Ignore the userspace provided x2APIC ID when fixing up APIC state for
KVM_SET_LAPIC, i.e. make the x2APIC fully readonly in KVM. Commit
a92e2543d6 ("KVM: x86: use hardware-compatible format for APIC ID
register"), which added the fixup, didn't intend to allow userspace to
modify the x2APIC ID. In fact, that commit is when KVM first started
treating the x2APIC ID as readonly, apparently to fix some race:
static inline u32 kvm_apic_id(struct kvm_lapic *apic)
{
- return (kvm_lapic_get_reg(apic, APIC_ID) >> 24) & 0xff;
+ /* To avoid a race between apic_base and following APIC_ID update when
+ * switching to x2apic_mode, the x2apic mode returns initial x2apic id.
+ */
+ if (apic_x2apic_mode(apic))
+ return apic->vcpu->vcpu_id;
+
+ return kvm_lapic_get_reg(apic, APIC_ID) >> 24;
}
Furthermore, KVM doesn't support delivering interrupts to vCPUs with a
modified x2APIC ID, but KVM *does* return the modified value on a guest
RDMSR and for KVM_GET_LAPIC. I.e. no remotely sane setup can actually
work with a modified x2APIC ID.
Making the x2APIC ID fully readonly fixes a WARN in KVM's optimized map
calculation, which expects the LDR to align with the x2APIC ID.
WARNING: CPU: 2 PID: 958 at arch/x86/kvm/lapic.c:331 kvm_recalculate_apic_map+0x609/0xa00 [kvm]
CPU: 2 PID: 958 Comm: recalc_apic_map Not tainted 6.4.0-rc3-vanilla+ #35
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.2-1-1 04/01/2014
RIP: 0010:kvm_recalculate_apic_map+0x609/0xa00 [kvm]
Call Trace:
<TASK>
kvm_apic_set_state+0x1cf/0x5b0 [kvm]
kvm_arch_vcpu_ioctl+0x1806/0x2100 [kvm]
kvm_vcpu_ioctl+0x663/0x8a0 [kvm]
__x64_sys_ioctl+0xb8/0xf0
do_syscall_64+0x56/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7fade8b9dd6f
Unfortunately, the WARN can still trigger for other CPUs than the current
one by racing against KVM_SET_LAPIC, so remove it completely.
Reported-by: Michal Luczaj <mhal@rbox.co>
Closes: https://lore.kernel.org/all/814baa0c-1eaa-4503-129f-059917365e80@rbox.co
Reported-by: Haoyu Wu <haoyuwu254@gmail.com>
Closes: https://lore.kernel.org/all/20240126161633.62529-1-haoyuwu254@gmail.com
Reported-by: syzbot+545f1326f405db4e1c3e@syzkaller.appspotmail.com
Closes: https://lore.kernel.org/all/000000000000c2a6b9061cbca3c3@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240802202941.344889-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Introduces kvm_x86_call(), to streamline the usage of static calls of
kvm_x86_ops. The current implementation of these calls is verbose and
could lead to alignment challenges. This makes the code susceptible to
exceeding the "80 columns per single line of code" limit as defined in
the coding-style document. Another issue with the existing implementation
is that the addition of kvm_x86_ prefix to hooks at the static_call sites
hinders code readability and navigation. kvm_x86_call() is added to
improve code readability and maintainability, while adhering to the coding
style guidelines.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Link: https://lore.kernel.org/r/20240507133103.15052-3-wei.w.wang@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmaRub0ACgkQOlYIJqCj
N/2LMxAArGzhcWZ6Qdo2aMRaMIPtSBJHmbEgEuHvHMumgsTZQzDcn9cxDi/hNSrc
l8ODOwAM2qNcq95YfwjU7F0ae3E+HRzGvKcBnmZWuQeCDp2HhVEoCphFu1sHst+t
XEJTL02b6OgyJUEU3h40mYk12eiq2S4FCnFYXPCqijwwuL6Y5KQvvTqek3c2/SDn
c+VneutYGax/S0GiiCkYh4wrwWh9g7qm0IX70ycBwJbW5qBFKgyglvHxvL8JLJC9
Nkkw/p2657wcOdraH+fOBuRy2dMwE5fv++1tOjWwB5WAAhSOJPZh0BGYvgA2yfN7
OE+k7APKUQd9Xxtud8H3LrTPoyMA4hz2sdDFyqrrWK9yjpBY7zXNyN50Fxi7VVsm
T8nTIiKAGyRbjotY+m7krXQPXjfZYhVqrJ/jtxESOZLZ93q2gSWU2p/ZXpUPVHnH
+YOBAI1owP3wepaYlrthtI4LQx9lF422dnmeSflztfKFGabRbQZxg3uHMCCxIaGc
lJ6CD546+D45f/uBXRDMqk//qFTqXhKUbDk9sutmU/C2oWufMwW0R8kOyItGPyvk
9PP1vd8vSsIHj+tpwg+i04jBqYDaAcPBOcTZaHm9SYYP+1e11Uu5Vjep37JL1bkA
xJWxnDZOCGcfKQi2jkh51HJ/dOAHXY1GQKMfyAoPQOSonYHvGVY=
=Cf2R
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.11' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.11
- Add a global struct to consolidate tracking of host values, e.g. EFER, and
move "shadow_phys_bits" into the structure as "maxphyaddr".
- Add KVM_CAP_X86_APIC_BUS_CYCLES_NS to allow configuring the effective APIC
bus frequency, because TDX.
- Print the name of the APICv/AVIC inhibits in the relevant tracepoint.
- Clean up KVM's handling of vendor specific emulation to consistently act on
"compatible with Intel/AMD", versus checking for a specific vendor.
- Misc cleanups
Introduce the VM variable "nanoseconds per APIC bus cycle" in
preparation to make the APIC bus frequency configurable.
The TDX architecture hard-codes the core crystal clock frequency to
25MHz and mandates exposing it via CPUID leaf 0x15. The TDX architecture
does not allow the VMM to override the value.
In addition, per Intel SDM:
"The APIC timer frequency will be the processor’s bus clock or core
crystal clock frequency (when TSC/core crystal clock ratio is
enumerated in CPUID leaf 0x15) divided by the value specified in
the divide configuration register."
The resulting 25MHz APIC bus frequency conflicts with the KVM hardcoded
APIC bus frequency of 1GHz.
Introduce the VM variable "nanoseconds per APIC bus cycle" to prepare
for allowing userspace to tell KVM to use the frequency that TDX mandates
instead of the default 1Ghz. Doing so ensures that the guest doesn't have
a conflicting view of the APIC bus frequency.
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
[reinette: rework changelog]
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/ae75ce37c6c38bb4efd10a0a41932984c40b24ac.1714081726.git.reinette.chatre@intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove support for specifying a static local APIC timer advancement value,
and instead present a read-only boolean parameter to let userspace enable
or disable KVM's dynamic APIC timer advancement. Realistically, it's all
but impossible for userspace to specify an advancement that is more
precise than what KVM's adaptive tuning can provide. E.g. a static value
needs to be tuned for the exact hardware and kernel, and if KVM is using
hrtimers, likely requires additional tuning for the exact configuration of
the entire system.
