Hyper-V guests use the default native_sched_clock() in
pv_ops.time.sched_clock on x86. But native_sched_clock() directly uses the
raw TSC value, which can be discontinuous in a Hyper-V VM.
Add the generic hv_setup_sched_clock() to set the sched clock function
appropriately. On x86, this sets pv_ops.time.sched_clock to read the
Hyper-V reference TSC value that is scaled and adjusted to be continuous.
Also move the Hyper-V reference TSC initialization much earlier in the boot
process so no discontinuity is observed when pv_ops.time.sched_clock
calculates its offset.
[ tglx: Folded build fix ]
Signed-off-by: Tianyu Lan <Tianyu.Lan@microsoft.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lkml.kernel.org/r/20190814123216.32245-3-Tianyu.Lan@microsoft.com
This variable has no users anymore. Remove it and tell the
IOMMU code via its new functions about requested DMA modes.
Reviewed-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
This option allows userspace to pass the RSDP address to the kernel, which
makes it possible for a user to modify the workings of hardware. Reject
the option when the kernel is locked down. This requires some reworking
of the existing RSDP command line logic, since the early boot code also
makes use of a command-line passed RSDP when locating the SRAT table
before the lockdown code has been initialised. This is achieved by
separating the command line RSDP path in the early boot code from the
generic RSDP path, and then copying the command line RSDP into boot
params in the kernel proper if lockdown is not enabled. If lockdown is
enabled and an RSDP is provided on the command line, this will only be
used when parsing SRAT (which shouldn't permit kernel code execution)
and will be ignored in the rest of the kernel.
(Modified by Matthew Garrett in order to handle the early boot RSDP
environment)
Signed-off-by: Josh Boyer <jwboyer@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: Dave Young <dyoung@redhat.com>
cc: linux-acpi@vger.kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
Writing to MSRs should not be allowed if the kernel is locked down, since
it could lead to execution of arbitrary code in kernel mode. Based on a
patch by Kees Cook.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Acked-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
IO port access would permit users to gain access to PCI configuration
registers, which in turn (on a lot of hardware) give access to MMIO
register space. This would potentially permit root to trigger arbitrary
DMA, so lock it down by default.
This also implicitly locks down the KDADDIO, KDDELIO, KDENABIO and
KDDISABIO console ioctls.
Signed-off-by: Matthew Garrett <mjg59@google.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: x86@kernel.org
Signed-off-by: James Morris <jmorris@namei.org>
This is a preparatory patch for kexec_file_load() lockdown. A locked down
kernel needs to prevent unsigned kernel images from being loaded with
kexec_file_load(). Currently, the only way to force the signature
verification is compiling with KEXEC_VERIFY_SIG. This prevents loading
usigned images even when the kernel is not locked down at runtime.
This patch splits KEXEC_VERIFY_SIG into KEXEC_SIG and KEXEC_SIG_FORCE.
Analogous to the MODULE_SIG and MODULE_SIG_FORCE for modules, KEXEC_SIG
turns on the signature verification but allows unsigned images to be
loaded. KEXEC_SIG_FORCE disallows images without a valid signature.
Signed-off-by: Jiri Bohac <jbohac@suse.cz>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
Kexec reboot in case secure boot being enabled does not keep the secure
boot mode in new kernel, so later one can load unsigned kernel via legacy
kexec_load. In this state, the system is missing the protections provided
by secure boot.
Adding a patch to fix this by retain the secure_boot flag in original
kernel.
secure_boot flag in boot_params is set in EFI stub, but kexec bypasses the
stub. Fixing this issue by copying secure_boot flag across kexec reboot.
Signed-off-by: Dave Young <dyoung@redhat.com>
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Matthew Garrett <mjg59@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
cc: kexec@lists.infradead.org
Signed-off-by: James Morris <jmorris@namei.org>
It's simpler and more intuitive to directly check for VECTOR_UNUSED than
checking whether the other error codes are not set.
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/caeaca93-5ee1-cea1-8894-3aa0d5b19241@gmail.com
Both the 64bit and the 32bit handle_irq() implementation check the irq
descriptor pointer with IS_ERR_OR_NULL() and return failure. That can be
done simpler in the common do_IRQ() code.
