x2apic_disable() clears x2apic_state and x2apic_mode unconditionally, even
when the state is X2APIC_ON_LOCKED, which prevents the kernel to disable
it thereby creating inconsistent state.
Due to the early state check for X2APIC_ON, the code path which warns about
a locked X2APIC cannot be reached.
Test for state < X2APIC_ON instead and move the clearing of the state and
mode variables to the place which actually disables X2APIC.
[ tglx: Massaged change log. Added Fixes tag. Moved clearing so it's at the
right place for back ports ]
Fixes: a57e456a7b ("x86/apic: Fix fallout from x2apic cleanup")
Signed-off-by: Yuntao Wang <yuntao.wang@linux.dev>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240813014827.895381-1-yuntao.wang@linux.dev
The absence of IRQD_MOVE_PCNTXT prevents immediate effectiveness of
interrupt affinity reconfiguration via procfs. Instead, the change is
deferred until the next instance of the interrupt being triggered on the
original CPU.
When the interrupt next triggers on the original CPU, the new affinity is
enforced within __irq_move_irq(). A vector is allocated from the new CPU,
but the old vector on the original CPU remains and is not immediately
reclaimed. Instead, apicd->move_in_progress is flagged, and the reclaiming
process is delayed until the next trigger of the interrupt on the new CPU.
Upon the subsequent triggering of the interrupt on the new CPU,
irq_complete_move() adds a task to the old CPU's vector_cleanup list if it
remains online. Subsequently, the timer on the old CPU iterates over its
vector_cleanup list, reclaiming old vectors.
However, a rare scenario arises if the old CPU is outgoing before the
interrupt triggers again on the new CPU.
In that case irq_force_complete_move() is not invoked on the outgoing CPU
to reclaim the old apicd->prev_vector because the interrupt isn't currently
affine to the outgoing CPU, and irq_needs_fixup() returns false. Even
though __vector_schedule_cleanup() is later called on the new CPU, it
doesn't reclaim apicd->prev_vector; instead, it simply resets both
apicd->move_in_progress and apicd->prev_vector to 0.
As a result, the vector remains unreclaimed in vector_matrix, leading to a
CPU vector leak.
To address this issue, move the invocation of irq_force_complete_move()
before the irq_needs_fixup() call to reclaim apicd->prev_vector, if the
interrupt is currently or used to be affine to the outgoing CPU.
Additionally, reclaim the vector in __vector_schedule_cleanup() as well,
following a warning message, although theoretically it should never see
apicd->move_in_progress with apicd->prev_cpu pointing to an offline CPU.
Fixes: f0383c24b4 ("genirq/cpuhotplug: Add support for cleaning up move in progress")
Signed-off-by: Dongli Zhang <dongli.zhang@oracle.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240522220218.162423-1-dongli.zhang@oracle.com
-----BEGIN PGP SIGNATURE-----
iQJIBAABCgAyFiEEgMe7l+5h9hnxdsnuWYigwDrT+vwFAmZLzNIUHGJoZWxnYWFz
QGdvb2dsZS5jb20ACgkQWYigwDrT+vwr/Q//STe2XGKI8bAKqP2wbbkzm+ISnK4A
Lqf3FEAIXunxDRspszfXKKV2p4vaIkmOFiwIdtp/kWvd0DQn5+ATXJ/iQtp8aFX/
R+6BQ7EZc2G7fN5fbQuK54+CvmWEpkKEMbXYbd6ivQ14Cijdb3Nbu+w+DYFjS+6C
k2a9lS1bTW7Xcy0fyiO1w6GQiWqtmOH8U3OlQtIrI0EVkDG9OG1LsLuc92/FgkOo
REN+sU+hX1K5fHrvm2CtjYDn/9/B6bJ/It22H1dPgUL9nKvKC67fYzosMtUCOX1M
6XSPjZIuXOmQGeZXHhpSlVwaidxoUjYO98I7nMquxKdCy6yct3geK7ULG/xeQCgD
ML7MGQB4+sTiSWalXUQaziKqF1FIDEvU3HMGXFWnoBL5l56eRp8KS1EI9Eqk9pU3
pk9fJaCkcFnkzPtMFzqPOm5q9zUZ6bGbfYb0hs72TUKplmVDhFo2T1YsW2AOyHZ7
mjuDzUYZX0H7uM1tntA56IgZX+oNOrLvhBt5L5M/BQeCsZFBBUfIcAEaYoL9LwXO
AYgIG3jdqzHHyAUzutJF+XHKinJLMHm0XVYbFmO6saPhFzrUJSNHqT7NzW1DGGTl
OnO8e1WNMX1EcnKvnc6fXyGmM3SgVwy45FsbG/zRnhn4uBKqKtjrh6uX/myA22LK
CSeqSUK9XmXxFNA=
=xjoS
-----END PGP SIGNATURE-----
Merge tag 'pci-v6.10-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci
Pull pci updates from Bjorn Helgaas:
"Enumeration:
- Skip E820 checks for MCFG ECAM regions for new (2016+) machines,
since there's no requirement to describe them in E820 and some
platforms require ECAM to work (Bjorn Helgaas)
- Rename PCI_IRQ_LEGACY to PCI_IRQ_INTX to be more specific (Damien
Le Moal)
- Remove last user and pci_enable_device_io() (Heiner Kallweit)
- Wait for Link Training==0 to avoid possible race (Ilpo Järvinen)
- Skip waiting for devices that have been disconnected while
suspended (Ilpo Järvinen)
- Clear Secondary Status errors after enumeration since Master Aborts
and Unsupported Request errors are an expected part of enumeration
(Vidya Sagar)
MSI:
- Remove unused IMS (Interrupt Message Store) support (Bjorn Helgaas)
Error handling:
- Mask Genesys GL975x SD host controller Replay Timer Timeout
correctable errors caused by a hardware defect; the errors cause
interrupts that prevent system suspend (Kai-Heng Feng)
- Fix EDR-related _DSM support, which previously evaluated revision 5
but assumed revision 6 behavior (Kuppuswamy Sathyanarayanan)
ASPM:
- Simplify link state definitions and mask calculation (Ilpo
Järvinen)
Power management:
- Avoid D3cold for HP Pavilion 17 PC/1972 PCIe Ports, where BIOS
apparently doesn't know how to put them back in D0 (Mario
Limonciello)
CXL:
- Support resetting CXL devices; special handling required because
CXL Ports mask Secondary Bus Reset by default (Dave Jiang)
DOE:
- Support DOE Discovery Version 2 (Alexey Kardashevskiy)
Endpoint framework:
- Set endpoint BAR to be 64-bit if the driver says that's all the
device supports, in addition to doing so if the size is >2GB
(Niklas Cassel)
