To be able to constify instances of struct ctl_tables it is necessary to
remove ways through which non-const versions are exposed from the
sysctl core.
One of these is the ctl_table_arg member of struct ctl_table_header.
Constify this reference as a prerequisite for the full constification of
struct ctl_table instances.
No functional change.
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Commit dcf70df204 ("af_unix: Fix up unix_edge.successor for embryo
socket.") added spin_lock(&unix_gc_lock) in accept() path, and it
caused regression in a stress test as reported by kernel test robot.
If the embryo socket is not part of the inflight graph, we need not
hold the lock.
To decide that in O(1) time and avoid the regression in the normal
use case,
1. add a new stat unix_sk(sk)->scm_stat.nr_unix_fds
2. count the number of inflight AF_UNIX sockets in the receive
queue under unix_state_lock()
3. move unix_update_edges() call under unix_state_lock()
4. avoid locking if nr_unix_fds is 0 in unix_update_edges()
Reported-by: kernel test robot <oliver.sang@intel.com>
Closes: https://lore.kernel.org/oe-lkp/202404101427.92a08551-oliver.sang@intel.com
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240413021928.20946-1-kuniyu@amazon.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Currently, we can read OOB data without MSG_OOB by using MSG_PEEK
when OOB data is sitting on the front row, which is apparently
wrong.
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
>>> c1.send(b'a', MSG_OOB)
1
>>> c2.recv(1, MSG_PEEK | MSG_DONTWAIT)
b'a'
If manage_oob() is called when no data has been copied, we only
check if the socket enables SO_OOBINLINE or MSG_PEEK is not used.
Otherwise, the skb is returned as is.
However, here we should return NULL if MSG_PEEK is set and no data
has been copied.
Also, in such a case, we should not jump to the redo label because
we will be caught in the loop and hog the CPU until normal data
comes in.
Then, we need to handle skb == NULL case with the if-clause below
the manage_oob() block.
With this patch:
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
>>> c1.send(b'a', MSG_OOB)
1
>>> c2.recv(1, MSG_PEEK | MSG_DONTWAIT)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
BlockingIOError: [Errno 11] Resource temporarily unavailable
Fixes: 314001f0bf ("af_unix: Add OOB support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240410171016.7621-3-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When we call recv() for AF_UNIX socket, we first peek one skb and
calls manage_oob() to check if the skb is sent with MSG_OOB.
However, when we fetch the next (and the following) skb, manage_oob()
is not called now, leading a wrong behaviour.
Let's say a socket send()s "hello" with MSG_OOB and the peer tries
to recv() 5 bytes with MSG_PEEK. Here, we should get only "hell"
without 'o', but actually not:
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
>>> c1.send(b'hello', MSG_OOB)
5
>>> c2.recv(5, MSG_PEEK)
b'hello'
The first skb fills 4 bytes, and the next skb is peeked but not
properly checked by manage_oob().
Let's move up the again label to call manage_oob() for evry skb.
With this patch:
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
>>> c1.send(b'hello', MSG_OOB)
5
>>> c2.recv(5, MSG_PEEK)
b'hell'
Fixes: 314001f0bf ("af_unix: Add OOB support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240410171016.7621-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Garbage collector does not take into account the risk of embryo getting
enqueued during the garbage collection. If such embryo has a peer that
carries SCM_RIGHTS, two consecutive passes of scan_children() may see a
different set of children. Leading to an incorrectly elevated inflight
count, and then a dangling pointer within the gc_inflight_list.
sockets are AF_UNIX/SOCK_STREAM
S is an unconnected socket
L is a listening in-flight socket bound to addr, not in fdtable
V's fd will be passed via sendmsg(), gets inflight count bumped
connect(S, addr) sendmsg(S, [V]); close(V) __unix_gc()
---------------- ------------------------- -----------
NS = unix_create1()
skb1 = sock_wmalloc(NS)
L = unix_find_other(addr)
unix_state_lock(L)
unix_peer(S) = NS
// V count=1 inflight=0
NS = unix_peer(S)
skb2 = sock_alloc()
skb_queue_tail(NS, skb2[V])
// V became in-flight
// V count=2 inflight=1
close(V)
// V count=1 inflight=1
// GC candidate condition met
for u in gc_inflight_list:
if (total_refs == inflight_refs)
add u to gc_candidates
// gc_candidates={L, V}
for u in gc_candidates:
scan_children(u, dec_inflight)
// embryo (skb1) was not
// reachable from L yet, so V's
// inflight remains unchanged
__skb_queue_tail(L, skb1)
unix_state_unlock(L)
for u in gc_candidates:
if (u.inflight)
scan_children(u, inc_inflight_move_tail)
// V count=1 inflight=2 (!)
If there is a GC-candidate listening socket, lock/unlock its state. This
makes GC wait until the end of any ongoing connect() to that socket. After
flipping the lock, a possibly SCM-laden embryo is already enqueued. And if
there is another embryo coming, it can not possibly carry SCM_RIGHTS. At
this point, unix_inflight() can not happen because unix_gc_lock is already
taken. Inflight graph remains unaffected.
Fixes: 1fd05ba5a2 ("[AF_UNIX]: Rewrite garbage collector, fixes race.")
Signed-off-by: Michal Luczaj <mhal@rbox.co>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240409201047.1032217-1-mhal@rbox.co
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
syzkaller started to report deadlock of unix_gc_lock after commit
4090fa373f ("af_unix: Replace garbage collection algorithm."), but
it just uncovers the bug that has been there since commit 314001f0bf
("af_unix: Add OOB support").