This reduces the 64bit handle_irq() function to a wrapper around
generic_handle_irq_desc(). Invoke it directly from do_IRQ() to spare the
extra function call.
[ tglx: Got rid of the #ifdef and massaged changelog ]
Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/2ec758c7-9aaa-73ab-f083-cc44c86aa741@gmail.com
There have been reports of RDRAND issues after resuming from suspend on
some AMD family 15h and family 16h systems. This issue stems from a BIOS
not performing the proper steps during resume to ensure RDRAND continues
to function properly.
RDRAND support is indicated by CPUID Fn00000001_ECX[30]. This bit can be
reset by clearing MSR C001_1004[62]. Any software that checks for RDRAND
support using CPUID, including the kernel, will believe that RDRAND is
not supported.
Update the CPU initialization to clear the RDRAND CPUID bit for any family
15h and 16h processor that supports RDRAND. If it is known that the family
15h or family 16h system does not have an RDRAND resume issue or that the
system will not be placed in suspend, the "rdrand=force" kernel parameter
can be used to stop the clearing of the RDRAND CPUID bit.
Additionally, update the suspend and resume path to save and restore the
MSR C001_1004 value to ensure that the RDRAND CPUID setting remains in
place after resuming from suspend.
Note, that clearing the RDRAND CPUID bit does not prevent a processor
that normally supports the RDRAND instruction from executing it. So any
code that determined the support based on family and model won't #UD.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Andrew Cooper <andrew.cooper3@citrix.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Chen Yu <yu.c.chen@intel.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: "linux-doc@vger.kernel.org" <linux-doc@vger.kernel.org>
Cc: "linux-pm@vger.kernel.org" <linux-pm@vger.kernel.org>
Cc: Nathan Chancellor <natechancellor@gmail.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Pavel Machek <pavel@ucw.cz>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: <stable@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "x86@kernel.org" <x86@kernel.org>
Link: https://lkml.kernel.org/r/7543af91666f491547bd86cebb1e17c66824ab9f.1566229943.git.thomas.lendacky@amd.com
Some newer machines do not advertise legacy timers. The kernel can handle
that situation if the TSC and the CPU frequency are enumerated by CPUID or
MSRs and the CPU supports TSC deadline timer. If the CPU does not support
TSC deadline timer the local APIC timer frequency has to be known as well.
Some Ryzens machines do not advertize legacy timers, but there is no
reliable way to determine the bus frequency which feeds the local APIC
timer when the machine allows overclocking of that frequency.
As there is no legacy timer the local APIC timer calibration crashes due to
a NULL pointer dereference when accessing the not installed global clock
event device.
Switch the calibration loop to a non interrupt based one, which polls
either TSC (if frequency is known) or jiffies. The latter requires a global
clockevent. As the machines which do not have a global clockevent installed
have a known TSC frequency this is a non issue. For older machines where
TSC frequency is not known, there is no known case where the legacy timers
do not exist as that would have been reported long ago.
Reported-by: Daniel Drake <drake@endlessm.com>
Reported-by: Jiri Slaby <jslaby@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Daniel Drake <drake@endlessm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1908091443030.21433@nanos.tec.linutronix.de
Link: http://bugzilla.opensuse.org/show_bug.cgi?id=1142926#c12
Fix
arch/x86/kernel/apic/probe_32.c: In function ‘default_setup_apic_routing’:
arch/x86/kernel/apic/probe_32.c:146:7: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (!APIC_XAPIC(version)) {
^
arch/x86/kernel/apic/probe_32.c:151:3: note: here
case X86_VENDOR_HYGON:
^~~~
for 32-bit builds.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190811154036.29805-1-bp@alien8.de
Currently, failure of cpuhp_setup_state() is ignored and the syscore ops
and the control interfaces can still be added even after the failure. But,
this error handling will cause a few issues:
1. The CPUs may have different values in the IA32_UMWAIT_CONTROL
MSR because there is no way to roll back the control MSR on
the CPUs which already set the MSR before the failure.
2. If the sysfs interface is added successfully, there will be a mismatch
between the global control value and the control MSR:
- The interface shows the default global control value. But,
the control MSR is not set to the value because the CPU online
function, which is supposed to set the MSR to the value,
is not installed.
- If the sysadmin changes the global control value through
the interface, the control MSR on all current online CPUs is
set to the new value. But, the control MSR on newly onlined CPUs
after the value change will not be set to the new value due to
lack of the CPU online function.