- Simplify endpoint BAR allocation and setting interfaces (Niklas
Cassel)
Cadence PCIe controller driver:
- Drop DT binding redundant msi-parent and pci-bus.yaml (Krzysztof
Kozlowski)
Cadence PCIe endpoint driver:
- Configure endpoint BARs to be 64-bit based on the BAR type, not the
BAR value (Niklas Cassel)
Freescale Layerscape PCIe controller driver:
- Convert DT binding to YAML (Frank Li)
MediaTek MT7621 PCIe controller driver:
- Add DT binding missing 'reg' property for child Root Ports
(Krzysztof Kozlowski)
- Fix theoretical string truncation in PHY name (Sergio Paracuellos)
NVIDIA Tegra194 PCIe controller driver:
- Return success for endpoint probe instead of falling through to the
failure path (Vidya Sagar)
Renesas R-Car PCIe controller driver:
- Add DT binding missing IOMMU properties (Geert Uytterhoeven)
- Add DT binding R-Car V4H compatible for host and endpoint mode
(Yoshihiro Shimoda)
Rockchip PCIe controller driver:
- Configure endpoint BARs to be 64-bit based on the BAR type, not the
BAR value (Niklas Cassel)
- Add DT binding missing maxItems to ep-gpios (Krzysztof Kozlowski)
- Set the Subsystem Vendor ID, which was previously zero because it
was masked incorrectly (Rick Wertenbroek)
Synopsys DesignWare PCIe controller driver:
- Restructure DBI register access to accommodate devices where this
requires Refclk to be active (Manivannan Sadhasivam)
- Remove the deinit() callback, which was only need by the
pcie-rcar-gen4, and do it directly in that driver (Manivannan
Sadhasivam)
- Add dw_pcie_ep_cleanup() so drivers that support PERST# can clean
up things like eDMA (Manivannan Sadhasivam)
- Rename dw_pcie_ep_exit() to dw_pcie_ep_deinit() to make it parallel
to dw_pcie_ep_init() (Manivannan Sadhasivam)
- Rename dw_pcie_ep_init_complete() to dw_pcie_ep_init_registers() to
reflect the actual functionality (Manivannan Sadhasivam)
- Call dw_pcie_ep_init_registers() directly from all the glue
drivers, not just those that require active Refclk from the host
(Manivannan Sadhasivam)
- Remove the "core_init_notifier" flag, which was an obscure way for
glue drivers to indicate that they depend on Refclk from the host
(Manivannan Sadhasivam)
TI J721E PCIe driver:
- Add DT binding J784S4 SoC Device ID (Siddharth Vadapalli)
- Add DT binding J722S SoC support (Siddharth Vadapalli)
TI Keystone PCIe controller driver:
- Add DT binding missing num-viewport, phys and phy-name properties
(Jan Kiszka)
Miscellaneous:
- Constify and annotate with __ro_after_init (Heiner Kallweit)
- Convert DT bindings to YAML (Krzysztof Kozlowski)
- Check for kcalloc() failure in of_pci_prop_intr_map() (Duoming
Zhou)"
* tag 'pci-v6.10-changes' of git://git.kernel.org/pub/scm/linux/kernel/git/pci/pci: (97 commits)
PCI: Do not wait for disconnected devices when resuming
x86/pci: Skip early E820 check for ECAM region
PCI: Remove unused pci_enable_device_io()
ata: pata_cs5520: Remove unnecessary call to pci_enable_device_io()
PCI: Update pci_find_capability() stub return types
PCI: Remove PCI_IRQ_LEGACY
scsi: vmw_pvscsi: Do not use PCI_IRQ_LEGACY instead of PCI_IRQ_LEGACY
scsi: pmcraid: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
scsi: mpt3sas: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
scsi: megaraid_sas: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
scsi: ipr: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
scsi: hpsa: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
scsi: arcmsr: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
wifi: rtw89: Use PCI_IRQ_INTX instead of PCI_IRQ_LEGACY
dt-bindings: PCI: rockchip,rk3399-pcie: Add missing maxItems to ep-gpios
Revert "genirq/msi: Provide constants for PCI/IMS support"
Revert "x86/apic/msi: Enable PCI/IMS"
Revert "iommu/vt-d: Enable PCI/IMS"
Revert "iommu/amd: Enable PCI/IMS"
Revert "PCI/MSI: Provide IMS (Interrupt Message Store) support"
...
This reverts commit 6e24c88773.
IMS (Interrupt Message Store) support appeared in v6.2, but there are no
users yet.
Remove it for now. We can add it back when a user comes along.
Link: https://lore.kernel.org/r/20240410221307.2162676-7-helgaas@kernel.org
Signed-off-by: Bjorn Helgaas <bhelgaas@google.com>
Reviewed-by: Kevin Tian <kevin.tian@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Support for posted interrupts on bare metal
Posted interrupts is a virtualization feature which allows to inject
interrupts directly into a guest without host interaction. The VT-d
interrupt remapping hardware sets the bit which corresponds to the
interrupt vector in a vector bitmap which is either used to inject the
interrupt directly into the guest via a virtualized APIC or in case
that the guest is scheduled out provides a host side notification
interrupt which informs the host that an interrupt has been marked
pending in the bitmap.
This can be utilized on bare metal for scenarios where multiple
devices, e.g. NVME storage, raise interrupts with a high frequency. In
the default mode these interrupts are handles independently and
therefore require a full roundtrip of interrupt entry/exit.
Utilizing posted interrupts this roundtrip overhead can be avoided by
coalescing these interrupt entries to a single entry for the posted
interrupt notification. The notification interrupt then demultiplexes
the pending bits in a memory based bitmap and invokes the corresponding
device specific handlers.
Depending on the usage scenario and device utilization throughput
improvements between 10% and 130% have been measured.
