There is absolutely no point to write the APIC ID which was read from the
local APIC earlier, back into the local APIC for the 64-bit UP case.
Remove that along with the apic callback which is solely there for this
pointless exercise.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240212154640.055288922@linutronix.de
Now that the core code does not use this monstrosity anymore, it's time to
put it to rest.
The only real purpose was to read the APIC ID on UV and VSMP systems for
the actual evaluation. That's what the core code does now.
For doing the actual shift operation there is truly no APIC callback
required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Tested-by: Wang Wendy <wendy.wang@intel.com>
Tested-by: K Prateek Nayak <kprateek.nayak@amd.com>
Link: https://lore.kernel.org/r/20240212153625.516536121@linutronix.de
This field is set to APIC_DELIVERY_MODE_FIXED in all cases, and is read
exactly once. Fold the constant in uv_program_mmr() and drop the field.
Searching for the origin of the stale HyperV comment reveals commit
a31e58e129 ("x86/apic: Switch all APICs to Fixed delivery mode") which
notes:
As a consequence of this change, the apic::irq_delivery_mode field is
now pointless, but this needs to be cleaned up in a separate patch.
6 years is long enough for this technical debt to have survived.
[ bp: Fold in
https://lore.kernel.org/r/20231121123034.1442059-1-andrew.cooper3@citrix.com
]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Steve Wahl <steve.wahl@hpe.com>
Link: https://lore.kernel.org/r/20231102-x86-apic-v1-1-bf049a2a0ed6@citrix.com
Gleixner:
- Restructure the code needed for it and add a temporary initrd mapping
on 32-bit so that the loader can access the microcode blobs. This in
itself is a preparation for the next major improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues, ugly
code and unnecessary hacks in the past. And there really wasn't any
sensible reason to do that in the first place. So switch the 32-bit
loading to happen after paging has been enabled and turn the loader
code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single patch
loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined threads
be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use anyway
since feature detection has happened already. Roughly, the minimum
revision is the smallest revision number which must be loaded
currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVE0xkACgkQEsHwGGHe
VUrCuBAAhOqqwkYPiGXPWd2hvdn1zGtD5fvEdXn3Orzd+Lwc6YaQTsCxCjIO/0ws
8inpPFuOeGz4TZcplzipi3G5oatPVc7ORDuW+/BvQQQljZOsSKfhiaC29t6dvS6z
UG3sbCXKVwlJ5Kwv3Qe4eWur4Ex6GeFDZkIvBCmbaAdGPFlfu1i2uO1yBooNP1Rs
GiUkp+dP1/KREWwR/dOIsHYL2QjWIWfHQEWit/9Bj46rxE9ERx/TWt3AeKPfKriO
Wp0JKp6QY78jg6a0a2/JVmbT1BKz69Z9aPp6hl4P2MfbBYOnqijRhdezFW0NyqV2
pn6nsuiLIiXbnSOEw0+Wdnw5Q0qhICs5B5eaBfQrwgfZ8pxPHv2Ir777GvUTV01E
Dv0ZpYsHa+mHe17nlK8V3+4eajt0PetExcXAYNiIE+pCb7pLjjKkl8e+lcEvEsO0
QSL3zG5i5RWUMPYUvaFRgepWy3k/GPIoDQjRcUD3P+1T0GmnogNN10MMNhmOzfWU
pyafe4tJUOVsq0HJ7V/bxIHk2p+Q+5JLKh5xBm9janE4BpabmSQnvFWNblVfK4ig
M9ohjI/yMtgXROC4xkNXgi8wE5jfDKBghT6FjTqKWSV45vknF1mNEjvuaY+aRZ3H
MB4P3HCj+PKWJimWHRYnDshcytkgcgVcYDiim8va/4UDrw8O2ks=
=JOZu
-----END PGP SIGNATURE-----
Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode loading updates from Borislac Petkov:
"Major microcode loader restructuring, cleanup and improvements by
Thomas Gleixner:
- Restructure the code needed for it and add a temporary initrd
mapping on 32-bit so that the loader can access the microcode
blobs. This in itself is a preparation for the next major
improvement:
- Do not load microcode on 32-bit before paging has been enabled.