3. On resume from suspend/hibernation, the boot CPU restores the control
MSR to the global control value through the syscore ops. But, the
control MSR on all APs is not set due to lake of the CPU online
function.
To solve the issues and enforce consistent behavior on the failure
of the CPU hotplug setup, make the following changes:
1. Cache the original control MSR value which is configured by
hardware or BIOS before kernel boot. This value is likely to
be 0. But it could be a different number as well. Cache the
control MSR only once before the MSR is changed.
2. Add the CPU offline function so that the MSR is restored to the
original control value on all CPUs on the failure.
3. On the failure, exit from cpumait_init() so that the syscore ops
and the control interfaces are not added.
Reported-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Suggested-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/1565401237-60936-1-git-send-email-fenghua.yu@intel.com
Pull x86 fixes from Thomas Gleixner:
"A few fixes for x86:
- Don't reset the carefully adjusted build flags for the purgatory
and remove the unwanted flags instead. The 'reset all' approach led
to build fails under certain circumstances.
- Unbreak CLANG build of the purgatory by avoiding the builtin
memcpy/memset implementations.
- Address missing prototype warnings by including the proper header
- Fix yet more fall-through issues"
* 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/lib/cpu: Address missing prototypes warning
x86/purgatory: Use CFLAGS_REMOVE rather than reset KBUILD_CFLAGS
x86/purgatory: Do not use __builtin_memcpy and __builtin_memset
x86: mtrr: cyrix: Mark expected switch fall-through
x86/ptrace: Mark expected switch fall-through
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v2.0.22 (GNU/Linux)
iQEcBAABAgAGBQJdTfRfAAoJEL/70l94x66DcN0IAIwyaU2+kwP0jd2miQuKxgwl
WU4u7dZCoQC6meWEVmrSJIVMBONRubmZ9iCqT7807YP8YZSQpOth51FMbULUWuy1
VW1eaRwqidX0EAihDhg2ZbBZ8H6RQ9Fn0aiEEh44dAZZAwGSVnO3PRKvQEJ15xjk
q+OQ4hrxtoorwLj+myejmq3YenTFTCMMJfYwwvlCl+J1FfrLZi5k3X5Gjk+j8Ixd
8CL8/6u5Lu6MCgfYVvxvo8/bUPiATBdF1sWJMMALwXTrDiSy4tQRD0NvZP1HM8G1
hy0XnhgtsS9rWNLtAFOj+r/XhP9V5lOOGX8yBcj0XQQr+DC9MG6MCL+pXXOaMcA=
=ZZh8
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm fixes from Paolo Bonzini:
"Bugfixes (arm and x86) and cleanups"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
selftests: kvm: Adding config fragments
KVM: selftests: Update gitignore file for latest changes
kvm: remove unnecessary PageReserved check
KVM: arm/arm64: vgic: Reevaluate level sensitive interrupts on enable
KVM: arm: Don't write junk to CP15 registers on reset
KVM: arm64: Don't write junk to sysregs on reset
KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to block
x86: kvm: remove useless calls to kvm_para_available
KVM: no need to check return value of debugfs_create functions
KVM: remove kvm_arch_has_vcpu_debugfs()
KVM: Fix leak vCPU's VMCS value into other pCPU
KVM: Check preempted_in_kernel for involuntary preemption
KVM: LAPIC: Don't need to wakeup vCPU twice afer timer fire
arm64: KVM: hyp: debug-sr: Mark expected switch fall-through
KVM: arm64: Update kvm_arm_exception_class and esr_class_str for new EC
KVM: arm: vgic-v3: Mark expected switch fall-through
arm64: KVM: regmap: Fix unexpected switch fall-through
KVM: arm/arm64: Introduce kvm_pmu_vcpu_init() to setup PMU counter index
Secure Encrypted Virtualization is an x86-specific feature, so it shouldn't
appear in generic kernel code because it forces non-x86 architectures to
define the sev_active() function, which doesn't make a lot of sense.
To solve this problem, add an x86 elfcorehdr_read() function to override
the generic weak implementation. To do that, it's necessary to make
read_from_oldmem() public so that it can be used outside of vmcore.c.