As this is only relevant for high end servers with multiple device
queues per CPU attached and counterproductive for situations where
interrupts are arriving at distinct times, the functionality is opt-in
via a kernel command line parameter.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmZBGUITHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYod3xD/98Xa4qZN7eceyyGUhgXnPLOKQzGQ7k
7cmhsoAYjABeXLvuAvtKePL7ky7OPcqVW2E/g0+jdZuRDkRDbnVkM7CDMRTyL0/b
BZLhVAXyANKjK79a5WvjL0zDasYQRQ16MQJ6TPa++mX0KhZSI7KvXWIqPWov5i02
n8UbPUraH5bJi3qGKm6u4n2261Be1gtDag0ZjmGma45/3wsn3bWPoB7iPK6qxmq3
Q7VARPXAcRp5wYACk6mCOM1dOXMUV9CgI5AUk92xGfXi4RAdsFeNSzeQWn9jHWOf
CYbbJjNl4QmGP4IWmy6/Up4vIiEhUCOT2DmHsygrQTs/G+nPnMAe1qUuDuECiofj
iToBL3hn1dHG8uINKOB81MJ33QEGWyYWY8PxxoR3LMTrhVpfChUlJO8T2XK5nu+i
2EA6XLtJiHacpXhn8HQam0aQN9nvi4wT1LzpkhmboyCQuXTiXuJNbyLIh5TdFa1n
DzqAGhRB67z6eGevJJ7kTI1X71W0poMwYlzCU8itnLOK8np0zFQ8bgwwqm9opZGq
V2eSDuZAbqXVolzmaF8NSfM+b/R9URQtWsZ8cEc+/OdVV4HR4zfeqejy60TuV/4G
39CTnn8vPBKcRSS6CAcJhKPhzIvHw4EMhoU4DJKBtwBdM58RyP9NY1wF3rIPJIGh
sl61JBuYYuIZXg==
=bqLN
-----END PGP SIGNATURE-----
Merge tag 'x86-irq-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 interrupt handling updates from Thomas Gleixner:
"Add support for posted interrupts on bare metal.
Posted interrupts is a virtualization feature which allows to inject
interrupts directly into a guest without host interaction. The VT-d
interrupt remapping hardware sets the bit which corresponds to the
interrupt vector in a vector bitmap which is either used to inject the
interrupt directly into the guest via a virtualized APIC or in case
that the guest is scheduled out provides a host side notification
interrupt which informs the host that an interrupt has been marked
pending in the bitmap.
This can be utilized on bare metal for scenarios where multiple
devices, e.g. NVME storage, raise interrupts with a high frequency. In
the default mode these interrupts are handles independently and
therefore require a full roundtrip of interrupt entry/exit.
Utilizing posted interrupts this roundtrip overhead can be avoided by
coalescing these interrupt entries to a single entry for the posted
interrupt notification. The notification interrupt then demultiplexes
the pending bits in a memory based bitmap and invokes the
corresponding device specific handlers.
Depending on the usage scenario and device utilization throughput
improvements between 10% and 130% have been measured.
As this is only relevant for high end servers with multiple device
queues per CPU attached and counterproductive for situations where
interrupts are arriving at distinct times, the functionality is opt-in
via a kernel command line parameter"
* tag 'x86-irq-2024-05-12' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/irq: Use existing helper for pending vector check
iommu/vt-d: Enable posted mode for device MSIs
iommu/vt-d: Make posted MSI an opt-in command line option
x86/irq: Extend checks for pending vectors to posted interrupts
x86/irq: Factor out common code for checking pending interrupts
x86/irq: Install posted MSI notification handler
x86/irq: Factor out handler invocation from common_interrupt()
x86/irq: Set up per host CPU posted interrupt descriptors
x86/irq: Reserve a per CPU IDT vector for posted MSIs
x86/irq: Add a Kconfig option for posted MSI
x86/irq: Remove bitfields in posted interrupt descriptor
x86/irq: Unionize PID.PIR for 64bit access w/o casting
KVM: VMX: Move posted interrupt descriptor out of VMX code
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmZCbbIACgkQaDWVMHDJ
krC5Dw/9GsRdLN4lGkUhJJ9p1iNbB3qXiOgNIS9ROsh0VHI0FXf36XTsuoWE5+nT
eXb/4s0oWApqs2YbriquILfk7Q7fj0/fOYIJJ182sB/WlXBWNIjoR42rNPqDbxA8
yJVoY+RuJ1TClMYMOt6vN3hLbcOd7TU61mXmZexvI48p4GsKKYjqh9LHcaLuTUFU
Ibo4tJKxJQRCvY1pX9aJ6ICkMBpewFTrNcnm5iDnGGG+7f73Pq7+9ZdhWjPPt3K5
u/BaQtjTvPB7PlwiKV29c37Ud6FMv/CwOI9rdwRrJRHog6jzqcJd5IV2XlfaYoXL
se0yOptSP96MljguWFJ2yIynWtFYJqsmrHOSvytT9VxM10izUqEhU+qrkWzP1sqR
NN701cH4FUZV9odYx5kwhquAVecgpW//W47hp4Ghq3BBQvX8Y158Blqem+VDZzYU
6fxz/IxX1SURN/yEAompReMdoBdI+vFwwM3ZKCLMY3ZfUaDaZiWGXjhSBHzzGSVD
tg3Clq7AXHcVbRe8h1d0CTh4O8XRLMJDcUM5rq06agrDuJf4F8tXqNZoYSku4Haw
dd+U61bWAOFwv7MkePNjg8xglBSV3gyS4uoCxolZvScHz/nxLD+wLWnb6Z5oMlLn
ZroyXUMM2FMhoK4ODp3l1OzSRMj780QCvJCRW6SeJ4u2wuCoXdE=
=4t5X
-----END PGP SIGNATURE-----
Merge tag 'x86_apic_for_6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC update from Dave Hansen:
"Coccinelle complained about some 64-bit divisions, but the divisor was
really just a 32-bit value being stored as 'unsigned long'.
Fixing the types fixes the warning"
* tag 'x86_apic_for_6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/apic: Improve data types to fix Coccinelle warnings
- Rework the x86 CPU vendor/family/model code: introduce the 'VFM'
value that is an 8+8+8 bit concatenation of the vendor/family/model
value, and add macros that work on VFM values. This simplifies the
addition of new Intel models & families, and simplifies existing
enumeration & quirk code.
- Add support for the AMD 0x80000026 leaf, to better parse topology
information.