Dropping support for a userspace provided value also fixes several flaws
in the interface. E.g. KVM interprets a negative value other than -1 as a
large advancement, toggling between a negative and positive value yields
unpredictable behavior as vCPUs will switch from dynamic to static
advancement, changing the advancement in the middle of VM creation can
result in different values for vCPUs within a VM, etc. Those flaws are
mostly fixable, but there's almost no justification for taking on yet more
complexity (it's minimal complexity, but still non-zero).
The only arguments against using KVM's adaptive tuning is if a setup needs
a higher maximum, or if the adjustments are too reactive, but those are
arguments for letting userspace control the absolute max advancement and
the granularity of each adjustment, e.g. similar to how KVM provides knobs
for halt polling.
Link: https://lore.kernel.org/all/20240520115334.852510-1-zhoushuling@huawei.com
Cc: Shuling Zhou <zhoushuling@huawei.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240522010304.1650603-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
On AMD and Hygon platforms, the local APIC does not automatically set
the mask bit of the LVTPC register when handling a PMI and there is
no need to clear it in the kernel's PMI handler.
For guests, the mask bit is currently set by kvm_apic_local_deliver()
and unless it is cleared by the guest kernel's PMI handler, PMIs stop
arriving and break use-cases like sampling with perf record.
This does not affect non-PerfMonV2 guests because PMIs are handled in
the guest kernel by x86_pmu_handle_irq() which always clears the LVTPC
mask bit irrespective of the vendor.
Before:
$ perf record -e cycles:u true
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.001 MB perf.data (1 samples) ]
After:
$ perf record -e cycles:u true
[ perf record: Woken up 1 times to write data ]
[ perf record: Captured and wrote 0.002 MB perf.data (19 samples) ]
Fixes: a16eb25b09 ("KVM: x86: Mask LVTPC when handling a PMI")
Cc: stable@vger.kernel.org
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
[sean: use is_intel_compatible instead of !is_amd_or_hygon()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
* Changes to FPU handling came in via the main s390 pull request
* Only deliver to the guest the SCLP events that userspace has
requested.
* More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same).
* Fix selftests undefined behavior.
x86:
* Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can be
programmed *using the architectural encoding*. The enumeration does
NOT say anything about the encoding when the CPU doesn't report support
the event *in general*. It might support it, and it might support it
using the same encoding that made it into the architectural PMU spec.
* Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly emulates
RDMPC, counter availability, and a variety of other PMC-related
behaviors that depend on guest CPUID and therefore are easier to
validate with selftests than with custom guests (aka kvm-unit-tests).
* Zero out PMU state on AMD if the virtual PMU is disabled, it does not
cause any bug but it wastes time in various cases where KVM would check
if a PMC event needs to be synthesized.
* Optimize triggering of emulated events, with a nice ~10% performance
improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
guest.
* Tighten the check for "PMI in guest" to reduce false positives if an NMI
arrives in the host while KVM is handling an IRQ VM-Exit.
* Fix a bug where KVM would report stale/bogus exit qualification information
when exiting to userspace with an internal error exit code.
* Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
* Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
* Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB). KVM
doesn't support yielding in the middle of processing a zap, and 1GiB
granularity resulted in multi-millisecond lags that are quite impolite
for CONFIG_PREEMPT kernels.
* Allocate write-tracking metadata on-demand to avoid the memory overhead when
a kernel is built with i915 virtualization support but the workloads use
neither shadow paging nor i915 virtualization.
* Explicitly initialize a variety of on-stack variables in the emulator that
triggered KMSAN false positives.
* Fix the debugregs ABI for 32-bit KVM.
* Rework the "force immediate exit" code so that vendor code ultimately decides
how and when to force the exit, which allowed some optimization for both
Intel and AMD.
* Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
vCPU creation ultimately failed, causing extra unnecessary work.
* Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
* Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere in the
kernel) are detected earlier and are less likely to hang the kernel.
x86 Xen emulation:
* Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the
gpa but the underlying host virtual address remains the same.
* When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
* Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
* Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
RISC-V:
* Support exception and interrupt handling in selftests
* New self test for RISC-V architectural timer (Sstc extension)
* New extension support (Ztso, Zacas)
* Support userspace emulation of random number seed CSRs.
ARM:
* Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
* Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
* Conversion of KVM's representation of LPIs to an xarray, utilized to
address serialization some of the serialization on the LPI injection
path
* Support for _architectural_ VHE-only systems, advertised through the
absence of FEAT_E2H0 in the CPU's ID register
* Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
* Set reserved bits as zero in CPUCFG.
* Start SW timer only when vcpu is blocking.
* Do not restart SW timer when it is expired.
* Remove unnecessary CSR register saving during enter guest.
* Misc cleanups and fixes as usual.
Generic:
* cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
true on all architectures except MIPS (where Kconfig determines the
available depending on CPU capabilities). It is replaced either by
an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
everywhere else.
* Factor common "select" statements in common code instead of requiring
each architecture to specify it
* Remove thoroughly obsolete APIs from the uapi headers.
* Move architecture-dependent stuff to uapi/asm/kvm.h
* Always flush the async page fault workqueue when a work item is being
removed, especially during vCPU destruction, to ensure that there are no
workers running in KVM code when all references to KVM-the-module are gone,
i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
* Grab a reference to the VM's mm_struct in the async #PF worker itself instead
of gifting the worker a reference, so that there's no need to remember
to *conditionally* clean up after the worker.
Selftests:
* Reduce boilerplate especially when utilize selftest TAP infrastructure.
* Add basic smoke tests for SEV and SEV-ES, along with a pile of library
support for handling private/encrypted/protected memory.
* Fix benign bugs where tests neglect to close() guest_memfd files.