The repro basically does the following.
from socket import *
from array import array
c1, c2 = socketpair(AF_UNIX, SOCK_STREAM)
c1.sendmsg([b'a'], [(SOL_SOCKET, SCM_RIGHTS, array("i", [c2.fileno()]))], MSG_OOB)
c2.recv(1) # blocked as no normal data in recv queue
c2.close() # done async and unblock recv()
c1.close() # done async and trigger GC
A socket sends its file descriptor to itself as OOB data and tries to
receive normal data, but finally recv() fails due to async close().
The problem here is wrong handling of OOB skb in manage_oob(). When
recvmsg() is called without MSG_OOB, manage_oob() is called to check
if the peeked skb is OOB skb. In such a case, manage_oob() pops it
out of the receive queue but does not clear unix_sock(sk)->oob_skb.
This is wrong in terms of uAPI.
Let's say we send "hello" with MSG_OOB, and "world" without MSG_OOB.
The 'o' is handled as OOB data. When recv() is called twice without
MSG_OOB, the OOB data should be lost.
>>> from socket import *
>>> c1, c2 = socketpair(AF_UNIX, SOCK_STREAM, 0)
>>> c1.send(b'hello', MSG_OOB) # 'o' is OOB data
5
>>> c1.send(b'world')
5
>>> c2.recv(5) # OOB data is not received
b'hell'
>>> c2.recv(5) # OOB date is skipped
b'world'
>>> c2.recv(5, MSG_OOB) # This should return an error
b'o'
In the same situation, TCP actually returns -EINVAL for the last
recv().
Also, if we do not clear unix_sk(sk)->oob_skb, unix_poll() always set
EPOLLPRI even though the data has passed through by previous recv().
To avoid these issues, we must clear unix_sk(sk)->oob_skb when dequeuing
it from recv queue.
The reason why the old GC did not trigger the deadlock is because the
old GC relied on the receive queue to detect the loop.
When it is triggered, the socket with OOB data is marked as GC candidate
because file refcount == inflight count (1). However, after traversing
all inflight sockets, the socket still has a positive inflight count (1),
thus the socket is excluded from candidates. Then, the old GC lose the
chance to garbage-collect the socket.
With the old GC, the repro continues to create true garbage that will
never be freed nor detected by kmemleak as it's linked to the global
inflight list. That's why we couldn't even notice the issue.
Fixes: 314001f0bf ("af_unix: Add OOB support")
Reported-by: syzbot+7f7f201cc2668a8fd169@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=7f7f201cc2668a8fd169
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240405221057.2406-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In the previous GC implementation, the shape of the inflight socket
graph was not expected to change while GC was in progress.
MSG_PEEK was tricky because it could install inflight fd silently
and transform the graph.
Let's say we peeked a fd, which was a listening socket, and accept()ed
some embryo sockets from it. The garbage collection algorithm would
have been confused because the set of sockets visited in scan_inflight()
would change within the same GC invocation.
That's why we placed spin_lock(&unix_gc_lock) and spin_unlock() in
unix_peek_fds() with a fat comment.
In the new GC implementation, we no longer garbage-collect the socket
if it exists in another queue, that is, if it has a bridge to another
SCC. Also, accept() will require the lock if it has edges.
Thus, we need not do the complicated lock dance.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240401173125.92184-3-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When we passed fds, we used to bump each file's refcount twice
in scm_fp_copy() and scm_fp_dup() before linking the socket to
gc_inflight_list.
This is because we incremented the inflight count of the socket
and linked it to the list in advance before passing skb to the
destination socket.
Otherwise, the inflight socket could have been garbage-collected
in a small race window between linking the socket to the list and
queuing skb:
CPU 1 : sendmsg(X) w/ A's fd CPU 2 : close(A)
----- -----
/* Here A's refcount is 1, and inflight count is 0 */
bump A's refcount to 2 in scm_fp_copy()
bump A's inflight count to 1
link A to gc_inflight_list
decrement A's refcount to 1
/* A's refcount == inflight count, thus A could be GC candidate */
start GC
mark A as candidate
purge A's receive queue
queue skb w/ A's fd to X
/* A is queued, but all data has been lost */
After commit 4090fa373f ("af_unix: Replace garbage collection
algorithm."), we increment the inflight count and link the socket
to the global list only when queuing the skb.
The race no longer exists, so let's not clone the fd nor bump
the count in unix_attach_fds().
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240401173125.92184-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
While looking at UDP receive performance, I saw sk_wake_async()
was no longer inlined.
This matters at least on AMD Zen1-4 platforms (see SRSO)
This might be because rcu_read_lock() and rcu_read_unlock()
are no longer nops in recent kernels ?
Add sk_wake_async_rcu() variant, which must be called from
contexts already holding rcu lock.
As SOCK_FASYNC is deprecated in modern days, use unlikely()
to give a hint to the compiler.
sk_wake_async_rcu() is properly inlined from
__udp_enqueue_schedule_skb() and sock_def_readable().
Signed-off-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240328144032.1864988-5-edumazet@google.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If we find a dead SCC during iteration, we call unix_collect_skb()
to splice all skb in the SCC to the global sk_buff_head, hitlist.
After iterating all SCC, we unlock unix_gc_lock and purge the queue.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-15-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When iterating SCC, we call unix_vertex_dead() for each vertex
to check if the vertex is close()d and has no bridge to another
SCC.
If both conditions are true for every vertex in SCC, we can
execute garbage collection for all skb in the SCC.