- Optimize the NUMA allocation layout of more per-CPU data structures
- Improve the workaround for AMD erratum 1386
- Clear TME from /proc/cpuinfo as well, when disabled by the firmware
- Improve x86 self-tests
- Extend the mce_record tracepoint with the ::ppin and ::microcode fields
- Implement recovery for MCE errors in TDX/SEAM non-root mode
- Misc cleanups and fixes
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmZBwL0RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gfuBAAkfVxMAfXvI4Vn3Em9Pix5zgvOoEshPoI
Pti8+fqgKAaR/Nn+ZCEUk6nou8E6R0Lyo7yDk4aZ0zGmUwQS0IoRTvj721YojCTS
Chr7butXH2xkYYQVBiJvKdHVhPBgs6jvExLyRL4WJ6s6zunS86Xka3nVRKD9QqW6
RpEc83wW9b/oSzxn/Cwzxk9RvXatLL82EMOYPL2B40Lde8EM+zoYsfOwGndGlCB2
gHpnSL1Jzry5kTeG7rromWWVp6YrDW63R2KO+DB0r7rrrtEyXtoCr7OdxruUijPB
sSpzN6etRbUuH0ijMbh7EW8KlUkGBx46Y+1eRMeN/qYy0vuwP9v0vP9n/7fXLjvu
FEI82W07lHjY3OvHh2FzvcHMTWaHVYqwDRLki7ortjtg53F/0l07Cbqxf2zJg+r3
jIaVCifk4qo6Rq+TvHtGcuDYi36u93UKVcfjQN1K/a2WdzJvpDL63PklzBeTno5s
7QBSG1FxEbfIXeQaf/AwfjnfzlQhI9ws1F+GuFAP7mGH8vEnDlGhLv5vsnloxcMB
HnHJE1wOzq6A3ixCFreXccikfsTUgsfmrLExhVs9Er/MsKRsGfSySyFUHA4L/Ygm
6zqfgYwSJzbn5EnfPmiO1R+tNhlcAi0YENeAOle4HQTeBwqebKl+Zh3zbzpgM2I3
cppkgnY/HTQ=
=Zrlk
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molnar:
- Rework the x86 CPU vendor/family/model code: introduce the 'VFM'
value that is an 8+8+8 bit concatenation of the vendor/family/model
value, and add macros that work on VFM values. This simplifies the
addition of new Intel models & families, and simplifies existing
enumeration & quirk code.
- Add support for the AMD 0x80000026 leaf, to better parse topology
information
- Optimize the NUMA allocation layout of more per-CPU data structures
- Improve the workaround for AMD erratum 1386
- Clear TME from /proc/cpuinfo as well, when disabled by the firmware
- Improve x86 self-tests
- Extend the mce_record tracepoint with the ::ppin and ::microcode fields
- Implement recovery for MCE errors in TDX/SEAM non-root mode
- Misc cleanups and fixes
* tag 'x86-cpu-2024-05-13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (34 commits)
x86/mm: Switch to new Intel CPU model defines
x86/tsc_msr: Switch to new Intel CPU model defines
x86/tsc: Switch to new Intel CPU model defines
x86/cpu: Switch to new Intel CPU model defines
x86/resctrl: Switch to new Intel CPU model defines
x86/microcode/intel: Switch to new Intel CPU model defines
x86/mce: Switch to new Intel CPU model defines
x86/cpu: Switch to new Intel CPU model defines
x86/cpu/intel_epb: Switch to new Intel CPU model defines
x86/aperfmperf: Switch to new Intel CPU model defines
x86/apic: Switch to new Intel CPU model defines
perf/x86/msr: Switch to new Intel CPU model defines
perf/x86/intel/uncore: Switch to new Intel CPU model defines
perf/x86/intel/pt: Switch to new Intel CPU model defines
perf/x86/lbr: Switch to new Intel CPU model defines
perf/x86/intel/cstate: Switch to new Intel CPU model defines
x86/bugs: Switch to new Intel CPU model defines
x86/bugs: Switch to new Intel CPU model defines
x86/cpu/vfm: Update arch/x86/include/asm/intel-family.h
x86/cpu/vfm: Add new macros to work with (vendor/family/model) values
...
With 'iommu=off' on the kernel command line and x2APIC enabled by the BIOS
the code which disables the x2APIC triggers an unchecked MSR access error:
RDMSR from 0x802 at rIP: 0xffffffff94079992 (native_apic_msr_read+0x12/0x50)
This is happens because default_acpi_madt_oem_check() selects an x2APIC
driver before the x2APIC is disabled.
When the x2APIC is disabled because interrupt remapping cannot be enabled
due to 'iommu=off' on the command line, x2apic_disable() invokes
apic_set_fixmap() which in turn tries to read the APIC ID. This triggers
the MSR warning because x2APIC is disabled, but the APIC driver is still
x2APIC based.
Prevent that by adding an argument to apic_set_fixmap() which makes the
APIC ID read out conditional and set it to false from the x2APIC disable
path. That's correct as the APIC ID has already been read out during early
discovery.
Fixes: d10a904435 ("x86/apic: Consolidate boot_cpu_physical_apicid initialization sites")
Reported-by: Adrian Huang <ahuang12@lenovo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Adrian Huang <ahuang12@lenovo.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/875xw5t6r7.ffs@tglx
Use a common function for checking pending interrupt vector in APIC IRR
instead of duplicated open coding them.
Additional checks for posted MSI vectors can then be contained in this
function.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-10-jacob.jun.pan@linux.intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181504.41634-1-tony.luck%40intel.com
There's a new conflict between this commit pending in x86/cpu:
63edbaa48a x86/cpu/topology: Add support for the AMD 0x80000026 leaf
And these fixes in x86/urgent:
c064b536a8 x86/cpu/amd: Make the NODEID_MSR union actually work
1b3108f689 x86/cpu/amd: Make the CPUID 0x80000008 parser correct
Resolve them.
Conflicts:
arch/x86/kernel/cpu/topology_amd.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
So we are using the 'ia32_cap' value in a number of places,
which got its name from MSR_IA32_ARCH_CAPABILITIES MSR register.
But there's very little 'IA32' about it - this isn't 32-bit only
code, nor does it originate from there, it's just a historic
quirk that many Intel MSR names are prefixed with IA32_.
This is already clear from the helper method around the MSR:
x86_read_arch_cap_msr(), which doesn't have the IA32 prefix.
So rename 'ia32_cap' to 'x86_arch_cap_msr' to be consistent with
its role and with the naming of the helper function.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/9592a18a814368e75f8f4b9d74d3883aa4fd1eaf.1712813475.git.jpoimboe@kernel.org
In smp_prepare_cpus_common() and x2apic_prepare_cpu():
- use 'cpu' instead of 'i'
- use 'node' instead of 'n'
- use vertical alignment to improve readability
- better structure basic blocks
- reduce col80 checkpatch damage
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: linux-kernel@vger.kernel.org
per-CPU cpumasks are dominantly accessed from their own local CPUs,
so allocate them node-local to improve performance.
[ mingo: Rewrote the changelog. ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240410030114.6201-1-lirongqing@baidu.com
Given that acpi_pm_read_early() returns a u32 (masked to 24 bits), several
variables that store its return value are improved by adjusting their data
types from unsigned long to u32. Specifically, change deltapm's type from
long to u32 because its value fits into 32 bits and it cannot be negative.