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
=mqOV
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"S390:
- Changes to FPU handling came in via the main s390 pull request
- Only deliver to the guest the SCLP events that userspace has
requested
- More virtual vs physical address fixes (only a cleanup since
virtual and physical address spaces are currently the same)
- Fix selftests undefined behavior
x86:
- Fix a restriction that the guest can't program a PMU event whose
encoding matches an architectural event that isn't included in the
guest CPUID. The enumeration of an architectural event only says
that if a CPU supports an architectural event, then the event can
be programmed *using the architectural encoding*. The enumeration
does NOT say anything about the encoding when the CPU doesn't
report support the event *in general*. It might support it, and it
might support it using the same encoding that made it into the
architectural PMU spec
- Fix a variety of bugs in KVM's emulation of RDPMC (more details on
individual commits) and add a selftest to verify KVM correctly
emulates RDMPC, counter availability, and a variety of other
PMC-related behaviors that depend on guest CPUID and therefore are
easier to validate with selftests than with custom guests (aka
kvm-unit-tests)
- Zero out PMU state on AMD if the virtual PMU is disabled, it does
not cause any bug but it wastes time in various cases where KVM
would check if a PMC event needs to be synthesized
- Optimize triggering of emulated events, with a nice ~10%
performance improvement in VM-Exit microbenchmarks when a vPMU is
exposed to the guest
- Tighten the check for "PMI in guest" to reduce false positives if
an NMI arrives in the host while KVM is handling an IRQ VM-Exit
- Fix a bug where KVM would report stale/bogus exit qualification
information when exiting to userspace with an internal error exit
code
- Add a VMX flag in /proc/cpuinfo to report 5-level EPT support
- Rework TDP MMU root unload, free, and alloc to run with mmu_lock
held for read, e.g. to avoid serializing vCPUs when userspace
deletes a memslot
- Tear down TDP MMU page tables at 4KiB granularity (used to be
1GiB). KVM doesn't support yielding in the middle of processing a
zap, and 1GiB granularity resulted in multi-millisecond lags that
are quite impolite for CONFIG_PREEMPT kernels
- Allocate write-tracking metadata on-demand to avoid the memory
overhead when a kernel is built with i915 virtualization support
but the workloads use neither shadow paging nor i915 virtualization
- Explicitly initialize a variety of on-stack variables in the
emulator that triggered KMSAN false positives
- Fix the debugregs ABI for 32-bit KVM
- Rework the "force immediate exit" code so that vendor code
ultimately decides how and when to force the exit, which allowed
some optimization for both Intel and AMD
- Fix a long-standing bug where kvm_has_noapic_vcpu could be left
elevated if vCPU creation ultimately failed, causing extra
unnecessary work
- Cleanup the logic for checking if the currently loaded vCPU is
in-kernel
- Harden against underflowing the active mmu_notifier invalidation
count, so that "bad" invalidations (usually due to bugs elsehwere
in the kernel) are detected earlier and are less likely to hang the
kernel
x86 Xen emulation:
- Overlay pages can now be cached based on host virtual address,
instead of guest physical addresses. This removes the need to
reconfigure and invalidate the cache if the guest changes the gpa
but the underlying host virtual address remains the same
- When possible, use a single host TSC value when computing the
deadline for Xen timers in order to improve the accuracy of the
timer emulation
- Inject pending upcall events when the vCPU software-enables its
APIC to fix a bug where an upcall can be lost (and to follow Xen's
behavior)
- Fall back to the slow path instead of warning if "fast" IRQ
delivery of Xen events fails, e.g. if the guest has aliased xAPIC
IDs
RISC-V:
- Support exception and interrupt handling in selftests
- New self test for RISC-V architectural timer (Sstc extension)
- New extension support (Ztso, Zacas)
- Support userspace emulation of random number seed CSRs
ARM:
- Infrastructure for building KVM's trap configuration based on the
architectural features (or lack thereof) advertised in the VM's ID
registers
- Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
x86's WC) at stage-2, improving the performance of interacting with
assigned devices that can tolerate it
- Conversion of KVM's representation of LPIs to an xarray, utilized
to address serialization some of the serialization on the LPI
injection path
- Support for _architectural_ VHE-only systems, advertised through
the absence of FEAT_E2H0 in the CPU's ID register
- Miscellaneous cleanups, fixes, and spelling corrections to KVM and
selftests
LoongArch:
- Set reserved bits as zero in CPUCFG
- Start SW timer only when vcpu is blocking
- Do not restart SW timer when it is expired
- Remove unnecessary CSR register saving during enter guest
- Misc cleanups and fixes as usual
Generic:
- Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
always true on all architectures except MIPS (where Kconfig
determines the available depending on CPU capabilities). It is
replaced either by an architecture-dependent symbol for MIPS, and
IS_ENABLED(CONFIG_KVM) everywhere else
- Factor common "select" statements in common code instead of
requiring each architecture to specify it
- Remove thoroughly obsolete APIs from the uapi headers
- Move architecture-dependent stuff to uapi/asm/kvm.h
- Always flush the async page fault workqueue when a work item is
being removed, especially during vCPU destruction, to ensure that
there are no workers running in KVM code when all references to
KVM-the-module are gone, i.e. to prevent a very unlikely
use-after-free if kvm.ko is unloaded
- Grab a reference to the VM's mm_struct in the async #PF worker
itself instead of gifting the worker a reference, so that there's
no need to remember to *conditionally* clean up after the worker
Selftests:
- Reduce boilerplate especially when utilize selftest TAP
infrastructure
- Add basic smoke tests for SEV and SEV-ES, along with a pile of
library support for handling private/encrypted/protected memory
- Fix benign bugs where tests neglect to close() guest_memfd files"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
selftests: kvm: remove meaningless assignments in Makefiles
KVM: riscv: selftests: Add Zacas extension to get-reg-list test
RISC-V: KVM: Allow Zacas extension for Guest/VM
KVM: riscv: selftests: Add Ztso extension to get-reg-list test
RISC-V: KVM: Allow Ztso extension for Guest/VM
RISC-V: KVM: Forward SEED CSR access to user space
KVM: riscv: selftests: Add sstc timer test
KVM: riscv: selftests: Change vcpu_has_ext to a common function
KVM: riscv: selftests: Add guest helper to get vcpu id
KVM: riscv: selftests: Add exception handling support
LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
LoongArch: KVM: Do not restart SW timer when it is expired
LoongArch: KVM: Start SW timer only when vcpu is blocking
LoongArch: KVM: Set reserved bits as zero in CPUCFG
KVM: selftests: Explicitly close guest_memfd files in some gmem tests
KVM: x86/xen: fix recursive deadlock in timer injection
KVM: pfncache: simplify locking and make more self-contained
KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
KVM: x86/xen: improve accuracy of Xen timers
...
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
that are "mapped" into guests via physical addresses.
- Add support for using gfn_to_pfn caches with only a host virtual address,
i.e. to bypass the "gfn" stage of the cache. The primary use case is
overlay pages, where the guest may change the gfn used to reference the
overlay page, but the backing hva+pfn remains the same.
- Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
of a gpa, so that userspace doesn't need to reconfigure and invalidate the
cache/mapping if the guest changes the gpa (but userspace keeps the resolved
hva the same).
- When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
- Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
- Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
- Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
refresh), and drop a now-redundant acquisition of xen_lock (that was
protecting the shared_info cache) to fix a deadlock due to recursively
acquiring xen_lock.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrblYACgkQOlYIJqCj
N/3K4Q/+KZ8lrnNXvdHNCQdosA5DDXpqUcRzhlTUp82fncpdJ0LqrSMzMots2Eh9
KC0jSPo8EkivF+Epug0+bpQBEaLXzTWhRcS1grePCDz2lBnxoHFSWjvaK2p14KlC
LvxCJZjxyfLKHwKHpSndvO9hVFElCY3mvvE9KRcKeQAmrz1cz+DDMKelo1MuV8D+
GfymhYc+UXpY41+6hQdznx+WoGoXKRameo3iGYuBoJjvKOyl4Wxkx9WSXIxxxuqG
kHxjiWTR/jF1ITJl6PeMrFcGl3cuGKM/UfTOM6W2h6Wi3mhLpXveoVLnqR1kipIj
btSzSVHL7C4WTPwOcyhwPzap+dJmm31c6N0uPScT7r9yhs+q5BDj26vcVcyPZUHo
efIwmsnO2eQvuw+f8C6QqWCPaxvw46N0zxzwgc5uA3jvAC93y0l4v+xlAQsC0wzV
0+BwU00cutH/3t3c/WPD5QcmRLH726VoFuTlaDufpoMU7gBVJ8rzjcusxR+5BKT+
GJcAgZxZhEgvnzmTKd4Ec/mt+xZ2Erd+kV3MKCHvDPyj8jqy8FQ4DAWKGBR+h3WR
rqAs2k8NPHyh3i1a3FL1opmxEGsRS+Cnc6Bi77cj9DxTr22JkgDJEuFR+Ues1z6/
SpE889kt3w5zTo34+lNxNPlIKmO0ICwwhDL6pxJTWU7iWQnKypU=
=GliW
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-xen-6.9' of https://github.com/kvm-x86/linux into HEAD
KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
that are "mapped" into guests via physical addresses.