The actual garbage collection is done in the following patch,
replacing the old implementation.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-14-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The definition of the lowlink in Tarjan's algorithm is the
smallest index of a vertex that is reachable with at most one
back-edge in SCC. This is not useful for a cross-edge.
If we start traversing from A in the following graph, the final
lowlink of D is 3. The cross-edge here is one between D and C.
A -> B -> D D = (4, 3) (index, lowlink)
^ | | C = (3, 1)
| V | B = (2, 1)
`--- C <--' A = (1, 1)
This is because the lowlink of D is updated with the index of C.
In the following patch, we detect a dead SCC by checking two
conditions for each vertex.
1) vertex has no edge directed to another SCC (no bridge)
2) vertex's out_degree is the same as the refcount of its file
If 1) is false, there is a receiver of all fds of the SCC and
its ancestor SCC.
To evaluate 1), we need to assign a unique index to each SCC and
assign it to all vertices in the SCC.
This patch changes the lowlink update logic for cross-edge so
that in the example above, the lowlink of D is updated with the
lowlink of C.
A -> B -> D D = (4, 1) (index, lowlink)
^ | | C = (3, 1)
| V | B = (2, 1)
`--- C <--' A = (1, 1)
Then, all vertices in the same SCC have the same lowlink, and we
can quickly find the bridge connecting to different SCC if exists.
However, it is no longer called lowlink, so we rename it to
scc_index. (It's sometimes called lowpoint.)
Also, we add a global variable to hold the last index used in DFS
so that we do not reset the initial index in each DFS.
This patch can be squashed to the SCC detection patch but is
split deliberately for anyone wondering why lowlink is not used
as used in the original Tarjan's algorithm and many reference
implementations.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-13-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Once a cyclic reference is formed, we need to run GC to check if
there is dead SCC.
However, we do not need to run Tarjan's algorithm if we know that
the shape of the inflight graph has not been changed.
If an edge is added/updated/deleted and the edge's successor is
inflight, we set false to unix_graph_grouped, which means we need
to re-classify SCC.
Once we finalise SCC, we set true to unix_graph_grouped.
While unix_graph_grouped is true, we can iterate the grouped
SCC using vertex->scc_entry in unix_walk_scc_fast().
list_add() and list_for_each_entry_reverse() uses seem weird, but
they are to keep the vertex order consistent and make writing test
easier.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-12-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We do not need to run GC if there is no possible cyclic reference.
We use unix_graph_maybe_cyclic to decide if we should run GC.
If a fd of an AF_UNIX socket is passed to an already inflight AF_UNIX
socket, they could form a cyclic reference. Then, we set true to
unix_graph_maybe_cyclic and later run Tarjan's algorithm to group
them into SCC.
Once we run Tarjan's algorithm, we are 100% sure whether cyclic
references exist or not. If there is no cycle, we set false to
unix_graph_maybe_cyclic and can skip the entire garbage collection
next time.
When finalising SCC, we set true to unix_graph_maybe_cyclic if SCC
consists of multiple vertices.
Even if SCC is a single vertex, a cycle might exist as self-fd passing.
Given the corner case is rare, we detect it by checking all edges of
the vertex and set true to unix_graph_maybe_cyclic.
With this change, __unix_gc() is just a spin_lock() dance in the normal
usage.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-11-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Before starting Tarjan's algorithm, we need to mark all vertices
as unvisited. We can save this O(n) setup by reserving two special
indices (0, 1) and using two variables.
The first time we link a vertex to unix_unvisited_vertices, we set
unix_vertex_unvisited_index to index.
During DFS, we can see that the index of unvisited vertices is the
same as unix_vertex_unvisited_index.
When we finalise SCC later, we set unix_vertex_grouped_index to each
vertex's index.
Then, we can know (i) that the vertex is on the stack if the index
of a visited vertex is >= 2 and (ii) that it is not on the stack and
belongs to a different SCC if the index is unix_vertex_grouped_index.
After the whole algorithm, all indices of vertices are set as
unix_vertex_grouped_index.
Next time we start DFS, we know that all unvisited vertices have
unix_vertex_grouped_index, and we can use unix_vertex_unvisited_index
as the not-on-stack marker.
To use the same variable in __unix_walk_scc(), we can swap
unix_vertex_(grouped|unvisited)_index at the end of Tarjan's
algorithm.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-10-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
To garbage collect inflight AF_UNIX sockets, we must define the
cyclic reference appropriately. This is a bit tricky if the loop
consists of embryo sockets.
Suppose that the fd of AF_UNIX socket A is passed to D and the fd B
to C and that C and D are embryo sockets of A and B, respectively.
It may appear that there are two separate graphs, A (-> D) and
B (-> C), but this is not correct.
A --. .-- B
X
C <-' `-> D
Now, D holds A's refcount, and C has B's refcount, so unix_release()
will never be called for A and B when we close() them. However, no
one can call close() for D and C to free skbs holding refcounts of A
and B because C/D is in A/B's receive queue, which should have been
purged by unix_release() for A and B.
So, here's another type of cyclic reference. When a fd of an AF_UNIX
socket is passed to an embryo socket, the reference is indirectly held
by its parent listening socket.
.-> A .-> B
| `- sk_receive_queue | `- sk_receive_queue
| `- skb | `- skb
| `- sk == C | `- sk == D
| `- sk_receive_queue | `- sk_receive_queue
| `- skb +---------' `- skb +-.
| |
`---------------------------------------------------------'
Technically, the graph must be denoted as A <-> B instead of A (-> D)
and B (-> C) to find such a cyclic reference without touching each
socket's receive queue.