Also, remove the export for sev_active() since it's only used in files that
won't be built as modules.
Signed-off-by: Thiago Jung Bauermann <bauerman@linux.ibm.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Lianbo Jiang <lijiang@redhat.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://lore.kernel.org/r/20190806044919.10622-6-bauerman@linux.ibm.com
Mark the APIC's global config variables that are constant after boot as
__ro_after_init to help document that the majority of the APIC config is
not changed at runtime, and to harden the kernel a smidge.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20190805212134.12001-1-sean.j.christopherson@intel.com
Mark switch cases where we are expecting to fall through.
Fix the following warning (Building: i386_defconfig i386):
arch/x86/kernel/cpu/mtrr/cyrix.c:99:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20190805201712.GA19927@embeddedor
Mark switch cases where we are expecting to fall through.
Fix the following warning (Building: allnoconfig i386):
arch/x86/kernel/ptrace.c:202:6: warning: this statement may fall through [-Wimplicit-fallthrough=]
if (unlikely(value == 0))
^
arch/x86/kernel/ptrace.c:206:2: note: here
default:
^~~~~~~
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/20190805195654.GA17831@embeddedor
- Selftests fixes and improvements (Chris)
- More work around engine tracking for better handling (Chris, Tvrtko)
- HDCP debug and info improvements (Ram, Ashuman)
- Add DSI properties (Vandita)
- Rework on sdvo support for better debuggability before fixing bugs (Ville)
- Display PLLs fixes and improvements, specially targeting Ice Lake (Imre, Matt, Ville)
- Perf fixes and improvements (Lionel)
- Enumerate scratch buffers (Lionel)
- Add infra to hold off preemption on a request (Lionel)
- Ice Lake color space fixes (Uma)
- Type-C fixes and improvements (Lucas)
- Fix and improvements around workarounds (Chris, John, Tvrtko)
- GuC related fixes and improvements (Chris, Daniele, Michal, Tvrtko)
- Fix on VLV/CHV display power domain (Ville)
- Improvements around Watermark (Ville)
- Favor intel_ types on intel_atomic functions (Ville)
- Don’t pass stack garbage to pcode (Ville)
- Improve display tracepoints (Steven)
- Don’t overestimate 4:2:0 link symbol clock (Ville)
- Add support for 4th pipe and transcoder (Lucas)
- Introduce initial support for Tiger Lake platform (Daniele, Lucas, Mahesh, Jose, Imre, Mika, Vandita, Rodrigo, Michel)
- PPGTT allocation simplification (Chris)
- Standardize function names and suffixes to make clean, symmetric and let checkpatch happy (Janusz)
- Skip SINK_COUNT read on CH7511 (Ville)
- Fix on kernel documentation (Chris, Michal)
- Add modular FIA (Anusha, Lucas)
- Fix EHL display (Matt, Vivek)
- Enable hotplug retry (Imre, Jose)
- Disable preemption under GVT (Chris)
- OA; Reconfigure context on the fly (Chris)
- Fixes and improvements around engine reset. (Chris)
- Small clean up on display pipe fault mask (Ville)
- Make sure cdclk is high enough for DP audio on VLV/CHV (Ville)
- Drop some wmb() and improve pwrite flush (Chris)
- Fix critical PSR regression (DK)
- Remove unused variables (YueHaibing)
- Use dev_get_drvdata for simplification (Chunhong)
- Use upstream version of header tests (Jani)
-----BEGIN PGP SIGNATURE-----
iQEcBAABAgAGBQJdQJHXAAoJEPpiX2QO6xPKIpkH/3lMqbuv6UXyX1zvcYj6Ap4g
c6ocA7O1ooQDfFBfnLJNd6D+Gs3uTt9KROL0WdhmolfgzfLihFnvSx1VP/pvi7gC
kVT1JbwbzuwYbBXQ8WhmtkfqDp/quy3wku/ThNchY9pG1IaqNuRiP35+pXRNLO08
Q+RUHl8j1OkoLTLuzxfYGFtY72F8mIlkki8zMwlthH2Skz9h9d8POh8phOv+3TDx
aQ7CsOfScnLSrEyWlnOeYFexps0LpNC7TAG8fGkVI28Jig16DSwg7QR3MhQ9UtB1
8IC3+Jz8+p83PQHx7mGS7Va/XTERVT4czsoNC/IK7cFMy1yFilzoqpFHH8Is3sk=
=dAkP
-----END PGP SIGNATURE-----
Merge tag 'drm-intel-next-2019-07-30' of git://anongit.freedesktop.org/drm/drm-intel into drm-next
- More changes on simplifying locking mechanisms (Chris)
- Selftests fixes and improvements (Chris)
- More work around engine tracking for better handling (Chris, Tvrtko)
- HDCP debug and info improvements (Ram, Ashuman)
- Add DSI properties (Vandita)
- Rework on sdvo support for better debuggability before fixing bugs (Ville)