- Add support for using gfn_to_pfn caches with only a host virtual address,
i.e. to bypass the "gfn" stage of the cache. The primary use case is
overlay pages, where the guest may change the gfn used to reference the
overlay page, but the backing hva+pfn remains the same.
- Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
of a gpa, so that userspace doesn't need to reconfigure and invalidate the
cache/mapping if the guest changes the gpa (but userspace keeps the resolved
hva the same).
- When possible, use a single host TSC value when computing the deadline for
Xen timers in order to improve the accuracy of the timer emulation.
- Inject pending upcall events when the vCPU software-enables its APIC to fix
a bug where an upcall can be lost (and to follow Xen's behavior).
- Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
events fails, e.g. if the guest has aliased xAPIC IDs.
- Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
refresh), and drop a now-redundant acquisition of xen_lock (that was
protecting the shared_info cache) to fix a deadlock due to recursively
acquiring xen_lock.
Linux guests since commit b1c3497e60 ("x86/xen: Add support for
HVMOP_set_evtchn_upcall_vector") in v6.0 onwards will use the per-vCPU
upcall vector when it's advertised in the Xen CPUID leaves.
This upcall is injected through the guest's local APIC as an MSI, unlike
the older system vector which was merely injected by the hypervisor any
time the CPU was able to receive an interrupt and the upcall_pending
flags is set in its vcpu_info.
Effectively, that makes the per-CPU upcall edge triggered instead of
level triggered, which results in the upcall being lost if the MSI is
delivered when the local APIC is *disabled*.
Xen checks the vcpu_info->evtchn_upcall_pending flag when the local APIC
for a vCPU is software enabled (in fact, on any write to the SPIV
register which doesn't disable the APIC). Do the same in KVM since KVM
doesn't provide a way for userspace to intervene and trap accesses to
the SPIV register of a local APIC emulated by KVM.
Fixes: fde0451be8 ("KVM: x86/xen: Support per-vCPU event channel upcall via local APIC")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20240227115648.3104-3-dwmw2@infradead.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move incrementing and decrementing of kvm_has_noapic_vcpu into
kvm_create_lapic() and kvm_free_lapic() respectively to fix a benign bug
where KVM fails to decrement the count if vCPU creation ultimately fails,
e.g. due to a memory allocation failing.
Note, the bug is benign as kvm_has_noapic_vcpu is used purely to optimize
lapic_in_kernel() checks, and that optimization is quite dubious. That,
and practically speaking no setup that cares at all about performance runs
with a userspace local APIC.
Reported-by: Li RongQing <lirongqing@baidu.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com>
Link: https://lore.kernel.org/r/20240209222047.394389-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Implement a workaround for an SNP erratum where the CPU will incorrectly
signal an RMP violation #PF if a hugepage (2MB or 1GB) collides with the
RMP entry of a VMCB, VMSA or AVIC backing page.
When SEV-SNP is globally enabled, the CPU marks the VMCB, VMSA, and AVIC
backing pages as "in-use" via a reserved bit in the corresponding RMP
entry after a successful VMRUN. This is done for _all_ VMs, not just
SNP-Active VMs.
If the hypervisor accesses an in-use page through a writable
translation, the CPU will throw an RMP violation #PF. On early SNP
hardware, if an in-use page is 2MB-aligned and software accesses any
part of the associated 2MB region with a hugepage, the CPU will
incorrectly treat the entire 2MB region as in-use and signal a an RMP
violation #PF.
To avoid this, the recommendation is to not use a 2MB-aligned page for
the VMCB, VMSA or AVIC pages. Add a generic allocator that will ensure
that the page returned is not 2MB-aligned and is safe to be used when
SEV-SNP is enabled. Also implement similar handling for the VMCB/VMSA
pages of nested guests.
[ mdr: Squash in nested guest handling from Ashish, commit msg fixups. ]
Reported-by: Alper Gun <alpergun@google.com> # for nested VMSA case
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-22-michael.roth@amd.com
As a preparation to making Hyper-V emulation optional, create a dedicated
kvm_hv_synic_has_vector() helper to avoid extra ifdefs in lapic.c.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-6-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As a preparation to making Hyper-V emulation optional, create a dedicated
kvm_hv_synic_auto_eoi_set() helper to avoid extra ifdefs in lapic.c
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-5-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Purge VMX's posted interrupt descriptor *before* loading APIC state when
handling KVM_SET_LAPIC. Purging the PID after loading APIC state results in
lost APIC timer IRQs as the APIC timer can be armed as part of loading APIC
state, i.e. can immediately pend an IRQ if the expiry is in the past.
- Clear the ICR.BUSY bit when handling trap-like x2APIC writes to suppress a
WARN due to KVM expecting the BUSY bit to be cleared when sending IPIs.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8DrkSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Z54P/jQbjmwbvAVDa1g2HGr16ouFb3v+rCgV
eXiN2/8tDlQl9JkvZsjOY1AtJauS3RZu/SncT3IxCCvHVrKKt0xgnhWT//rAMX3N
zrrFxXJmilFdd2ijsuK8flHVFO5i06Kx1NRjSmAMb76et1et1EI0I62F1rom8ocn
l0tryTkV0qhWKlgxzLBNzzhzxxA2Mvb6vFhut+nfa0IisnQ+roh5dV4JS7Cdhy+5
qIQ4J86JdDR6kmraZLCv8r7vIQn5EQPVCAC2WWalds7iWUW3ixy01NLweVLaVtA3
xWRHYK7azvu3SJ9HvmSMRZzzTElQBYnE2d37ycyYewHbDUJ6FCXxh7H+BehYaVBW
CK6GLaMHY8vyXLcB2cRAzZ7GgBSSDevL11/CMc2ueGc51AOsDCxFh6v69TU+/PiQ
dMOYiNTuwV9QC3raIXPCc2Q9rqGp20xBqXIv5XLEyIxqcFQESvtRggg6zJdBZ3zB
T5/xAXDf++rKFiu1wskFAbwsk3M4T36u1WlK9iayC9dPvCDGRzsle3tt9npmoj2X
3e0Uz7fkRLki1YZW1qLmvqoYJ9bX9B9BjuKkORIqSqXuwcgPYEzHt1GcRByI2FSk
KSTnNwgs/Bs498LsDdU1Z740ZkYFGmu2nK+CUvwxP+uejPsnlhik5kGqLSIeA7zA
9kDpcdV+tZKJ
=atZ2
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-apic-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 APIC changes for 6.7:
- Purge VMX's posted interrupt descriptor *before* loading APIC state when
handling KVM_SET_LAPIC. Purging the PID after loading APIC state results in
lost APIC timer IRQs as the APIC timer can be armed as part of loading APIC
state, i.e. can immediately pend an IRQ if the expiry is in the past.