Handling this has caused an endless stream of headaches, issues,
ugly code and unnecessary hacks in the past. And there really
wasn't any sensible reason to do that in the first place. So switch
the 32-bit loading to happen after paging has been enabled and turn
the loader code "real purrty" again
- Drop mixed microcode steppings loading on Intel - there, a single
patch loaded on the whole system is sufficient
- Rework late loading to track which CPUs have updated microcode
successfully and which haven't, act accordingly
- Move late microcode loading on Intel in NMI context in order to
guarantee concurrent loading on all threads
- Make the late loading CPU-hotplug-safe and have the offlined
threads be woken up for the purpose of the update
- Add support for a minimum revision which determines whether late
microcode loading is safe on a machine and the microcode does not
change software visible features which the machine cannot use
anyway since feature detection has happened already. Roughly, the
minimum revision is the smallest revision number which must be
loaded currently on the system so that late updates can be allowed
- Other nice leanups, fixess, etc all over the place"
* tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
x86/microcode/intel: Add a minimum required revision for late loading
x86/microcode: Prepare for minimal revision check
x86/microcode: Handle "offline" CPUs correctly
x86/apic: Provide apic_force_nmi_on_cpu()
x86/microcode: Protect against instrumentation
x86/microcode: Rendezvous and load in NMI
x86/microcode: Replace the all-in-one rendevous handler
x86/microcode: Provide new control functions
x86/microcode: Add per CPU control field
x86/microcode: Add per CPU result state
x86/microcode: Sanitize __wait_for_cpus()
x86/microcode: Clarify the late load logic
x86/microcode: Handle "nosmt" correctly
x86/microcode: Clean up mc_cpu_down_prep()
x86/microcode: Get rid of the schedule work indirection
x86/microcode: Mop up early loading leftovers
x86/microcode/amd: Use cached microcode for AP load
x86/microcode/amd: Cache builtin/initrd microcode early
x86/microcode/amd: Cache builtin microcode too
x86/microcode/amd: Use correct per CPU ucode_cpu_info
...
When SMT siblings are soft-offlined and parked in one of the play_dead()
variants they still react on NMI, which is problematic on affected Intel
CPUs. The default play_dead() variant uses MWAIT on modern CPUs, which is
not guaranteed to be safe when updated concurrently.
Right now late loading is prevented when not all SMT siblings are online,
but as they still react on NMI, it is possible to bring them out of their
park position into a trivial rendezvous handler.
Provide a function which allows to do that. I does sanity checks whether
the target is in the cpus_booted_once_mask and whether the APIC driver
supports it.
Mark X2APIC and XAPIC as capable, but exclude 32bit and the UV and NUMACHIP
variants as that needs feedback from the relevant experts.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231002115903.603100036@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.172569282@linutronix.de
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.
Make it all consistently use u32 because that reflects the hardware
register width even if that callback going to be removed soonish.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.113097126@linutronix.de
Every callsite hands in the same constants which is a pointless exercise
and cannot be optimized by the compiler due to the indirect calls.
Use the constants in the eoi() callbacks and remove the arguments.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Wasted space for no value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Now that everything has apic::max_apic_id set and the eventual update for
the x2APIC case is in place, switch the apic_id_valid() helper to use
apic::max_apic_id and remove the apic::apic_id_valid() callback.
[ dhansen: Fix subject typo ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
In order to remove the apic::apic_id_valid() callback and switch to
checking apic::max_apic_id, it is required to update apic::max_apic_id when
the APIC initialization code overrides it via x2apic_set_max_apicid().
Make the existing booleans a bitfield and add a flag which lets the update
function and the core code which switches the driver detect whether the
apic instance wants to have that update or not and apply it if required.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Currently, x2apic_max_apicid==0 means that there is no max APIC id limit.
But, this means that 0 needs to be special-cased.
Designate UINT_MAX to mean unlimited so that a plain old less than or equal
compare works and there is no special-casing. Replace the 0 initialization
with UINT_MAX.
[ dhansen: muck with changelog ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
There is really no point to have a callback which compares numbers.
Add a field which allows each APIC to store the maximum APIC ID supported
and fill it in for all APIC incarnations.