- Display PLLs fixes and improvements, specially targeting Ice Lake (Imre, Matt, Ville)
- Perf fixes and improvements (Lionel)
- Enumerate scratch buffers (Lionel)
- Add infra to hold off preemption on a request (Lionel)
- Ice Lake color space fixes (Uma)
- Type-C fixes and improvements (Lucas)
- Fix and improvements around workarounds (Chris, John, Tvrtko)
- GuC related fixes and improvements (Chris, Daniele, Michal, Tvrtko)
- Fix on VLV/CHV display power domain (Ville)
- Improvements around Watermark (Ville)
- Favor intel_ types on intel_atomic functions (Ville)
- Don’t pass stack garbage to pcode (Ville)
- Improve display tracepoints (Steven)
- Don’t overestimate 4:2:0 link symbol clock (Ville)
- Add support for 4th pipe and transcoder (Lucas)
- Introduce initial support for Tiger Lake platform (Daniele, Lucas, Mahesh, Jose, Imre, Mika, Vandita, Rodrigo, Michel)
- PPGTT allocation simplification (Chris)
- Standardize function names and suffixes to make clean, symmetric and let checkpatch happy (Janusz)
- Skip SINK_COUNT read on CH7511 (Ville)
- Fix on kernel documentation (Chris, Michal)
- Add modular FIA (Anusha, Lucas)
- Fix EHL display (Matt, Vivek)
- Enable hotplug retry (Imre, Jose)
- Disable preemption under GVT (Chris)
- OA; Reconfigure context on the fly (Chris)
- Fixes and improvements around engine reset. (Chris)
- Small clean up on display pipe fault mask (Ville)
- Make sure cdclk is high enough for DP audio on VLV/CHV (Ville)
- Drop some wmb() and improve pwrite flush (Chris)
- Fix critical PSR regression (DK)
- Remove unused variables (YueHaibing)
- Use dev_get_drvdata for simplification (Chunhong)
- Use upstream version of header tests (Jani)
drm-intel-next-2019-07-08:
- Signal fence completion from i915_request_wait (Chris)
- Fixes and improvements around rings pin/unpin (Chris)
- Display uncore prep patches (Daniele)
- Execlists preemption improvements (Chris)
- Selftests fixes and improvements (Chris)
- More Elkhartlake enabling work (Vandita, Jose, Matt, Vivek)
- Defer address space cleanup to an RCU worker (Chris)
- Implicit dev_priv removal and GT compartmentalization and other related follow-ups (Tvrtko, Chris)
- Prevent dereference of engine before NULL check in error capture (Chris)
- GuC related fixes (Daniele, Robert)
- Many changes on active tracking, timelines and locking mechanisms (Chris)
- Disable SAMPLER_STATE prefetching on Gen11 (HW W/a) (Kenneth)
- I915_perf fixes (Lionel)
- Add Ice Lake PCI ID (Mika)
- eDP backlight fix (Lee)
- Fix various gen2 tracepoints (Ville)
- Some irq vfunc clean-up and improvements (Ville)
- Move OA files to separated folder (Michal)
- Display self contained headers clean-up (Jani)
- Preparation for 4th pile (Lucas)
- Move atomic commit, watermark and other places to use more intel_crtc_state (Maarten)
- Many Ice Lake Type C and Thunderbolt fixes (Imre)
- Fix some Ice Lake hw w/a whitelist regs (Lionel)
- Fix memleak in runtime wakeref tracking (Mika)
- Remove unused Private PPAT manager (Michal)
- Don't check PPGTT presence on PPGTT-only platforms (Michal)
- Fix ICL DSI suspend/resume (Chris)
- Fix ICL Bandwidth issues (Ville)
- Add N & CTS values for 10/12 bit deep color (Aditya)
- Moving more GT related stuff under gt folder (Chris)
- Forcewake related fixes (Chris)
- Show support for accurate sw PMU busyness tracking (Chris)
- Handle gtt double alloc failures (Chris)
- Upgrade to new GuC version (Michal)
- Improve w/a debug dumps and pull engine w/a initialization into a common (Chris)
- Look for instdone on all engines at hangcheck (Tvrtko)
- Engine lookup simplification (Chris)
- Many plane color formats fixes and improvements (Ville)
- Fix some compilation issues (YueHaibing)
- GTT page directory clean up and improvements (Mika)
Signed-off-by: Dave Airlie <airlied@redhat.com>
From: Rodrigo Vivi <rodrigo.vivi@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190801201314.GA23635@intel.com
Most code in arch/x86/kernel/kvm.c is called through x86_hyper_kvm, and thus only
runs if KVM has been detected. There is no need to check again for the CPUID
base.