.-> A --. .-- B <-.
| X | == A <-> B
`-- C <-' `-> D --'
We apply this fixup during GC by fetching the real successor by
unix_edge_successor().
When we call accept(), we clear unix_sock.listener under unix_gc_lock
not to confuse GC.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-9-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is a prep patch for the following change, where we need to
fetch the listening socket from the successor embryo socket
during GC.
We add a new field to struct unix_sock to save a pointer to a
listening socket.
We set it when connect() creates a new socket, and clear it when
accept() is called.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-8-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
In the new GC, we use a simple graph algorithm, Tarjan's Strongly
Connected Components (SCC) algorithm, to find cyclic references.
The algorithm visits every vertex exactly once using depth-first
search (DFS).
DFS starts by pushing an input vertex to a stack and assigning it
a unique number. Two fields, index and lowlink, are initialised
with the number, but lowlink could be updated later during DFS.
If a vertex has an edge to an unvisited inflight vertex, we visit
it and do the same processing. So, we will have vertices in the
stack in the order they appear and number them consecutively in
the same order.
If a vertex has a back-edge to a visited vertex in the stack,
we update the predecessor's lowlink with the successor's index.
After iterating edges from the vertex, we check if its index
equals its lowlink.
If the lowlink is different from the index, it shows there was a
back-edge. Then, we go backtracking and propagate the lowlink to
its predecessor and resume the previous edge iteration from the
next edge.
If the lowlink is the same as the index, we pop vertices before
and including the vertex from the stack. Then, the set of vertices
is SCC, possibly forming a cycle. At the same time, we move the
vertices to unix_visited_vertices.
When we finish the algorithm, all vertices in each SCC will be
linked via unix_vertex.scc_entry.
Let's take an example. We have a graph including five inflight
vertices (F is not inflight):
A -> B -> C -> D -> E (-> F)
^ |
`---------'
Suppose that we start DFS from C. We will visit C, D, and B first
and initialise their index and lowlink. Then, the stack looks like
this:
> B = (3, 3) (index, lowlink)
D = (2, 2)
C = (1, 1)
When checking B's edge to C, we update B's lowlink with C's index
and propagate it to D.
B = (3, 1) (index, lowlink)
> D = (2, 1)
C = (1, 1)
Next, we visit E, which has no edge to an inflight vertex.
> E = (4, 4) (index, lowlink)
B = (3, 1)
D = (2, 1)
C = (1, 1)
When we leave from E, its index and lowlink are the same, so we
pop E from the stack as single-vertex SCC. Next, we leave from
B and D but do nothing because their lowlink are different from
their index.
B = (3, 1) (index, lowlink)
D = (2, 1)
> C = (1, 1)
Then, we leave from C, whose index and lowlink are the same, so
we pop B, D and C as SCC.
Last, we do DFS for the rest of vertices, A, which is also a
single-vertex SCC.
Finally, each unix_vertex.scc_entry is linked as follows:
A -. B -> C -> D E -.
^ | ^ | ^ |
`--' `---------' `--'
We use SCC later to decide whether we can garbage-collect the
sockets.
Note that we still cannot detect SCC properly if an edge points
to an embryo socket. The following two patches will sort it out.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-7-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The new GC will use a depth first search graph algorithm to find
cyclic references. The algorithm visits every vertex exactly once.
Here, we implement the DFS part without recursion so that no one
can abuse it.
unix_walk_scc() marks every vertex unvisited by initialising index
as UNIX_VERTEX_INDEX_UNVISITED and iterates inflight vertices in
unix_unvisited_vertices and call __unix_walk_scc() to start DFS from
an arbitrary vertex.
__unix_walk_scc() iterates all edges starting from the vertex and
explores the neighbour vertices with DFS using edge_stack.
After visiting all neighbours, __unix_walk_scc() moves the visited
vertex to unix_visited_vertices so that unix_walk_scc() will not
restart DFS from the visited vertex.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-6-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Currently, we track the number of inflight sockets in two variables.
unix_tot_inflight is the total number of inflight AF_UNIX sockets on
the host, and user->unix_inflight is the number of inflight fds per
user.
We update them one by one in unix_inflight(), which can be done once
in batch. Also, sendmsg() could fail even after unix_inflight(), then
we need to acquire unix_gc_lock only to decrement the counters.
Let's bulk update the counters in unix_add_edges() and unix_del_edges(),
which is called only for successfully passed fds.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-5-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
As with the previous patch, we preallocate to skb's scm_fp_list an
array of struct unix_edge in the number of inflight AF_UNIX fds.
There we just preallocate memory and do not use immediately because
sendmsg() could fail after this point. The actual use will be in
the next patch.
When we queue skb with inflight edges, we will set the inflight
socket's unix_sock as unix_edge->predecessor and the receiver's
unix_sock as successor, and then we will link the edge to the
inflight socket's unix_vertex.edges.
Note that we set NULL to cloned scm_fp_list.edges in scm_fp_dup()
so that MSG_PEEK does not change the shape of the directed graph.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-3-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
We will replace the garbage collection algorithm for AF_UNIX, where
we will consider each inflight AF_UNIX socket as a vertex and its file
descriptor as an edge in a directed graph.
This patch introduces a new struct unix_vertex representing a vertex
in the graph and adds its pointer to struct unix_sock.
When we send a fd using the SCM_RIGHTS message, we allocate struct
scm_fp_list to struct scm_cookie in scm_fp_copy(). Then, we bump
each refcount of the inflight fds' struct file and save them in
scm_fp_list.fp.