The next step will remove the callback.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Yet more copy and pasta gone.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Remove tons of NOOP callbacks by making the invocation of
safe_wait_icr_idle() conditional in the inline wrapper.
Will be replaced by a static_call_cond() later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Nuke more NOOP callbacks and make the invocation conditional. Will be
replaced with a static call later.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Really not a hotpath and again no reason for having a gazillion of empty
callbacks returning 1. Make it return bool and provide one shared
implementation for the remaining users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
default_setup_apic_routing() is a complete misnomer. On 64bit it does the
actual APIC probing and on 32bit it is used to force select the bigsmp APIC
and to emit a redundant message in the apic::setup_apic_routing() callback.
Rename the 64bit and 32bit function so they reflect what they are doing and
remove the useless APIC callback.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
This is only used on 32bit and is a wrapper around
physid_set_mask_of_physid() in all 32bit APIC drivers.
Remove the callback and use physid_set_mask_of_physid() in the code
directly,
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
apic::init_apic_ldr() is only invoked when the APIC is initialized. So
there is really no point in having:
- Default empty callbacks all over the place
- Two implementations of the actual LDR init function where one is
just unreadable gunk but does exactly the same as the other.
Make the apic::init_apic_ldr() invocation conditional, remove the empty
callbacks and consolidate the two implementation into one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
The only silly usage site is gone. Remove the gunk which was even outright
wrong in the bigsmp_32 case which returned true unconditionally.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Put it to the other historical leftovers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
When booting with "intremap=off" and "x2apic_phys" on the kernel command
line, the physical x2APIC driver ends up being used even when x2APIC
mode is disabled ("intremap=off" disables x2APIC mode). This happens
because the first compound condition check in x2apic_phys_probe() is
false due to x2apic_mode == 0 and so the following one returns true
after default_acpi_madt_oem_check() having already selected the physical
x2APIC driver.
This results in the following panic:
kernel BUG at arch/x86/kernel/apic/io_apic.c:2409!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
CPU: 0 PID: 0 Comm: swapper/0 Not tainted 6.4.0-rc2-ver4.1rc2 #2
Hardware name: Dell Inc. PowerEdge R6515/07PXPY, BIOS 2.3.6 07/06/2021
RIP: 0010:setup_IO_APIC+0x9c/0xaf0
Call Trace:
<TASK>
? native_read_msr
apic_intr_mode_init
x86_late_time_init
start_kernel
x86_64_start_reservations
x86_64_start_kernel
secondary_startup_64_no_verify
</TASK>
which is:
setup_IO_APIC:
apic_printk(APIC_VERBOSE, "ENABLING IO-APIC IRQs\n");
for_each_ioapic(ioapic)
BUG_ON(mp_irqdomain_create(ioapic));
Return 0 to denote that x2APIC has not been enabled when probing the
physical x2APIC driver.
[ bp: Massage commit message heavily. ]
Fixes: 9ebd680bd0 ("x86, apic: Use probe routines to simplify apic selection")
Signed-off-by: Dheeraj Kumar Srivastava <dheerajkumar.srivastava@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kishon Vijay Abraham I <kvijayab@amd.com>
Reviewed-by: Vasant Hegde <vasant.hegde@amd.com>
Reviewed-by: Cyrill Gorcunov <gorcunov@gmail.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230616212236.1389-1-dheerajkumar.srivastava@amd.com
Jan Kiszka reported that the x2apic_wrmsr_fence() function uses a plain
MFENCE while the Intel SDM (10.12.3 MSR Access in x2APIC Mode) calls for
MFENCE; LFENCE.
Short summary: we have special MSRs that have weaker ordering than all
the rest. Add fencing consistent with current SDM recommendations.
This is not known to cause any issues in practice, only in theory.
Longer story below:
The reason the kernel uses a different semantic is that the SDM changed
(roughly in late 2017). The SDM changed because folks at Intel were
auditing all of the recommended fences in the SDM and realized that the
x2apic fences were insufficient.
Why was the pain MFENCE judged insufficient?
WRMSR itself is normally a serializing instruction. No fences are needed
because the instruction itself serializes everything.