These data type improvements resolve the following two Coccinelle/
coccicheck warnings reported by do_div.cocci:
arch/x86/kernel/apic/apic.c:734:1-7: WARNING: do_div() does a 64-by-32
division, please consider using div64_long instead.
arch/x86/kernel/apic/apic.c:742:2-8: WARNING: do_div() does a 64-by-32
division, please consider using div64_long instead.
Signed-off-by: Thorsten Blum <thorsten.blum@toblux.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240318104721.117741-3-thorsten.blum%40toblux.com
The current implementation has a couple of shortcomings:
- It fails to handle hybrid systems correctly.
- The APIC registration code which handles CPU number assignents is in
the middle of the APIC code and detached from the topology evaluation.
- The various mechanisms which enumerate APICs, ACPI, MPPARSE and guest
specific ones, tweak global variables as they see fit or in case of
XENPV just hack around the generic mechanisms completely.
- The CPUID topology evaluation code is sprinkled all over the vendor
code and reevaluates global variables on every hotplug operation.
- There is no way to analyze topology on the boot CPU before bringing up
the APs. This causes problems for infrastructure like PERF which needs
to size certain aspects upfront or could be simplified if that would be
possible.
- The APIC admission and CPU number association logic is incomprehensible
and overly complex and needs to be kept around after boot instead of
completing this right after the APIC enumeration.
This update addresses these shortcomings with the following changes:
- Rework the CPUID evaluation code so it is common for all vendors and
provides information about the APIC ID segments in a uniform way
independent of the number of segments (Thread, Core, Module, ..., Die,
Package) so that this information can be computed instead of rewriting
global variables of dubious value over and over.
- A few cleanups and simplifcations of the APIC, IO/APIC and related
interfaces to prepare for the topology evaluation changes.
- Seperation of the parser stages so the early evaluation which tries to
find the APIC address can be seperately overridden from the late
evaluation which enumerates and registers the local APIC as further
preparation for sanitizing the topology evaluation.
- A new registration and admission logic which
- encapsulates the inner workings so that parsers and guest logic
cannot longer fiddle in it
- uses the APIC ID segments to build topology bitmaps at registration
time
- provides a sane admission logic
- allows to detect the crash kernel case, where CPU0 does not run on
the real BSP, automatically. This is required to prevent sending
INIT/SIPI sequences to the real BSP which would reset the whole
machine. This was so far handled by a tedious command line
parameter, which does not even work in nested crash scenarios.
- Associates CPU number after the enumeration completed and prevents
the late registration of APICs, which was somehow tolerated before.
- Converting all parsers and guest enumeration mechanisms over to the
new interfaces.
This allows to get rid of all global variable tweaking from the parsers
and enumeration mechanisms and sanitizes the XEN[PV] handling so it can
use CPUID evaluation for the first time.
- Mopping up existing sins by taking the information from the APIC ID
segment bitmaps.
This evaluates hybrid systems correctly on the boot CPU and allows for
cleanups and fixes in the related drivers, e.g. PERF.
The series has been extensively tested and the minimal late fallout due to
a broken ACPI/MADT table has been addressed by tightening the admission
logic further.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmXuDawTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYobE7EACngItF+UOTCoCV6och2lL6HVoIdZD1
Y5oaAgD+WzQSz/lBkH6b9kZSyvjlMo6O9GlnGX+ii+VUnijDp4VrspnxbJDaKEq3
gOfsSg2Tk+ps50HqMcZawjjBYJb/TmvKwEV2XuzIBPOONSWLNjvN7nBSzLl1eF9/
8uCE39/8aB5K3GXryRyXdo2uLu6eHTVC0aYFu/kLX1/BbVqF5NMD3sz9E9w8+D/U
MIIMEMXy4Fn+P2o0vVH+gjUlwI76mJbB1WqCX/sqbVacXrjl3KfNJRiisTFIOOYV
8o+rIV0ef5X9xmZqtOXAdyZQzj++Gwmz9+4TU1M4YHtS7UkYn6AluOjvVekCc+gc
qXE3WhqKfCK2/carRMLQxAMxNeRylkZG+Wuv1Qtyjpe9JX2dTqtems0f4DMp9DKf
b7InO3z39kJanpqcUG2Sx+GWanetfnX+0Ho2Moqu6Xi+2ATr1PfMG/Wyr5/WWOfV
qApaHSTwa+J43mSzP6BsXngEv085EHSGM5tPe7u46MCYFqB21+bMl+qH82KjMkOe
c6uZovFQMmX2WBlqJSYGVCH+Jhgvqq8HFeRs19Hd4enOt3e6LE3E74RBVD1AyfLV
1b/m8tYB/o871ZlEZwDCGVrV/LNnA7PxmFpq5ZHLpUt39g2/V0RH1puBVz1e97pU
YsTT7hBCUYzgjQ==
=/5oR
-----END PGP SIGNATURE-----
Merge tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 APIC updates from Thomas Gleixner:
"Rework of APIC enumeration and topology evaluation.
The current implementation has a couple of shortcomings:
- It fails to handle hybrid systems correctly.
- The APIC registration code which handles CPU number assignents is
in the middle of the APIC code and detached from the topology
evaluation.
- The various mechanisms which enumerate APICs, ACPI, MPPARSE and
guest specific ones, tweak global variables as they see fit or in
case of XENPV just hack around the generic mechanisms completely.
- The CPUID topology evaluation code is sprinkled all over the vendor
code and reevaluates global variables on every hotplug operation.
- There is no way to analyze topology on the boot CPU before bringing
up the APs. This causes problems for infrastructure like PERF which
needs to size certain aspects upfront or could be simplified if
that would be possible.
- The APIC admission and CPU number association logic is
incomprehensible and overly complex and needs to be kept around
after boot instead of completing this right after the APIC
enumeration.
This update addresses these shortcomings with the following changes:
- Rework the CPUID evaluation code so it is common for all vendors
and provides information about the APIC ID segments in a uniform
way independent of the number of segments (Thread, Core, Module,
..., Die, Package) so that this information can be computed instead
of rewriting global variables of dubious value over and over.
- A few cleanups and simplifcations of the APIC, IO/APIC and related
interfaces to prepare for the topology evaluation changes.
- Seperation of the parser stages so the early evaluation which tries
to find the APIC address can be seperately overridden from the late
evaluation which enumerates and registers the local APIC as further
preparation for sanitizing the topology evaluation.