- Clear the ICR.BUSY bit when handling trap-like x2APIC writes. This avoids a
WARN, due to KVM expecting the BUSY bit to be cleared when sending IPIs.
When IPI virtualization is enabled, a WARN is triggered if bit12 of ICR
MSR is set after APIC-write VM-exit. The reason is kvm_apic_send_ipi()
thinks the APIC_ICR_BUSY bit should be cleared because KVM has no delay,
but kvm_apic_write_nodecode() doesn't clear the APIC_ICR_BUSY bit.
Under the x2APIC section, regarding ICR, the SDM says:
It remains readable only to aid in debugging; however, software should
not assume the value returned by reading the ICR is the last written
value.
I.e. the guest is allowed to set bit 12. However, the SDM also gives KVM
free reign to do whatever it wants with the bit, so long as KVM's behavior
doesn't confuse userspace or break KVM's ABI.
Clear bit 12 so that it reads back as '0'. This approach is safer than
"do nothing" and is consistent with the case where IPI virtualization is
disabled or not supported, i.e.,
handle_fastpath_set_x2apic_icr_irqoff() -> kvm_x2apic_icr_write()
Opportunistically replace the TODO with a comment calling out that eating
the write is likely faster than a conditional branch around the busy bit.
Link: https://lore.kernel.org/all/ZPj6iF0Q7iynn62p@google.com/
Fixes: 5413bcba7e ("KVM: x86: Add support for vICR APIC-write VM-Exits in x2APIC mode")
Cc: stable@vger.kernel.org
Signed-off-by: Tao Su <tao1.su@linux.intel.com>
Tested-by: Yi Lai <yi1.lai@intel.com>
Reviewed-by: Chao Gao <chao.gao@intel.com>
Link: https://lore.kernel.org/r/20230914055504.151365-1-tao1.su@linux.intel.com
[sean: tweak changelog, replace TODO with comment, drop local "val"]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When running android emulator (which is based on QEMU 2.12) on
certain Intel hosts with kernel version 6.3-rc1 or above, guest
will freeze after loading a snapshot. This is almost 100%
reproducible. By default, the android emulator will use snapshot
to speed up the next launching of the same android guest. So
this breaks the android emulator badly.
I tested QEMU 8.0.4 from Debian 12 with an Ubuntu 22.04 guest by
running command "loadvm" after "savevm". The same issue is
observed. At the same time, none of our AMD platforms is impacted.
More experiments show that loading the KVM module with
"enable_apicv=false" can workaround it.
The issue started to show up after commit 8e6ed96cdd ("KVM: x86:
fire timer when it is migrated and expired, and in oneshot mode").
However, as is pointed out by Sean Christopherson, it is introduced
by commit 967235d320 ("KVM: vmx: clear pending interrupts on
KVM_SET_LAPIC"). commit 8e6ed96cdd ("KVM: x86: fire timer when
it is migrated and expired, and in oneshot mode") just makes it
easier to hit the issue.
Having both commits, the oneshot lapic timer gets fired immediately
inside the KVM_SET_LAPIC call when loading the snapshot. On Intel
platforms with APIC virtualization and posted interrupt processing,
this eventually leads to setting the corresponding PIR bit. However,
the whole PIR bits get cleared later in the same KVM_SET_LAPIC call
by apicv_post_state_restore. This leads to timer interrupt lost.
The fix is to move vmx_apicv_post_state_restore to the beginning of
the KVM_SET_LAPIC call and rename to vmx_apicv_pre_state_restore.
What vmx_apicv_post_state_restore does is actually clearing any
former apicv state and this behavior is more suitable to carry out
in the beginning.
Fixes: 967235d320 ("KVM: vmx: clear pending interrupts on KVM_SET_LAPIC")
Cc: stable@vger.kernel.org
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Haitao Shan <hshan@google.com>
Link: https://lore.kernel.org/r/20230913000215.478387-1-hshan@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Per the SDM, "When the local APIC handles a performance-monitoring
counters interrupt, it automatically sets the mask flag in the LVT
performance counter register." Add this behavior to KVM's local APIC
emulation.
Failure to mask the LVTPC entry results in spurious PMIs, e.g. when
running Linux as a guest, PMI handlers that do a "late_ack" spew a large
number of "dazed and confused" spurious NMI warnings.
Fixes: f5132b0138 ("KVM: Expose a version 2 architectural PMU to a guests")
Cc: stable@vger.kernel.org
Signed-off-by: Jim Mattson <jmattson@google.com>
Tested-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Link: https://lore.kernel.org/r/20230925173448.3518223-3-mizhang@google.com
[sean: massage changelog, correct Fixes]
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueMwSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hp4P/i/UmIJEJupryUrD/ZXcSjqmupCtv4JS
Z2o1KIAPbM5GUX4iyF1cnZrI4Ac5zMtULN8Tp3ATOp3AqKy72AqB1Z82e+v6SKis
KfSXlDFCPFisrwv3Ys7JEu9vIS8oqITHmSBk8OAmElwujdQ5jYLZjwGbCXbM9qas
yCFGLqD4fjX8XqkZLmXggjT99MPSgiTPoKL592Wq4JR8mY4hyQqJzBepDjb94sT7
wrsAv1B+BchGDguk0+nOdmHM4emGrZU7fVqi3OFPofSlwAAdkqZObleb422KB058
5bcpNow+9VH5pzgq8XSAU7DLNgH9aXH0PcVU8ASU6P0D9fceKoOFuL47nnFbwz0t
vKafcXNWFs8xHE4iyzvAAsZK/X8GR0ngNByPnamATMsjt2tTmsa5BOyAPkIN+GpT
DzZCIk27SbdGC3lGYlSV+5ob/+sOr6m384DkvSZnU6JiiFLlZiTxURj1/9Zvfka8
2co2wnf8cJxnKFUThFfuxs9XpKgvhkOE8LauwCSo4MAQM95Pen+NAK960RBWj0xl
wof5kIGmKbwmMXyg2Sr+EKqe5KRPba22Yi3x24tURAXafKK/AW7T8dgEEXOll7dp
pKmTPAevwUk9wYIGultjhEBXKYgMOeD2BVoTa5je5h1Da28onrSJ7aLQUixHHs0J
gLdtzs8M9K9t
=yGM1
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
Retry the optimized APIC map recalculation if an APIC-enabled vCPU shows
up between allocating the map and filling in the map data. Conditionally
reschedule before retrying even though the number of vCPUs that can be
created is bounded by KVM. Retrying a few thousand times isn't so slow
as to be hugely problematic, but it's not blazing fast either.
Reset xapic_id_mistach on each retry as a vCPU could change its xAPIC ID
between loops, but do NOT reset max_id. The map size also factors in
whether or not a vCPU's local APIC is hardware-enabled, i.e. userspace
and/or the guest can theoretically keep KVM retrying indefinitely. The
only downside is that KVM will allocate more memory than is strictly
necessary if the vCPU with the highest x2APIC ID disabled its APIC while
the recalculation was in-progress.
Refresh kvm->arch.apic_map_dirty to opportunistically change it from
DIRTY => UPDATE_IN_PROGRESS to avoid an unnecessary recalc from a
different task, i.e. if another task is waiting to attempt an update
(which is likely since a retry happens if and only if an update is
required).