Cc: Sergio Lopez <slp@redhat.com>
Cc: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
We currently do not process SRAO (Software Recoverable Action Optional)
machine checks if they are logged with the overflow bit set to 1 in the
machine check bank status register. This is overly conservative.
There are two cases where we could end up with an SRAO+OVER log based
on the SDM volume 3 overwrite rules in "Table 15-8. Overwrite Rules for
UC, CE, and UCR Errors"
1) First a corrected error is logged, then the SRAO error overwrites.
The second error overwrites the first because uncorrected errors
have a higher severity than corrected errors.
2) The SRAO error was logged first, followed by a correcetd error.
In this case the first error is retained in the bank.
So in either case the machine check bank will contain the address
of the SRAO error. So we can process that even if the overflow bit
was set.
Reported-by: Yongkai Wu <yongkaiwu@tencent.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86-ml <x86@kernel.org>
Link: https://lkml.kernel.org/r/20190718182920.32621-1-tony.luck@intel.com
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the conditional for async pagefaults to use CONFIG_PREEMPTION.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.789755413@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Stack dumps print whether the kernel has preemption enabled or not. Extend
it so a PREEMPT_RT enabled kernel can be identified.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.699136351@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
CONFIG_PREEMPTION is selected by CONFIG_PREEMPT and by
CONFIG_PREEMPT_RT. Both PREEMPT and PREEMPT_RT require the same
functionality which today depends on CONFIG_PREEMPT.
Switch the entry code, preempt and kprobes conditionals over to
CONFIG_PREEMPTION.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Paul E. McKenney <paulmck@linux.ibm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Link: http://lkml.kernel.org/r/20190726212124.608488448@linutronix.de
Signed-off-by: Ingo Molnar <mingo@kernel.org>
When performing guest side polling, it is not necessary to
also perform host side polling.
So disable host side polling, via the new MSR interface,
when loading cpuidle-haltpoll driver.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Add a cpuidle driver that calls the architecture default_idle routine.
To be used in conjunction with the haltpoll governor.
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Intel provided the following information:
On all current Atom processors, instructions that use a segment register
value (e.g. a load or store) will not speculatively execute before the
last writer of that segment retires. Thus they will not use a
speculatively written segment value.
That means on ATOMs there is no speculation through SWAPGS, so the SWAPGS
entry paths can be excluded from the extra LFENCE if PTI is disabled.
Create a separate bug flag for the through SWAPGS speculation and mark all
out-of-order ATOMs and AMD/HYGON CPUs as not affected. The in-order ATOMs
are excluded from the whole mitigation mess anyway.
Reported-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tyler Hicks <tyhicks@canonical.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Implement shorthand support for x2apic.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.134696837@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the APIC code and the duplicate
helper in probe_64.c.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105221.042964120@linutronix.de
The 64bit implementations need the same wrappers around
__default_send_IPI_shortcut() as 32bit.
Move them out of the 32bit section.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.951534451@linutronix.de
All callers of apic->send_IPI_all() and apic->send_IPI_allbutself() contain
the decision logic for shorthand invocation already and invoke
send_IPI_mask() if the prereqisites are not satisfied.