After that, unix_attach_fds() inexplicably clones scm_fp_list of
scm_cookie and sets it to skb. (We will remove this part after
replacing GC.)
Here, we add a new function call in unix_attach_fds() to preallocate
struct unix_vertex per inflight AF_UNIX fd and link each vertex to
skb's scm_fp_list.vertices.
When sendmsg() succeeds later, if the socket of the inflight fd is
still not inflight yet, we will set the preallocated vertex to struct
unix_sock.vertex and link it to a global list unix_unvisited_vertices
under spin_lock(&unix_gc_lock).
If the socket is already inflight, we free the preallocated vertex.
This is to avoid taking the lock unnecessarily when sendmsg() could
fail later.
In the following patch, we will similarly allocate another struct
per edge, which will finally be linked to the inflight socket's
unix_vertex.edges.
And then, we will count the number of edges as unix_vertex.out_degree.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Paolo Abeni <pabeni@redhat.com>
Link: https://lore.kernel.org/r/20240325202425.60930-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
syzbot reported another task hung in __unix_gc(). [0]
The current while loop assumes that all of the left candidates
have oob_skb and calling kfree_skb(oob_skb) releases the remaining
candidates.
However, I missed a case that oob_skb has self-referencing fd and
another fd and the latter sk is placed before the former in the
candidate list. Then, the while loop never proceeds, resulting
the task hung.
__unix_gc() has the same loop just before purging the collected skb,
so we can call kfree_skb(oob_skb) there and let __skb_queue_purge()
release all inflight sockets.
[0]:
Sending NMI from CPU 0 to CPUs 1:
NMI backtrace for cpu 1
CPU: 1 PID: 2784 Comm: kworker/u4:8 Not tainted 6.8.0-rc4-syzkaller-01028-g71b605d32017 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: events_unbound __unix_gc
RIP: 0010:__sanitizer_cov_trace_pc+0x0/0x70 kernel/kcov.c:200
Code: 89 fb e8 23 00 00 00 48 8b 3d 84 f5 1a 0c 48 89 de 5b e9 43 26 57 00 0f 1f 00 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 <f3> 0f 1e fa 48 8b 04 24 65 48 8b 0d 90 52 70 7e 65 8b 15 91 52 70
RSP: 0018:ffffc9000a17fa78 EFLAGS: 00000287
RAX: ffffffff8a0a6108 RBX: ffff88802b6c2640 RCX: ffff88802c0b3b80
RDX: 0000000000000000 RSI: 0000000000000002 RDI: 0000000000000000
RBP: ffffc9000a17fbf0 R08: ffffffff89383f1d R09: 1ffff1100ee5ff84
R10: dffffc0000000000 R11: ffffed100ee5ff85 R12: 1ffff110056d84ee
R13: ffffc9000a17fae0 R14: 0000000000000000 R15: ffffffff8f47b840
FS: 0000000000000000(0000) GS:ffff8880b9500000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007ffef5687ff8 CR3: 0000000029b34000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<NMI>
</NMI>
<TASK>
__unix_gc+0xe69/0xf40 net/unix/garbage.c:343
process_one_work kernel/workqueue.c:2633 [inline]
process_scheduled_works+0x913/0x1420 kernel/workqueue.c:2706
worker_thread+0xa5f/0x1000 kernel/workqueue.c:2787
kthread+0x2ef/0x390 kernel/kthread.c:388
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
</TASK>
Reported-and-tested-by: syzbot+ecab4d36f920c3574bf9@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=ecab4d36f920c3574bf9
Fixes: 25236c91b5 ("af_unix: Fix task hung while purging oob_skb in GC.")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Cross-merge networking fixes after downstream PR.
No conflicts.
Adjacent changes:
drivers/net/ethernet/stmicro/stmmac/common.h
38cc3c6dcc ("net: stmmac: protect updates of 64-bit statistics counters")
fd5a6a7131 ("net: stmmac: est: Per Tx-queue error count for HLBF")
c5c3e1bfc9 ("net: stmmac: Offload queueMaxSDU from tc-taprio")
drivers/net/wireless/microchip/wilc1000/netdev.c
c901388028 ("wifi: fill in MODULE_DESCRIPTION()s for wilc1000")
328efda22a ("wifi: wilc1000: do not realloc workqueue everytime an interface is added")
net/unix/garbage.c
11498715f2 ("af_unix: Remove io_uring code for GC.")
1279f9d9de ("af_unix: Call kfree_skb() for dead unix_(sk)->oob_skb in GC.")
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
syzbot reported a warning [0] in __unix_gc() with a repro, which
creates a socketpair and sends one socket's fd to itself using the
peer.
socketpair(AF_UNIX, SOCK_STREAM, 0, [3, 4]) = 0
sendmsg(4, {msg_name=NULL, msg_namelen=0, msg_iov=[{iov_base="\360", iov_len=1}],
msg_iovlen=1, msg_control=[{cmsg_len=20, cmsg_level=SOL_SOCKET,
cmsg_type=SCM_RIGHTS, cmsg_data=[3]}],
msg_controllen=24, msg_flags=0}, MSG_OOB|MSG_PROBE|MSG_DONTWAIT|MSG_ZEROCOPY) = 1
This forms a self-cyclic reference that GC should finally untangle
but does not due to lack of MSG_OOB handling, resulting in memory
leak.
Recently, commit 11498715f2 ("af_unix: Remove io_uring code for
GC.") removed io_uring's dead code in GC and revealed the problem.
The code was executed at the final stage of GC and unconditionally
moved all GC candidates from gc_candidates to gc_inflight_list.