Link: https://lore.kernel.org/r/20230602233250.1014316-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the APICv is inhibited, the irr_pending optimization is used.
Therefore, when kvm_apic_update_irr sets bits in the IRR,
it must set irr_pending to true as well.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230726135945.260841-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If APICv is inhibited, then IPIs from peer vCPUs are done by
atomically setting bits in IRR.
This means, that when __kvm_apic_update_irr copies PIR to IRR,
it has to modify IRR atomically as well.
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230726135945.260841-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Move handling of PAT out of MTRR code and dedup SVM+VMX code
- Fix output of PIC poll command emulation when there's an interrupt
- Fix a longstanding bug in the reporting of the number of entries returned by
KVM_GET_CPUID2
- Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
- Misc cleanups
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmSaGMMSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5iDIP/0PwY3J5odTEUTnAyuDFPimd5PBt9k/O
B414wdpSKVgzq+0An4qM9mKRnklVIh2p8QqQTvDhcBUg3xb6CX9xZ4ery7hp/T5O
tr5bAXs2AYX6jpxvsopt+w+E9j6fvkJhcJCRU9im3QbrqwUE+ecyU5OHvmv2n/GO
syVZJbPOYuoLPKDjlSMrScE6fWEl9UOvHc5BK/vafTeyisMG3vv1BSmJj6GuiNNk
TS1RRIg//cOZghQyDfdXt0azTmakNZyNn35xnoX9x8SRmdRykyUjQeHmeqWxPDso
kiGO+CGancfS57S6ZtCkJjqEWZ1o/zKdOxr8MMf/3nJhv4kY7/5XtlVoACv5soW9
bZEmNiXIaSbvKNMwAlLJxHFbLa1sMdSCb345CIuMdt5QiWJ53ZiTyIAJX6+eL+Zf
8nkeekgPf5VUs6Zt0RdRPyvo+W7Vp9BtI87yDXm1nQKpbys2pt6CD3YB/oF4QViG
a5cyGoFuqRQbS3nmbshIlR7EanTuxbhLZKrNrFnolZ5e624h3Cnk2hVsfTznVGiX
vNHWM80phk1CWB9McErrZVkGfjlyVyBL13CBB2XF7Dl6PfF6/N22a9bOuTJD3tvk
PlNx4hvZm3esvvyGpjfbSajTKYE8O7rxiE1KrF0BpZ5IUl5WSiTr6XCy/yI/mIeM
hay2IWhPOF2z
=D0BH
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.5' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.5:
* Move handling of PAT out of MTRR code and dedup SVM+VMX code
* Fix output of PIC poll command emulation when there's an interrupt
* Add a maintainer's handbook to document KVM x86 processes, preferred coding
style, testing expectations, etc.
* Misc cleanups
Bail from kvm_recalculate_phys_map() and disable the optimized map if the
target vCPU's x2APIC ID is out-of-bounds, i.e. if the vCPU was added
and/or enabled its local APIC after the map was allocated. This fixes an
out-of-bounds access bug in the !x2apic_format path where KVM would write
beyond the end of phys_map.
Check the x2APIC ID regardless of whether or not x2APIC is enabled,
as KVM's hardcodes x2APIC ID to be the vCPU ID, i.e. it can't change, and
the map allocation in kvm_recalculate_apic_map() doesn't check for x2APIC
being enabled, i.e. the check won't get false postivies.
Note, this also affects the x2apic_format path, which previously just
ignored the "x2apic_id > new->max_apic_id" case. That too is arguably a
bug fix, as ignoring the vCPU meant that KVM would not send interrupts to
the vCPU until the next map recalculation. In practice, that "bug" is
likely benign as a newly present vCPU/APIC would immediately trigger a
recalc. But, there's no functional downside to disabling the map, and
a future patch will gracefully handle the -E2BIG case by retrying instead
of simply disabling the optimized map.
Opportunistically add a sanity check on the xAPIC ID size, along with a
comment explaining why the xAPIC ID is guaranteed to be "good".
Reported-by: Michal Luczaj <mhal@rbox.co>
Fixes: 5b84b02917 ("KVM: x86: Honor architectural behavior for aliased 8-bit APIC IDs")
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230602233250.1014316-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reinitialize the xAPIC ID to the vCPU ID when userspace forces the APIC
to transition directly from x2APIC to xAPIC mode, e.g. to emulate RESET.
KVM already stuffs the xAPIC ID when the APIC is transitioned from
DISABLED to xAPIC (commit 49bd29ba1d ("KVM: x86: reset APIC ID when
enabling LAPIC")), i.e. userspace is conditioned to expect KVM to update
the xAPIC ID, but KVM doesn't handle the architecturally-impossible case
where userspace forces x2APIC=>xAPIC via KVM_SET_MSRS.
On its own, the "bug" is benign, as userspace emulation of RESET will also
stuff APIC registers via KVM_SET_LAPIC, i.e. will manually set the xAPIC
ID. However, commit 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on
changes to APIC ID or APIC base") introduced a bug, fixed by commit
commit ef40757743 ("KVM: x86: fix APICv/x2AVIC disabled when vm reboot
by itself"), that caused KVM to fail to properly update the xAPIC ID when
handling KVM_SET_LAPIC. Refresh the xAPIC ID even though it's not
strictly necessary so that KVM provides consistent behavior.
Note, KVM follows Intel architecture with regard to handling the xAPIC ID
and x2APIC IDs across mode transitions. For the APIC DISABLED case
(commit 49bd29ba1d), Intel's SDM says the xAPIC ID _may_ be
reinitialized
10.4.3 Enabling or Disabling the Local APIC
When IA32_APIC_BASE[11] is set to 0, prior initialization to the APIC
may be lost and the APIC may return to the state described in Section
10.4.7.1, “Local APIC State After Power-Up or Reset.”
10.4.7.1 Local APIC State After Power-Up or Reset
... The local APIC ID register is set to a unique APIC ID. ...
i.e. KVM's behavior is legal as per Intel's architecture. In practice,
Intel's behavior is N/A as modern Intel CPUs (since at least Haswell) make
the xAPIC ID fully read-only.
And for xAPIC => x2APIC transitions (commit 257b9a5faa ("KVM: x86: use
correct APIC ID on x2APIC transition")), Intel's SDM says:
Any APIC ID value written to the memory-mapped local APIC ID register
is not preserved.
AMD's APM says nothing (that I could find) about the xAPIC ID when the
APIC is DISABLED, but testing on bare metal (Rome) shows that the xAPIC ID
is preserved when the APIC is DISABLED and re-enabled in xAPIC mode. AMD
also preserves the xAPIC ID when the APIC is transitioned from xAPIC to
x2APIC, i.e. allows a backdoor write of the x2APIC ID, which is again not
emulated by KVM.