- A new registration and admission logic which
- encapsulates the inner workings so that parsers and guest logic
cannot longer fiddle in it
- uses the APIC ID segments to build topology bitmaps at
registration time
- provides a sane admission logic
- allows to detect the crash kernel case, where CPU0 does not run
on the real BSP, automatically. This is required to prevent
sending INIT/SIPI sequences to the real BSP which would reset
the whole machine. This was so far handled by a tedious command
line parameter, which does not even work in nested crash
scenarios.
- Associates CPU number after the enumeration completed and
prevents the late registration of APICs, which was somehow
tolerated before.
- Converting all parsers and guest enumeration mechanisms over to the
new interfaces.
This allows to get rid of all global variable tweaking from the
parsers and enumeration mechanisms and sanitizes the XEN[PV]
handling so it can use CPUID evaluation for the first time.
- Mopping up existing sins by taking the information from the APIC ID
segment bitmaps.
This evaluates hybrid systems correctly on the boot CPU and allows
for cleanups and fixes in the related drivers, e.g. PERF.
The series has been extensively tested and the minimal late fallout
due to a broken ACPI/MADT table has been addressed by tightening the
admission logic further"
* tag 'x86-apic-2024-03-10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (76 commits)
x86/topology: Ignore non-present APIC IDs in a present package
x86/apic: Build the x86 topology enumeration functions on UP APIC builds too
smp: Provide 'setup_max_cpus' definition on UP too
smp: Avoid 'setup_max_cpus' namespace collision/shadowing
x86/bugs: Use fixed addressing for VERW operand
x86/cpu/topology: Get rid of cpuinfo::x86_max_cores
x86/cpu/topology: Provide __num_[cores|threads]_per_package
x86/cpu/topology: Rename topology_max_die_per_package()
x86/cpu/topology: Rename smp_num_siblings
x86/cpu/topology: Retrieve cores per package from topology bitmaps
x86/cpu/topology: Use topology logical mapping mechanism
x86/cpu/topology: Provide logical pkg/die mapping
x86/cpu/topology: Simplify cpu_mark_primary_thread()
x86/cpu/topology: Mop up primary thread mask handling
x86/cpu/topology: Use topology bitmaps for sizing
x86/cpu/topology: Let XEN/PV use topology from CPUID/MADT
x86/xen/smp_pv: Count number of vCPUs early
x86/cpu/topology: Assign hotpluggable CPUIDs during init
x86/cpu/topology: Reject unknown APIC IDs on ACPI hotplug
x86/topology: Add a mechanism to track topology via APIC IDs
...
The recent restriction to invoke irqdomain_ops::select() only when the
domain bus token is not DOMAIN_BUS_ANY breaks the search for the parent MSI
domain of HPET and IO-APIC. The latter causes a full boot fail.
The restriction itself makes sense to avoid adding DOMAIN_BUS_ANY matches
into the various ARM specific select() callbacks. Reverting this change
would obviously break ARM platforms again and require DOMAIN_BUS_ANY
matches added to various places.
A simpler solution is to use the DOMAIN_BUS_GENERIC_MSI token for the HPET
and IO-APIC parent domain search. This works out of the box because the
affected parent domains check only for the firmware specification content
and not for the bus token.
Fixes: 5aa3c0cf5b ("genirq/irqdomain: Don't call ops->select for DOMAIN_BUS_ANY tokens")
Reported-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/878r38cy8n.ffs@tglx
Now that all external fiddling with num_processors and disabled_cpus is
gone, move the last user prefill_possible_map() into the topology code too
and remove the global visibility of these variables.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.994756960@linutronix.de
The APIC/CPU registration sits in the middle of the APIC code. In fact this
is a topology evaluation function and has nothing to do with the inner
workings of the local APIC.
Move it out into a file which reflects what this is about.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.543948812@linutronix.de
The ACPI ID for CPUs is preset with U32_MAX which is completely non
obvious. Use a proper define for it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.177504138@linutronix.de
Paranoia is not wrong, but having an APIC callback which is in most
implementations a complete NOOP and in one actually looking whether the
APICID of an upcoming CPU has been registered. The same APICID which was
used to bring the CPU out of wait for startup.
That's paranoia for the paranoia sake. Remove the voodoo.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.116510935@linutronix.de
There is absolutely no point to write the APIC ID which was read from the
local APIC earlier, back into the local APIC for the 64-bit UP case.
Remove that along with the apic callback which is solely there for this
pointless exercise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.055288922@linutronix.de
physid_t is a wrapper around bitmap. Just remove the onion layer and use
bitmap functionality directly.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.994904510@linutronix.de
No need to go through APIC callbacks. It's already established that this is
an ancient APIC. So just copy the present mask and use the direct physid*
functions all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.181901887@linutronix.de
No need to go through APIC callbacks. It's already established that this is
an ancient APIC. So just copy the present mask and use the direct physid*
functions all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.119261725@linutronix.de
There is no point for this function. The only case where this is used is
when there is no XAPIC available, which means the broadcast address is 0xF.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154639.057209154@linutronix.de
Yet another set_bit() operation wrapped in oring a mask.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.995080989@linutronix.de
There is no point to do that. The ATOMs have an XAPIC for which this
function is a pointless exercise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154638.931617775@linutronix.de
The package shift has been already evaluated by the early CPU init.
Put the mindless copy right next to the original leaf 0xb parser.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.637385562@linutronix.de
Now that the core code does not use this monstrosity anymore, it's time to
put it to rest.
The only real purpose was to read the APIC ID on UV and VSMP systems for
the actual evaluation. That's what the core code does now.
