changed
pages remain.
It is possible for the permission change request to fail on any
page within the provided range, either with an error encountered
by the kernel or by the SGX hardware while running
ENCLS[EMODPR]. To support partial success the ioctl() returns an
error code based on failures encountered by the kernel as well
as two result output parameters: one for the number of pages
that were successfully changed and one for the SGX return code.
The page table entry permissions are not impacted by the EPCM
permission changes. VMAs and PTEs will continue to allow the
maximum vetted permissions determined at the time the pages
are added to the enclave. The SGX error code in a page fault
will indicate if it was an EPCM permission check that prevented
an access attempt.
No checking is done to ensure that the permissions are actually
being restricted. This is because the enclave may have relaxed
the EPCM permissions from within the enclave without the kernel
knowing. An attempt to relax permissions using this call will
be ignored by the hardware.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Tested-by: Vijay Dhanraj <vijay.dhanraj@intel.com>
Link: https://lkml.kernel.org/r/082cee986f3c1a2f4fdbf49501d7a8c5a98446f8.1652137848.git.reinette.chatre@intel.com
struct sgx_encl should be protected with the mutex
sgx_encl->lock. One exception is sgx_encl->page_cnt that
is incremented (in sgx_encl_grow()) when an enclave page
is added to the enclave. The reason the mutex is not held
is to allow the reclaimer to be called directly if there are
no EPC pages (in support of a new VA page) available at the time.
Incrementing sgx_encl->page_cnt without sgc_encl->lock held
is currently (before SGX2) safe from concurrent updates because
all paths in which sgx_encl_grow() is called occur before
enclave initialization and are protected with an atomic
operation on SGX_ENCL_IOCTL.
SGX2 includes support for dynamically adding pages after
enclave initialization where the protection of SGX_ENCL_IOCTL
is not available.
Make direct reclaim of EPC pages optional when new VA pages
are added to the enclave. Essentially the existing "reclaim"
flag used when regular EPC pages are added to an enclave
becomes available to the caller when used to allocate VA pages
instead of always being "true".
When adding pages without invoking the reclaimer it is possible
to do so with sgx_encl->lock held, gaining its protection against
concurrent updates to sgx_encl->page_cnt after enclave
initialization.
No functional change.
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/42c5934c229982ee67982bb97c6ab34bde758620.1652137848.git.reinette.chatre@intel.com