That papered over the reported problem by always making the following
WARN_ON_ONCE(!list_empty(&gc_candidates)) false.
The problem has been there since commit 2aab4b9690 ("af_unix: fix
struct pid leaks in OOB support") added full scm support for MSG_OOB
while fixing another bug.
To fix this problem, we must call kfree_skb() for unix_sk(sk)->oob_skb
if the socket still exists in gc_candidates after purging collected skb.
Then, we need to set NULL to oob_skb before calling kfree_skb() because
it calls last fput() and triggers unix_release_sock(), where we call
duplicate kfree_skb(u->oob_skb) if not NULL.
Note that the leaked socket remained being linked to a global list, so
kmemleak also could not detect it. We need to check /proc/net/protocol
to notice the unfreed socket.
[0]:
WARNING: CPU: 0 PID: 2863 at net/unix/garbage.c:345 __unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Modules linked in:
CPU: 0 PID: 2863 Comm: kworker/u4:11 Not tainted 6.8.0-rc1-syzkaller-00583-g1701940b1a02 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/25/2024
Workqueue: events_unbound __unix_gc
RIP: 0010:__unix_gc+0xc74/0xe80 net/unix/garbage.c:345
Code: 8b 5c 24 50 e9 86 f8 ff ff e8 f8 e4 22 f8 31 d2 48 c7 c6 30 6a 69 89 4c 89 ef e8 97 ef ff ff e9 80 f9 ff ff e8 dd e4 22 f8 90 <0f> 0b 90 e9 7b fd ff ff 48 89 df e8 5c e7 7c f8 e9 d3 f8 ff ff e8
RSP: 0018:ffffc9000b03fba0 EFLAGS: 00010293
RAX: 0000000000000000 RBX: ffffc9000b03fc10 RCX: ffffffff816c493e
RDX: ffff88802c02d940 RSI: ffffffff896982f3 RDI: ffffc9000b03fb30
RBP: ffffc9000b03fce0 R08: 0000000000000001 R09: fffff52001607f66
R10: 0000000000000003 R11: 0000000000000002 R12: dffffc0000000000
R13: ffffc9000b03fc10 R14: ffffc9000b03fc10 R15: 0000000000000001
FS: 0000000000000000(0000) GS:ffff8880b9400000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005559c8677a60 CR3: 000000000d57a000 CR4: 00000000003506f0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
<TASK>
process_one_work+0x889/0x15e0 kernel/workqueue.c:2633
process_scheduled_works kernel/workqueue.c:2706 [inline]
worker_thread+0x8b9/0x12a0 kernel/workqueue.c:2787
kthread+0x2c6/0x3b0 kernel/kthread.c:388
ret_from_fork+0x45/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1b/0x30 arch/x86/entry/entry_64.S:242
</TASK>
Reported-by: syzbot+fa3ef895554bdbfd1183@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=fa3ef895554bdbfd1183
Fixes: 2aab4b9690 ("af_unix: fix struct pid leaks in OOB support")
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Link: https://lore.kernel.org/r/20240203183149.63573-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Originally, the code related to garbage collection was all in garbage.c.
Commit f4e65870e5 ("net: split out functions related to registering
inflight socket files") moved some functions to scm.c for io_uring and
added CONFIG_UNIX_SCM just in case AF_UNIX was built as module.
However, since commit 97154bcf4d ("af_unix: Kconfig: make CONFIG_UNIX
bool"), AF_UNIX is no longer built separately. Also, io_uring does not
support SCM_RIGHTS now.
Let's move the functions back to garbage.c
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20240129190435.57228-4-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since commit 705318a99a ("io_uring/af_unix: disable sending
io_uring over sockets"), io_uring's unix socket cannot be passed
via SCM_RIGHTS, so it does not contribute to cyclic reference and
no longer be candidate for garbage collection.
Also, commit 6e5e6d2749 ("io_uring: drop any code related to
SCM_RIGHTS") cleaned up SCM_RIGHTS code in io_uring.
Let's do it in AF_UNIX as well by reverting commit 0091bfc817
("io_uring/af_unix: defer registered files gc to io_uring release")
and commit 1036908045 ("net: reclaim skb->scm_io_uring bit").
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20240129190435.57228-3-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This is a prep patch for the last patch in this series so that
checkpatch will not warn about BUG_ON().
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Jens Axboe <axboe@kernel.dk>
Link: https://lore.kernel.org/r/20240129190435.57228-2-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If more than 16000 inflight AF_UNIX sockets exist and the garbage
collector is not running, unix_(dgram|stream)_sendmsg() call unix_gc().
Also, they wait for unix_gc() to complete.
In unix_gc(), all inflight AF_UNIX sockets are traversed at least once,
and more if they are the GC candidate. Thus, sendmsg() significantly
slows down with too many inflight AF_UNIX sockets.
However, if a process sends data with no AF_UNIX FD, the sendmsg() call
does not need to wait for GC. After this change, only the process that
meets the condition below will be blocked under such a situation.
1) cmsg contains AF_UNIX socket
2) more than 32 AF_UNIX sent by the same user are still inflight
Note that even a sendmsg() call that does not meet the condition but has
AF_UNIX FD will be blocked later in unix_scm_to_skb() by the spinlock,
but we allow that as a bonus for sane users.
The results below are the time spent in unix_dgram_sendmsg() sending 1
byte of data with no FD 4096 times on a host where 32K inflight AF_UNIX
sockets exist.
Without series: the sane sendmsg() needs to wait gc unreasonably.