For doing the actual shift operation there is truly no APIC callback
required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.516536121@linutronix.de
- A micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb2i8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iFIQ//RjqKWmEBfv0UVCNgtRgkUKOvYVkfhC1R
FykHWbSE+/oDODS7B+gbWqzl9Fq2Oxx9re4KZuMfnojE96KZ6H1flQn7z3UVRUrf
pfMx13E+uyf7qbVZktqH38lUS4s/AHdX2PKCiXlU/0hIkiBdjbAl3ylyqMv7ytIL
Fi2N9iYJN+eLlMkc3A5IK83xNiU8rb0gO6Uywn3nUbqadY/YX2gDpND5kfzRIneR
lTKy4rX3+E65qYB2Ly1wDr7e0Q0rgaTzPctx6twFrxQXK+MsHiartJhM5juND/tU
DEjSW9ISOHlitKEJI/zbdrvJlr5AKDNy2zHYmQQuqY6+YHRamCKqwIjLIPkKj52g
lAbosNwvp/o8W3zUHgUfVZR5hVxN863zV2qa/ehoQ3b/9kNjQC8actILjYEgIVu9
av1sd+nETbjCUABIF9H9uAoRbgc+wQs2nupJZrjvginFz8+WVhgaBdJDMYCNAmjc
fNMjGtRS7YXiIMj09ZAXFThVW302FdbTgggDh/qlQlDOXFu5HRbyuWR+USr4/jkP
qs2G6m/BHDs9HxDRo/no+ccSrUBV5phfhZbO7qwjTf2NJJvPHW+cxGpT00zU2v8A
lgfVI7SDkxwbyi1gacJ054GqEhsWuEdi40ikqxjhL8Oq4xwwsey/PiaIxjkDQx92
Gj3XUSDnGEs=
=kUav
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
and a micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
* tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch/x86: Fix typos
x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify()
x86/docs: Remove reference to syscall trampoline in PTI
x86/Kconfig: Remove obsolete config X86_32_SMP
x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro
x86/mtrr: Document missing function parameters in kernel-doc
x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
This field is set to APIC_DELIVERY_MODE_FIXED in all cases, and is read
exactly once. Fold the constant in uv_program_mmr() and drop the field.
Searching for the origin of the stale HyperV comment reveals commit
a31e58e129 ("x86/apic: Switch all APICs to Fixed delivery mode") which
notes:
As a consequence of this change, the apic::irq_delivery_mode field is
now pointless, but this needs to be cleaned up in a separate patch.
6 years is long enough for this technical debt to have survived.
[ bp: Fold in
https://lore.kernel.org/r/20231121123034.1442059-1-andrew.cooper3@citrix.com
]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20231102-x86-apic-v1-1-bf049a2a0ed6@citrix.com
Gleixner:
- Restructure the code needed for it and add a temporary initrd mapping
on 32-bit so that the loader can access the microcode blobs. This in
itself is a preparation for the next major improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues, ugly
code and unnecessary hacks in the past. And there really wasn't any
sensible reason to do that in the first place. So switch the 32-bit
loading to happen after paging has been enabled and turn the loader
code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single patch
loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined threads
be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use anyway
since feature detection has happened already. Roughly, the minimum
revision is the smallest revision number which must be loaded
currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVE0xkACgkQEsHwGGHe
VUrCuBAAhOqqwkYPiGXPWd2hvdn1zGtD5fvEdXn3Orzd+Lwc6YaQTsCxCjIO/0ws
8inpPFuOeGz4TZcplzipi3G5oatPVc7ORDuW+/BvQQQljZOsSKfhiaC29t6dvS6z
UG3sbCXKVwlJ5Kwv3Qe4eWur4Ex6GeFDZkIvBCmbaAdGPFlfu1i2uO1yBooNP1Rs
GiUkp+dP1/KREWwR/dOIsHYL2QjWIWfHQEWit/9Bj46rxE9ERx/TWt3AeKPfKriO
Wp0JKp6QY78jg6a0a2/JVmbT1BKz69Z9aPp6hl4P2MfbBYOnqijRhdezFW0NyqV2
pn6nsuiLIiXbnSOEw0+Wdnw5Q0qhICs5B5eaBfQrwgfZ8pxPHv2Ir777GvUTV01E
Dv0ZpYsHa+mHe17nlK8V3+4eajt0PetExcXAYNiIE+pCb7pLjjKkl8e+lcEvEsO0
QSL3zG5i5RWUMPYUvaFRgepWy3k/GPIoDQjRcUD3P+1T0GmnogNN10MMNhmOzfWU
pyafe4tJUOVsq0HJ7V/bxIHk2p+Q+5JLKh5xBm9janE4BpabmSQnvFWNblVfK4ig
M9ohjI/yMtgXROC4xkNXgi8wE5jfDKBghT6FjTqKWSV45vknF1mNEjvuaY+aRZ3H
MB4P3HCj+PKWJimWHRYnDshcytkgcgVcYDiim8va/4UDrw8O2ks=
=JOZu
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading updates from Borislac Petkov:
"Major microcode loader restructuring, cleanup and improvements by
Thomas Gleixner:
- Restructure the code needed for it and add a temporary initrd
mapping on 32-bit so that the loader can access the microcode
blobs. This in itself is a preparation for the next major
improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues,
ugly code and unnecessary hacks in the past. And there really
wasn't any sensible reason to do that in the first place. So switch
the 32-bit loading to happen after paging has been enabled and turn
the loader code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single
patch loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined
threads be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use
anyway since feature detection has happened already. Roughly, the
minimum revision is the smallest revision number which must be
loaded currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place"
* tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
x86/microcode/intel: Add a minimum required revision for late loading
x86/microcode: Prepare for minimal revision check
x86/microcode: Handle "offline" CPUs correctly
x86/apic: Provide apic_force_nmi_on_cpu()
x86/microcode: Protect against instrumentation
x86/microcode: Rendezvous and load in NMI
x86/microcode: Replace the all-in-one rendevous handler
x86/microcode: Provide new control functions
x86/microcode: Add per CPU control field
x86/microcode: Add per CPU result state
x86/microcode: Sanitize __wait_for_cpus()
x86/microcode: Clarify the late load logic
x86/microcode: Handle "nosmt" correctly
x86/microcode: Clean up mc_cpu_down_prep()
x86/microcode: Get rid of the schedule work indirection
x86/microcode: Mop up early loading leftovers
x86/microcode/amd: Use cached microcode for AP load
x86/microcode/amd: Cache builtin/initrd microcode early
x86/microcode/amd: Cache builtin microcode too
x86/microcode/amd: Use correct per CPU ucode_cpu_info
...
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a
model ID less than 4. The newer models have the topology CPUID leaf 0xB
correctly implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By chance
a XEN/PV boot ends up with smp_num_siblings == 2, which makes the
hotplug control stay at its default value "enabled". So the mask is
never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core to
deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or even
non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned long
or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die
IDs. That's really not the right place simply because cpuinfo is
subject to be reinitialized when a CPU goes through an offline/online
cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF
cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid
6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso
Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7
zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT
SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u
y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au
zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD
K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv
vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn
1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk
eHhYsnniqsYB5g==
=xrz8
-----END PGP SIGNATURE-----
Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 core updates from Thomas Gleixner:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have
a model ID less than 4.
The newer models have the topology CPUID leaf 0xB correctly
implemented and are not affected.
- Make SMT control more robust against enumeration failures
SMT control was added to allow controlling SMT at boottime or
runtime. The primary purpose was to provide a simple mechanism to
disable SMT in the light of speculation attack vectors.