Signed-off-by: Emanuele Giuseppe Esposito <eesposit@redhat.com>
Link: https://lore.kernel.org/all/20230109130605.2013555-2-eesposit@redhat.com
[sean: rewrite changelog, set xAPIC ID iff APIC is enabled]
Signed-off-by: Sean Christopherson <seanjc@google.com>
when the vCPU was migrated, if its timer is expired, KVM _should_ fire
the timer ASAP, zeroing the deadline here will cause the timer to
immediately fire on the destination
Cc: Sean Christopherson <seanjc@google.com>
Cc: Peter Shier <pshier@google.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20230106040625.8404-1-lirongqing@baidu.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the generation of the readable APIC regs bitmask to a standalone
helper so that VMX can use the mask for its MSR interception bitmaps.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Mark APIC_DFR as being invalid/non-existent in x2APIC mode instead of
handling it as a one-off check in kvm_x2apic_msr_read(). This will allow
reusing "valid_reg_mask" to generate VMX's interception bitmaps for
x2APIC. Handling DFR in the common read path may also fix the Hyper-V
PV MSR interface, if that can coexist with x2APIC.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reject attempts to set bits 63:32 for 32-bit x2APIC registers, i.e. all
x2APIC registers except ICR. Per Intel's SDM:
Non-zero writes (by WRMSR instruction) to reserved bits to these
registers will raise a general protection fault exception
Opportunistically fix a typo in a nearby comment.
Reported-by: Marc Orr <marcorr@google.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Inject a #GP if the guest attempts to set reserved bits in the x2APIC-only
Self-IPI register. Bits 7:0 hold the vector, all other bits are reserved.
Reported-by: Marc Orr <marcorr@google.com>
Cc: Ben Gardon <bgardon@google.com>
Cc: Venkatesh Srinivas <venkateshs@chromium.org>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20230107011025.565472-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Return value from apic_get_tmcct() directly instead of taking
this in another redundant variable.
Signed-off-by: zhang songyi <zhang.songyi@zte.com.cn>
Link: https://lore.kernel.org/r/202211231704457807160@zte.com.cn
Signed-off-by: Sean Christopherson <seanjc@google.com>
The first half or so patches fix semi-urgent, real-world relevant APICv
and AVIC bugs.
The second half fixes a variety of AVIC and optimized APIC map bugs
where KVM doesn't play nice with various edge cases that are
architecturally legal(ish), but are unlikely to occur in most real world
scenarios
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the guts of kvm_recalculate_apic_map()'s main loop to two separate
helpers to handle recalculating the physical and logical pieces of the
optimized map. Having 100+ lines of code in the for-loop makes it hard
to understand what is being calculated where.
No functional change intended.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-34-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Legacy kernels prior to commit 4399c03c67 ("x86/apic: Remove
verify_local_APIC()") write the APIC ID of the boot CPU twice to verify
a functioning local APIC. This results in APIC acceleration inhibited
on these kernels for reason APICV_INHIBIT_REASON_APIC_ID_MODIFIED.
Allow the APICV_INHIBIT_REASON_APIC_ID_MODIFIED inhibit reason to be
cleared if/when all APICs in xAPIC mode set their APIC ID back to the
expected vcpu_id value.
Fold the functionality previously in kvm_lapic_xapic_id_updated() into
kvm_recalculate_apic_map(), as this allows examining all APICs in one
pass.
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Signed-off-by: Greg Edwards <gedwards@ddn.com>
Link: https://lore.kernel.org/r/20221117183247.94314-1-gedwards@ddn.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-33-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit SVM's AVIC if multiple vCPUs are aliased to the same logical ID.
Architecturally, all CPUs whose logical ID matches the MDA are supposed
to receive the interrupt; overwriting existing entries in AVIC's
logical=>physical map can result in missed IPIs.
Fixes: 18f40c53e1 ("svm: Add VMEXIT handlers for AVIC")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-25-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Inhibit APICv/AVIC if the optimized physical map is disabled so that KVM
KVM provides consistent APIC behavior if xAPIC IDs are aliased due to
vcpu_id being truncated and the x2APIC hotplug hack isn't enabled. If
the hotplug hack is disabled, events that are emulated by KVM will follow
architectural behavior (all matching vCPUs receive events, even if the
"match" is due to truncation), whereas APICv and AVIC will deliver events
only to the first matching vCPU, i.e. the vCPU that matches without
truncation.
Note, the "extra" inhibit is needed because KVM deliberately ignores
mismatches due to truncation when applying the APIC_ID_MODIFIED inhibit
so that large VMs (>255 vCPUs) can run with APICv/AVIC.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-24-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Apply KVM's hotplug hack if and only if userspace has enabled 32-bit IDs
for x2APIC. If 32-bit IDs are not enabled, disable the optimized map to
honor x86 architectural behavior if multiple vCPUs shared a physical APIC
ID. As called out in the changelog that added the hack, all CPUs whose
(possibly truncated) APIC ID matches the target are supposed to receive
the IPI.
KVM intentionally differs from real hardware, because real hardware
(Knights Landing) does just "x2apic_id & 0xff" to decide whether to
accept the interrupt in xAPIC mode and it can deliver one interrupt to
more than one physical destination, e.g. 0x123 to 0x123 and 0x23.
Applying the hack even when x2APIC is not fully enabled means KVM doesn't
correctly handle scenarios where the guest has aliased xAPIC IDs across
multiple vCPUs, as only the vCPU with the lowest vCPU ID will receive any
interrupts. It's extremely unlikely any real world guest aliases APIC
IDs, or even modifies APIC IDs, but KVM's behavior is arbitrary, e.g. the
lowest vCPU ID "wins" regardless of which vCPU is "aliasing" and which
vCPU is "normal".
Furthermore, the hack is _not_ guaranteed to work! The hack works if and
only if the optimized APIC map is successfully allocated. If the map
allocation fails (unlikely), KVM will fall back to its unoptimized
behavior, which _does_ honor the architectural behavior.
Pivot on 32-bit x2APIC IDs being enabled as that is required to take
advantage of the hotplug hack (see kvm_apic_state_fixup()), i.e. won't
break existing setups unless they are way, way off in the weeds.
And an entry in KVM's errata to document the hack. Alternatively, KVM
could provide an actual x2APIC quirk and document the hack that way, but
there's unlikely to ever be a use case for disabling the quirk. Go the
errata route to avoid having to validate a quirk no one cares about.
Fixes: 5bd5db385b ("KVM: x86: allow hotplug of VCPU with APIC ID over 0xff")
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-23-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable the optimized APIC logical map if multiple vCPUs are aliased to
the same logical ID. Architecturally, all CPUs whose logical ID matches
the MDA are supposed to receive the interrupt; overwriting existing map
entries can result in missed IPIs.
Fixes: 1e08ec4a13 ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-22-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Disable the optimized APIC logical map if a logical ID covers multiple
MDAs, i.e. if a vCPU has multiple bits set in its ID. In logical mode,
events match if "ID & MDA != 0", i.e. creating an entry for only the
first bit can cause interrupts to be missed.
Note, creating an entry for every bit is also wrong as KVM would generate
IPIs for every matching bit. It would be possible to teach KVM to play
nice with this edge case, but it is very much an edge case and probably
not used in any real world OS, i.e. it's not worth optimizing.
Fixes: 1e08ec4a13 ("KVM: optimize apic interrupt delivery")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-21-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Skip the optimized cluster[] setup for x2APIC logical mode, as KVM reuses
the optimized map's phys_map[] and doesn't actually need to insert the
target apic into the cluster[]. The LDR is derived from the x2APIC ID,
and both are read-only in KVM, thus the vCPU's cluster[ldr] is guaranteed
to be the same entry as the vCPU's phys_map[x2apic_id] entry.