$ sudo /usr/share/bcc/tools/funclatency -p 11165 unix_dgram_sendmsg
Tracing 1 functions for "unix_dgram_sendmsg"... Hit Ctrl-C to end.
^C
nsecs : count distribution
[...]
524288 -> 1048575 : 0 | |
1048576 -> 2097151 : 3881 |****************************************|
2097152 -> 4194303 : 214 |** |
4194304 -> 8388607 : 1 | |
avg = 1825567 nsecs, total: 7477526027 nsecs, count: 4096
With series: the sane sendmsg() can finish much faster.
$ sudo /usr/share/bcc/tools/funclatency -p 8702 unix_dgram_sendmsg
Tracing 1 functions for "unix_dgram_sendmsg"... Hit Ctrl-C to end.
^C
nsecs : count distribution
[...]
128 -> 255 : 0 | |
256 -> 511 : 4092 |****************************************|
512 -> 1023 : 2 | |
1024 -> 2047 : 0 | |
2048 -> 4095 : 0 | |
4096 -> 8191 : 1 | |
8192 -> 16383 : 1 | |
avg = 410 nsecs, total: 1680510 nsecs, count: 4096
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240123170856.41348-6-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If more than 16000 inflight AF_UNIX sockets exist and the garbage
collector is not running, unix_(dgram|stream)_sendmsg() call unix_gc().
Also, they wait for unix_gc() to complete.
In unix_gc(), all inflight AF_UNIX sockets are traversed at least once,
and more if they are the GC candidate. Thus, sendmsg() significantly
slows down with too many inflight AF_UNIX sockets.
There is a small window to invoke multiple unix_gc() instances, which
will then be blocked by the same spinlock except for one.
Let's convert unix_gc() to use struct work so that it will not consume
CPUs unnecessarily.
Note WRITE_ONCE(gc_in_progress, true) is moved before running GC.
If we leave the WRITE_ONCE() as is and use the following test to
call flush_work(), a process might not call it.
CPU 0 CPU 1
--- ---
start work and call __unix_gc()
if (work_pending(&unix_gc_work) || <-- false
READ_ONCE(gc_in_progress)) <-- false
flush_work(); <-- missed!
WRITE_ONCE(gc_in_progress, true)
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20240123170856.41348-5-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Currently, unix_get_socket() returns struct sock, but after calling
it, we always cast it to unix_sk().
Let's return struct unix_sock from unix_get_socket().
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Acked-by: Pavel Begunkov <asml.silence@gmail.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://lore.kernel.org/r/20240123170856.41348-4-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When touching unix_sk(sk)->inflight, we are always under
spin_lock(&unix_gc_lock).
Let's convert unix_sk(sk)->inflight to the normal unsigned long.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Simon Horman <horms@kernel.org>
Link: https://lore.kernel.org/r/20240123170856.41348-3-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Following patch is going to use RCU instead of
sock_diag_table_mutex acquisition.
This patch is a preparation, no change of behavior yet.
Signed-off-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Guillaume Nault <gnault@redhat.com>
Reviewed-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Reviewed-by: Willem de Bruijn <willemb@google.com>
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
-----BEGIN PGP SIGNATURE-----
iQJEBAABCAAuFiEEwPw5LcreJtl1+l5K99NY+ylx4KYFAmWcOk0QHGF4Ym9lQGtl
cm5lbC5kawAKCRD301j7KXHgpq2wEACgP1Gvfb2cR65B/6tkLJ6neKnYOPVSYx9F
4Mv6KS306vmOsE67LqynhtAe/Hgfv0NKADN+mKLLV8IdwhneLAwFxRoHl8QPO2dW
DIxohDMLIqzY/SOUBqBHMS8b5lEr79UVh8vXjAuuYCBTcHBndi4hj0S0zkwf5YiK
Vma6ty+TnzmOv+c6+OCgZZlwFhkxD1pQBM5iOlFRAkdt3Er/2e8FqthK0/od7Fgy
Ii9xdxYZU9KTsM4R+IWhqZ1rj1qUdtMPSGzFRbzFt3b6NdANRZT9MUlxvSkuHPIE
P/9anpmgu41gd2JbHuyVnw+4jdZMhhZUPUYtphmQ5n35rcFZjv1gnJalH/Nw/DTE
78bDxxP0+35bkuq5MwHfvA3imVsGnvnFx5MlZBoqvv+VK4S3Q6E2+ARQZdiG+2Is
8Uyjzzt0nq2waUO3H1JLkgiM9J9LFqaYQLE68u569m4NCfRSpoZva9KVmNpre2K0
9WdGy2gfzaYAQkGud2TULzeLiEbWfvZAL0o43jYXkVPRKmnffCEphf2X6C2IDV/3
5ZR4bandRRC6DVnE+8n1MB06AYtpJPB/w3rplON+l/V5Gnb7wRNwiUrBr/F15OOy
OPbAnP6k56wY/JRpgzdbNqwGi8EvGWX6t3Kqjp2mczhs2as8M193FKS2xppl1TYl
BPyTsAfbdQ==
=5v/U
-----END PGP SIGNATURE-----
Merge tag 'for-6.8/io_uring-2024-01-08' of git://git.kernel.dk/linux
Pull io_uring updates from Jens Axboe:
"Mostly just come fixes and cleanups, but one feature as well. In
detail:
- Harden the check for handling IOPOLL based on return (Pavel)
- Various minor optimizations (Pavel)
- Drop remnants of SCM_RIGHTS fd passing support, now that it's no
longer supported since 6.7 (me)
- Fix for a case where bytes_done wasn't initialized properly on a
failure condition for read/write requests (me)
- Move the register related code to a separate file (me)
- Add support for returning the provided ring buffer head (me)
- Add support for adding a direct descriptor to the normal file table
(me, Christian Brauner)
- Fix for ensuring pending task_work for a ring with DEFER_TASKRUN is
run even if we timeout waiting (me)"
* tag 'for-6.8/io_uring-2024-01-08' of git://git.kernel.dk/linux:
io_uring: ensure local task_work is run on wait timeout
io_uring/kbuf: add method for returning provided buffer ring head
io_uring/rw: ensure io->bytes_done is always initialized
io_uring: drop any code related to SCM_RIGHTS
io_uring/unix: drop usage of io_uring socket
io_uring/register: move io_uring_register(2) related code to register.c
io_uring/openclose: add support for IORING_OP_FIXED_FD_INSTALL
io_uring/cmd: inline io_uring_cmd_get_task
io_uring/cmd: inline io_uring_cmd_do_in_task_lazy
io_uring: split out cmd api into a separate header
io_uring: optimise ltimeout for inline execution
io_uring: don't check iopoll if request completes
When sockets are added to a sockmap or sockhash we allocate and init a
psock. Then update the proto ops with sock_map_init_proto the flow is
sock_hash_update_common
sock_map_link
psock = sock_map_psock_get_checked() <-returns existing psock
sock_map_init_proto(sk, psock) <- updates sk_proto
If the socket is already in a map this results in the sock_map_init_proto
being called multiple times on the same socket. We do this because when
a socket is added to multiple maps this might result in a new set of BPF
programs being attached to the socket requiring an updated ops struct.