But, there are explicit exceptions for this serializing behavior written
into the WRMSR instruction documentation for two classes of MSRs:
IA32_TSC_DEADLINE and the X2APIC MSRs.
Back to x2apic: WRMSR is *not* serializing in this specific case.
But why is MFENCE insufficient? MFENCE makes writes visible, but
only affects load/store instructions. WRMSR is unfortunately not a
load/store instruction and is unaffected by MFENCE. This means that a
non-serializing WRMSR could be reordered by the CPU to execute before
the writes made visible by the MFENCE have even occurred in the first
place.
This means that an x2apic IPI could theoretically be triggered before
there is any (visible) data to process.
Does this affect anything in practice? I honestly don't know. It seems
quite possible that by the time an interrupt gets to consume the (not
yet) MFENCE'd data, it has become visible, mostly by accident.
To be safe, add the SDM-recommended fences for all x2apic WRMSRs.
This also leaves open the question of the _other_ weakly-ordered WRMSR:
MSR_IA32_TSC_DEADLINE. While it has the same ordering architecture as
the x2APIC MSRs, it seems substantially less likely to be a problem in
practice. While writes to the in-memory Local Vector Table (LVT) might
theoretically be reordered with respect to a weakly-ordered WRMSR like
TSC_DEADLINE, the SDM has this to say:
In x2APIC mode, the WRMSR instruction is used to write to the LVT
entry. The processor ensures the ordering of this write and any
subsequent WRMSR to the deadline; no fencing is required.
But, that might still leave xAPIC exposed. The safest thing to do for
now is to add the extra, recommended LFENCE.
[ bp: Massage commit message, fix typos, drop accidentally added
newline to tools/arch/x86/include/asm/barrier.h. ]
Reported-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20200305174708.F77040DD@viggo.jf.intel.com
apic::irq_dest_mode is actually a boolean, but defined as u32 and named in
a way which does not explain what it means.
Make it a boolean and rename it to 'dest_mode_logical'
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-9-dwmw2@infradead.org
struct apic has two members which store information about the destination
mode: dest_logical and irq_dest_mode.
dest_logical contains a mask which was historically used to set the
destination mode in IPI messages. Over time the usage was reduced and the
logical/physical functions were seperated.
There are only a few places which still use 'dest_logical' but they can
use 'irq_dest_mode' instead.
irq_dest_mode is actually a boolean where 0 means physical destination mode
and 1 means logical destination mode. Of course the name does not reflect
the functionality. This will be cleaned up in a subsequent change.
Remove apic::dest_logical and fixup the remaining users.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-8-dwmw2@infradead.org
The enum ioapic_irq_destination_types and the enumerated constants starting
with 'dest_' are gross misnomers because they describe the delivery mode.
Rename then enum and the constants so they actually make sense.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-6-dwmw2@infradead.org
Currently, Linux as a hypervisor guest will enable x2apic only if there are
no CPUs present at boot time with an APIC ID above 255.
Hotplugging a CPU later with a higher APIC ID would result in a CPU which
cannot be targeted by external interrupts.
Add a filter in x2apic_apic_id_valid() which can be used to prevent such
CPUs from coming online, and allow x2apic to be enabled even if they are
present at boot time.
Fixes: ce69a78450 ("x86/apic: Enable x2APIC without interrupt remapping under KVM")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20201024213535.443185-2-dwmw2@infradead.org
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Implement shorthand support for x2apic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.134696837@linutronix.de
Now there are three small local headers. Some contain functions which are
only used in one source file.
Move all the inlines and declarations into a single local header and the
inlines which are only used in one source file into that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.618612624@linutronix.de
All of these APIC files include the world and some more. Remove the
unneeded cruft.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.342631201@linutronix.de
The APIC ID as parsed from ACPI MADT is validity checked with the
apic->apic_id_valid() callback, which depends on the selected APIC type.
For non X2APIC types APIC IDs >= 0xFF are invalid, but values > 0x7FFFFFFF
are detected as valid. This happens because the 'apicid' argument of the
apic_id_valid() callback is type 'int'. So the resulting comparison
apicid < 0xFF
evaluates to true for all unsigned int values > 0x7FFFFFFF which are handed
to default_apic_id_valid(). As a consequence, invalid APIC IDs in !X2APIC
mode are considered valid and accounted as possible CPUs.