It turned out that the code is sensible to enumeration failures and
worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
which means the primary thread mask is not set up correctly. By
chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
the hotplug control stay at its default value "enabled". So the mask
is never evaluated.
The ongoing rework of the topology evaluation caused XEN/PV to end up
with smp_num_siblings == 1, which sets the SMT control to "not
supported" and the empty primary thread mask causes the hotplug core
to deny the bringup of the APS.
Make the decision logic more robust and take 'not supported' and 'not
implemented' into account for the decision whether a CPU should be
booted or not.
- Fake primary thread mask for XEN/PV
Pretend that all XEN/PV vCPUs are primary threads, which makes the
usage of the primary thread mask valid on XEN/PV. That is consistent
with because all of the topology information on XEN/PV is fake or
even non-existent.
- Encapsulate topology information in cpuinfo_x86
Move the randomly scattered topology data into a separate data
structure for readability and as a preparatory step for the topology
evaluation overhaul.
- Consolidate APIC ID data type to u32
It's fixed width hardware data and not randomly u16, int, unsigned
long or whatever developers decided to use.
- Cure the abuse of cpuinfo for persisting logical IDs.
Per CPU cpuinfo is used to persist the logical package and die IDs.
That's really not the right place simply because cpuinfo is subject
to be reinitialized when a CPU goes through an offline/online cycle.
Use separate per CPU data for the persisting to enable the further
topology management rework. It will be removed once the new topology
management is in place.
- Provide a debug interface for inspecting topology information
Useful in general and extremly helpful for validating the topology
management rework in terms of correctness or "bug" compatibility.
* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
x86/cpu: Provide debug interface
x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
x86/apic: Use u32 for [gs]et_apic_id()
x86/apic: Use u32 for phys_pkg_id()
x86/apic: Use u32 for cpu_present_to_apicid()
x86/apic: Use u32 for check_apicid_used()
x86/apic: Use u32 for APIC IDs in global data
x86/apic: Use BAD_APICID consistently
x86/cpu: Move cpu_l[l2]c_id into topology info
x86/cpu: Move logical package and die IDs into topology info
x86/cpu: Remove pointless evaluation of x86_coreid_bits
x86/cpu: Move cu_id into topology info
x86/cpu: Move cpu_core_id into topology info
hwmon: (fam15h_power) Use topology_core_id()
scsi: lpfc: Use topology_core_id()
x86/cpu: Move cpu_die_id into topology info
x86/cpu: Move phys_proc_id into topology info
x86/cpu: Encapsulate topology information in cpuinfo_x86
...
commit ef8dd01538 ("genirq/msi: Make interrupt allocation less
convoluted"), reworked the code so that the x86 specific quirk for affinity
setting of non-maskable PCI/MSI interrupts is not longer activated if
necessary.
This could be solved by restoring the original logic in the core MSI code,
but after a deeper analysis it turned out that the quirk flag is not
required at all.
The quirk is only required when the PCI/MSI device cannot mask the MSI
interrupts, which in turn also prevents reservation mode from being enabled
for the affected interrupt.
This allows ot remove the NOMASK quirk bit completely as msi_set_affinity()
can instead check whether reservation mode is enabled for the interrupt,
which gives exactly the same answer.
Even in the momentary non-existing case that the reservation mode would be
not set for a maskable MSI interrupt this would not cause any harm as it
just would cause msi_set_affinity() to go needlessly through the
functionaly equivalent slow path, which works perfectly fine with maskable
interrupts as well.
Rework msi_set_affinity() to query the reservation mode and remove all
NOMASK quirk logic from the core code.
[ tglx: Massaged changelog ]
Fixes: ef8dd01538 ("genirq/msi: Make interrupt allocation less convoluted")
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Koichiro Den <den@valinux.co.jp>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20231026032036.2462428-1-den@valinux.co.jp
When SMT siblings are soft-offlined and parked in one of the play_dead()
variants they still react on NMI, which is problematic on affected Intel
CPUs. The default play_dead() variant uses MWAIT on modern CPUs, which is
not guaranteed to be safe when updated concurrently.
Right now late loading is prevented when not all SMT siblings are online,
but as they still react on NMI, it is possible to bring them out of their
park position into a trivial rendezvous handler.
Provide a function which allows to do that. I does sanity checks whether
the target is in the cpus_booted_once_mask and whether the APIC driver
supports it.
Mark X2APIC and XAPIC as capable, but exclude 32bit and the UV and NUMACHIP
variants as that needs feedback from the relevant experts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.603100036@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.233274223@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.172569282@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width even if that callback going to be removed soonish.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.113097126@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup a few related usage sites for consistency sake.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.054064391@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and move the default implementation to local.h as there are
no users outside the apic directory.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.981956102@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width and fixup the most obvious usage sites of that.
The APIC callbacks will be addressed separately.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de
APIC ID checks compare with BAD_APICID all over the place, but some
initializers and some code which fiddles with global data structure use
-1[U] instead. That simply cannot work at all.
Fix it up and use BAD_APICID consistently all over the place.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.862835121@linutronix.de
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.
Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.
This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
Rename it to pkg_id which is the terminology used in the kernel.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
The SMT control mechanism got added as speculation attack vector
mitigation. The implemented logic relies on the primary thread mask to
be set up properly.
This turns out to be an issue with XEN/PV guests because their CPU hotplug
mechanics do not enumerate APICs and therefore the mask is never correctly
populated.
This went unnoticed so far because by chance XEN/PV ends up with
smp_num_siblings == 2. So cpu_smt_control stays at its default value
CPU_SMT_ENABLED and the primary thread mask is never evaluated in the
context of CPU hotplug.
This stopped "working" with the upcoming overhaul of the topology
evaluation which legitimately provides a fake topology for XEN/PV. That
sets smp_num_siblings to 1, which causes the core CPU hot-plug core to
refuse to bring up the APs.
This happens because cpu_smt_control is set to CPU_SMT_NOT_SUPPORTED which
causes cpu_bootable() to evaluate the unpopulated primary thread mask with
the conclusion that all non-boot CPUs are not valid to be plugged.
The core code has already been made more robust against this kind of fail,
but the primary thread mask really wants to be populated to avoid other
issues all over the place.
Just fake the mask by pretending that all XEN/PV vCPUs are primary threads,
which is consistent because all of XEN/PVs topology is fake or non-existent.
Fixes: 6a4d2657e0 ("x86/smp: Provide topology_is_primary_thread()")
Fixes: f54d4434c2 ("x86/apic: Provide cpu_primary_thread mask")
Reported-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.210011520@linutronix.de