This creates a rule where it must be safe to call psock_update_sk_prot
multiple times. When we added a fix for UAF through unix sockets in patch
4dd9a38a753fc we broke this rule by adding a sock_hold in that path
to ensure the sock is not released. The result is if a af_unix stream sock
is placed in multiple maps it results in a memory leak because we call
sock_hold multiple times with only a single sock_put on it.
Fixes: 8866730aed ("bpf, sockmap: af_unix stream sockets need to hold ref for pair sock")
Reported-by: Xingwei Lee <xrivendell7@gmail.com>
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/r/20231221232327.43678-2-john.fastabend@gmail.com
Since we no longer allow sending io_uring fds over SCM_RIGHTS, move to
using io_is_uring_fops() to detect whether this is a io_uring fd or not.
With that done, kill off io_uring_get_socket() as nobody calls it
anymore.
This is in preparation to yanking out the rest of the core related to
unix gc with io_uring.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
AF_UNIX stream sockets are a paired socket. So sending on one of the pairs
will lookup the paired socket as part of the send operation. It is possible
however to put just one of the pairs in a BPF map. This currently increments
the refcnt on the sock in the sockmap to ensure it is not free'd by the
stack before sockmap cleans up its state and stops any skbs being sent/recv'd
to that socket.
But we missed a case. If the peer socket is closed it will be free'd by the
stack. However, the paired socket can still be referenced from BPF sockmap
side because we hold a reference there. Then if we are sending traffic through
BPF sockmap to that socket it will try to dereference the free'd pair in its
send logic creating a use after free. And following splat:
[59.900375] BUG: KASAN: slab-use-after-free in sk_wake_async+0x31/0x1b0
[59.901211] Read of size 8 at addr ffff88811acbf060 by task kworker/1:2/954
[...]
[59.905468] Call Trace:
[59.905787] <TASK>
[59.906066] dump_stack_lvl+0x130/0x1d0
[59.908877] print_report+0x16f/0x740
[59.910629] kasan_report+0x118/0x160
[59.912576] sk_wake_async+0x31/0x1b0
[59.913554] sock_def_readable+0x156/0x2a0
[59.914060] unix_stream_sendmsg+0x3f9/0x12a0
[59.916398] sock_sendmsg+0x20e/0x250
[59.916854] skb_send_sock+0x236/0xac0
[59.920527] sk_psock_backlog+0x287/0xaa0
To fix let BPF sockmap hold a refcnt on both the socket in the sockmap and its
paired socket. It wasn't obvious how to contain the fix to bpf_unix logic. The
primarily problem with keeping this logic in bpf_unix was: In the sock close()
we could handle the deref by having a close handler. But, when we are destroying
the psock through a map delete operation we wouldn't have gotten any signal
thorugh the proto struct other than it being replaced. If we do the deref from
the proto replace its too early because we need to deref the sk_pair after the
backlog worker has been stopped.
Given all this it seems best to just cache it at the end of the psock and eat 8B
for the af_unix and vsock users. Notice dgram sockets are OK because they handle
locking already.
Fixes: 94531cfcbe ("af_unix: Add unix_stream_proto for sockmap")
Signed-off-by: John Fastabend <john.fastabend@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: Jakub Sitnicki <jakub@cloudflare.com>
Link: https://lore.kernel.org/bpf/20231129012557.95371-2-john.fastabend@gmail.com
W=1 builds now warn if module is built without a MODULE_DESCRIPTION().
Add descriptions to all the sock diag modules in one fell swoop.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: David S. Miller <davem@davemloft.net>
Since commit 97154bcf4d ("af_unix: Kconfig: make CONFIG_UNIX bool"),
af_unix.c is no longer built as module.
Let's remove unnecessary #if condition, exitcall, and module macros.
Signed-off-by: Kuniyuki Iwashima <kuniyu@amazon.com>
Link: https://lore.kernel.org/r/20231026212305.45545-1-kuniyu@amazon.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>