Change the apicid argument type of the apic_id_valid() callback to u32 so
the evaluation is unsigned and returns the correct result.
[ tglx: Massaged changelog ]
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: stable@vger.kernel.org
Cc: jgross@suse.com
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/1523322966-10296-1-git-send-email-lirongqing@baidu.com
set_x2apic_phys_mode() is only called as part of early_param()
initialization - so mark it as __init.
Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20180117034543.26723-1-douly.fnst@cn.fujitsu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Now that the old allocator is gone, these apic functions are unused. Remove
them.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213155.524662349@linutronix.de
As preparation for replacing the vector allocator, provide a new function
which takes a cpu number instead of a cpu mask to calculate/lookup the
resulting APIC destination id.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
The target_cpus() callback of the apic struct is not really useful. Some
APICs return cpu_online_mask and others cpus_all_mask. The latter is bogus
as it does not take holes in the cpus_possible_mask into account.
Replace it with cpus_online_mask which makes the most sense and remove the
callback.
The usage sites will be removed in a later step anyway, so get rid of it
now to have incremental changes.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213154.070850916@linutronix.de
The set_apic_id() callback returns an unsigned long value which is handed
in to apic_write() as the value argument u32.
Adjust the return value so it returns u32 right away.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.437208268@linutronix.de
These inline functions are used in both the cluster and the physical x2apic
code to fill in the function pointers of the apic structure. That means the
code is generated twice for no reason.
Move it to a C code and reuse it.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Yu Chen <yu.c.chen@intel.com>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Alok Kataria <akataria@vmware.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rui Zhang <rui.zhang@intel.com>
Cc: "K. Y. Srinivasan" <kys@microsoft.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Len Brown <lenb@kernel.org>
Link: https://lkml.kernel.org/r/20170913213153.358954066@linutronix.de
All implementations of apic->cpu_mask_to_apicid_and() and the two incoming
cpumasks to search for the target.
Move that operation to the call site and rename it to cpu_mask_to_apicid()
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Marc Zyngier <marc.zyngier@arm.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Christoph Hellwig <hch@lst.de>
Link: http://lkml.kernel.org/r/20170619235446.641575516@linutronix.de
Guided by grsecurity's analogous __read_only markings in arch/x86,
this applies several uses of __ro_after_init to structures that are
only updated during __init, and const for some structures that are
never updated. Additionally extends __init markings to some functions
that are only used during __init, and cleans up some missing C99 style
static initializers.
Signed-off-by: Kees Cook <keescook@chromium.org>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brad Spengler <spender@grsecurity.net>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: David Brown <david.brown@linaro.org>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: Emese Revfy <re.emese@gmail.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: PaX Team <pageexec@freemail.hu>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: kernel-hardening@lists.openwall.com
Link: http://lkml.kernel.org/r/20160808232906.GA29731@www.outflux.net
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Both the per-APIC flag ".wait_for_init_deassert",
and the global atomic_t "init_deasserted"
are dead code -- remove them.
For all APIC types, "wait_for_master()"
prevents an AP from proceeding until the BSP has set
cpu_callout_mask, making "init_deasserted" {unnecessary}:
BSP: <de-assert INIT>
...
BSP: {set init_deasserted}
AP: wait_for_master()
set cpu_initialized_mask
wait for cpu_callout_mask
BSP: test cpu_initialized_mask
BSP: set cpu_callout_mask
AP: test cpu_callout_mask
AP: {wait for init_deasserted}
...
AP: <touch APIC>
Deleting the {dead code} above is necessary to enable
some parallelism in a future patch.
Signed-off-by: Len Brown <len.brown@intel.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Igor Mammedov <imammedo@redhat.com>
Cc: Jan H. Schönherr <jschoenh@amazon.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Zhu Guihua <zhugh.fnst@cn.fujitsu.com>
Link: http://lkml.kernel.org/r/de4b3a9bab894735e285870b5296da25ee6a8a5a.1439739165.git.len.brown@intel.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
If ACPI is disabled, acpi_gbl_FADT is not available, and and the build
breaks.
Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Link: http://lkml.kernel.org/r/55479708.2000104@siemens.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>