Remove the now redundant decision logic in the 32bit implementation.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.860244707@linutronix.de
Nadav noticed that the cpumask allocations in native_send_call_func_ipi()
are noticeable in microbenchmarks.
Use the new cpumask_or_equal() function to simplify the decision whether
the supplied target CPU mask is either equal to cpu_online_mask or equal to
cpu_online_mask except for the CPU on which the function is invoked.
cpumask_or_equal() or's the target mask and the cpumask of the current CPU
together and compares it to cpu_online_mask.
If the result is false, use the mask based IPI function, otherwise check
whether the current CPU is set in the target mask and invoke either the
send_IPI_all() or the send_IPI_allbutselt() APIC callback.
Make the shorthand decision also depend on the static key which enables
shorthand mode. That allows to remove the extra cpumask comparison with
cpu_callout_mask.
Reported-by: Nadav Amit <namit@vmware.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.768238809@linutronix.de
Move it where it belongs. That allows to keep all the shorthand logic in
one place.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.677835995@linutronix.de
To support IPI shorthands wrap invocations of apic->send_IPI_allbutself()
in a helper function, so the static key controlling the shorthand mode is
only in one place.
Fixup all callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.492691679@linutronix.de
The IPI shorthand functionality delivers IPI/NMI broadcasts to all CPUs in
the system. This can have similar side effects as the MCE broadcasting when
CPUs are waiting in the BIOS or are offlined.
The kernel tracks already the state of offlined CPUs whether they have been
brought up at least once so that the CR4 MCE bit is set to make sure that
MCE broadcasts can't brick the machine.
Utilize that information and compare it to the cpu_present_mask. If all
present CPUs have been brought up at least once then the broadcast side
effect is mitigated by disabling regular interrupt/IPI delivery in the APIC
itself and by the cpu offline check at the begin of the NMI handler.
Use a static key to switch between broadcasting via shorthands or sending
the IPI/NMI one by one.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.386410643@linutronix.de
For the upcoming shorthand support for all APIC incarnations the command
line option needs to be available for 64 bit as well.
While at it, rename the control variable, make it static and mark it
__ro_after_init.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.278327940@linutronix.de
To support NMI shorthand broadcasts add the safe wait for ICR idle for NMI
vector delivery.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.185838026@linutronix.de
The SDM states:
"The destination shorthand field of the ICR allows the delivery mode to be
by-passed in favor of broadcasting the IPI to all the processors on the
system bus and/or back to itself (see Section 10.6.1, Interrupt Command
Register (ICR)). Three destination shorthands are supported: self, all
excluding self, and all including self. The destination mode is ignored
when a destination shorthand is used."
So there is no point to supply the destination mode to the shorthand
delivery function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.094613426@linutronix.de
In order to support IPI/NMI broadcasting via the shorthand mechanism side
effects of shorthands need to be mitigated:
Shorthand IPIs and NMIs hit all CPUs including unplugged CPUs
Neither of those can be handled on unplugged CPUs for obvious reasons.
It would be trivial to just fully disable the APIC via the enable bit in
MSR_APICBASE. But that's not possible because clearing that bit on systems
based on the 3 wire APIC bus would require a hardware reset to bring it
back as the APIC would lose track of bus arbitration. On systems with FSB
delivery APICBASE could be disabled, but it has to be guaranteed that no
interrupt is sent to the APIC while in that state and it's not clear from
the SDM whether it still responds to INIT/SIPI messages.
Therefore stay on the safe side and switch the APIC into soft disabled mode
so it won't deliver any regular vector to the CPU.
NMIs are still propagated to the 'dead' CPUs. To mitigate that add a check
for the CPU being offline on early nmi entry and if so bail.
Note, this cannot use the stop/restart_nmi() magic which is used in the
alternatives code. A dead CPU cannot invoke nmi_enter() or anything else
due to RCU and other reasons.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1907241723290.1791@nanos.tec.linutronix.de
arch_smt_update() will be used to control IPI/NMI broadcasting via the
shorthand mechanism. Keeping it in the bugs file and calling the apic
function from there is possible, but not really intuitive.
Move it to a neutral place and invoke the bugs function from there.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.910317273@linutronix.de
Now there are three small local headers. Some contain functions which are
only used in one source file.
Move all the inlines and declarations into a single local header and the
inlines which are only used in one source file into that.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105219.618612624@linutronix.de