Skipping the unnecessary setup will allow a future fix for aliased xAPIC
logical IDs to simply require that cluster[ldr] is non-NULL, i.e. won't
have to special case x2APIC.
Alternatively, the future check could allow "cluster[ldr] == apic", but
that ends up being terribly confusing because cluster[ldr] is only set
at the very end, i.e. it's only possible due to x2APIC's shenanigans.
Another alternative would be to send x2APIC down a separate path _after_
the calculation and then assert that all of the above, but the resulting
code is rather messy, and it's arguably unnecessary since asserting that
the actual LDR matches the expected LDR means that simply testing that
interrupts are delivered correctly provides the same guarantees.
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-20-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Track all possibilities for the optimized APIC map's logical modes
instead of overloading the pseudo-bitmap and treating any "unknown" value
as "invalid".
As documented by the now-stale comment above the mode values, the values
did have meaning when the optimized map was originally added. That
dependent logical was removed by commit e45115b62f ("KVM: x86: use
physical LAPIC array for logical x2APIC"), but the obfuscated behavior
and its comment were left behind.
Opportunistically rename "mode" to "logical_mode", partly to make it
clear that the "disabled" case applies only to the logical map, but also
to prove that there is no lurking code that expects "mode" to be a bitmap.
Functionally, this is a glorified nop.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-19-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Explicitly skip the optimized map setup if the vCPU's LDR is '0', i.e. if
the vCPU will never respond to logical mode interrupts. KVM already
skips setup in this case, but relies on kvm_apic_map_get_logical_dest()
to generate mask==0. KVM still needs the mask=0 check as a non-zero LDR
can yield mask==0 depending on the mode, but explicitly handling the LDR
will make it simpler to clean up the logical mode tracking in the future.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-18-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Free the APIC access page memslot if any vCPU enables x2APIC and SVM's
AVIC is enabled to prevent accesses to the virtual APIC on vCPUs with
x2APIC enabled. On AMD, if its "hybrid" mode is enabled (AVIC is enabled
when x2APIC is enabled even without x2AVIC support), keeping the APIC
access page memslot results in the guest being able to access the virtual
APIC page as x2APIC is fully emulated by KVM. I.e. hardware isn't aware
that the guest is operating in x2APIC mode.
Exempt nested SVM's update of APICv state from the new logic as x2APIC
can't be toggled on VM-Exit. In practice, invoking the x2APIC logic
should be harmless precisely because it should be a glorified nop, but
play it safe to avoid latent bugs, e.g. with dropping the vCPU's SRCU
lock.
Intel doesn't suffer from the same issue as APICv has fully independent
VMCS controls for xAPIC vs. x2APIC virtualization. Technically, KVM
should provide bus error semantics and not memory semantics for the APIC
page when x2APIC is enabled, but KVM already provides memory semantics in
other scenarios, e.g. if APICv/AVIC is enabled and the APIC is hardware
disabled (via APIC_BASE MSR).
Note, checking apic_access_memslot_enabled without taking locks relies
it being set during vCPU creation (before kvm_vcpu_reset()). vCPUs can
race to set the inhibit and delete the memslot, i.e. can get false
positives, but can't get false negatives as apic_access_memslot_enabled
can't be toggled "on" once any vCPU reaches KVM_RUN.
Opportunistically drop the "can" while updating avic_activate_vmcb()'s
comment, i.e. to state that KVM _does_ support the hybrid mode. Move
the "Note:" down a line to conform to preferred kernel/KVM multi-line
comment style.
Opportunistically update the apicv_update_lock comment, as it isn't
actually used to protect apic_access_memslot_enabled (which is protected
by slots_lock).
Fixes: 0e311d33bf ("KVM: SVM: Introduce hybrid-AVIC mode")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20230106011306.85230-11-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move the APIC access page allocation helper function to common x86 code,
the allocation routine is virtually identical between APICv (VMX) and
AVIC (SVM). Keep APICv's gfn_to_page() + put_page() sequence, which
verifies that a backing page can be allocated, i.e. that the system isn't
under heavy memory pressure. Forcing the backing page to be populated
isn't strictly necessary, but skipping the effective prefetch only delays
the inevitable.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Use KVM_REQ_UPDATE_APICV to react to APIC "mode" changes, i.e. to handle
the APIC being hardware enabled/disabled and/or x2APIC being toggled.
There is no need to immediately update APICv state, the only requirement
is that APICv be updating prior to the next VM-Enter.
Making a request will allow piggybacking KVM_REQ_UPDATE_APICV to "inhibit"
the APICv memslot when x2APIC is enabled. Doing that directly from
kvm_lapic_set_base() isn't feasible as KVM's SRCU must not be held when
modifying memslots (to avoid deadlock), and may or may not be held when
kvm_lapic_set_base() is called, i.e. KVM can't do the right thing without
tracking that is rightly buried behind CONFIG_PROVE_RCU=y.
Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-9-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Truncate the vcpu_id, a.k.a. x2APIC ID, to an 8-bit value when comparing
it against the xAPIC ID to avoid false positives (sort of) on systems
with >255 CPUs, i.e. with IDs that don't fit into a u8. The intent of
APIC_ID_MODIFIED is to inhibit APICv/AVIC when the xAPIC is changed from
it's original value,
The mismatch isn't technically a false positive, as architecturally the
xAPIC IDs do end up being aliased in this scenario, and neither APICv
nor AVIC correctly handles IPI virtualization when there is aliasing.
However, KVM already deliberately does not honor the aliasing behavior
that results when an x2APIC ID gets truncated to an xAPIC ID. I.e. the
resulting APICv/AVIC behavior is aligned with KVM's existing behavior
when KVM's x2APIC hotplug hack is effectively enabled.
If/when KVM provides a way to disable the hotplug hack, APICv/AVIC can
piggyback whatever logic disables the optimized APIC map (which is what
provides the hotplug hack), i.e. so that KVM's optimized map and APIC
virtualization yield the same behavior.
For now, fix the immediate problem of APIC virtualization being disabled
for large VMs, which is a much more pressing issue than ensuring KVM
honors architectural behavior for APIC ID aliasing.
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Reported-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Don't inhibit APICv/AVIC due to an xAPIC ID mismatch if the APIC is
hardware disabled. The ID cannot be consumed while the APIC is disabled,
and the ID is guaranteed to be set back to the vcpu_id when the APIC is
hardware enabled (architectural behavior correctly emulated by KVM).
Fixes: 3743c2f025 ("KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base")
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Purge the "highest ISR" cache when updating APICv state on a vCPU. The
cache must not be used when APICv is active as hardware may emulate EOIs
(and other operations) without exiting to KVM.
This fixes a bug where KVM will effectively block IRQs in perpetuity due
to the "highest ISR" never getting reset if APICv is activated on a vCPU
while an IRQ is in-service. Hardware emulates the EOI and KVM never gets
a chance to update its cache.
Fixes: b26a695a1d ("kvm: lapic: Introduce APICv update helper function")
Cc: stable@vger.kernel.org
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230106011306.85230-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>