Based on an idea from Dave, but cleaned up a bit.
We had multiple fields for essentially the same thing.
Now bo->base.size is the original size of the BO in
arbitrary units, usually bytes.
bo->mem.num_pages is the size in number of pages in the
resource domain of bo->mem.mem_type.
v2: use the GEM object size instead of the BO size
v3: fix printks in some places
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Huang Rui <ray.huang@amd.com> (v1)
Acked-by: Daniel Vetter <daniel.vetter@ffwll.ch>
Link: https://patchwork.freedesktop.org/patch/406831/
That was missed during the cleanup.
v2: fix comment in vmwgfx as well
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Michael J. Ruhl <michael.j.ruhl@intel.com>
Link: https://patchwork.freedesktop.org/patch/394092/
With vmwgfx dirty-tracking we need a specialized huge_fault
callback. Implement and hook it up.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Hellstrom (VMware) <thomas_os@shipmail.org>
Reviewed-by: Roland Scheidegger <sroland@vmware.com>
Acked-by: Christian König <christian.koenig@amd.com>
Support huge (PMD-size and PUD-size) page-table entries by providing a
huge_fault() callback.
We still support private mappings and write-notify by splitting the huge
page-table entries on write-access.
Note that for huge page-faults to occur, either the kernel needs to be
compiled with trans-huge-pages always enabled, or the kernel needs to be
compiled with trans-huge-pages enabled using madvise, and the user-space
app needs to call madvise() to enable trans-huge pages on a per-mapping
basis.
Furthermore huge page-faults will not succeed unless buffer objects and
user-space addresses are aligned on huge page size boundaries.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: "Matthew Wilcox (Oracle)" <willy@infradead.org>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ralph Campbell <rcampbell@nvidia.com>
Cc: "Jérôme Glisse" <jglisse@redhat.com>
Cc: "Christian König" <christian.koenig@amd.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Thomas Hellstrom (VMware) <thomas_os@shipmail.org>
Reviewed-by: Roland Scheidegger <sroland@vmware.com>
Reviewed-by: Christian König <christian.koenig@amd.com>
The current codebase makes use of the zero-length array language
extension to the C90 standard, but the preferred mechanism to declare
variable-length types such as these ones is a flexible array member[1][2],
introduced in C99:
struct foo {
int stuff;
struct boo array[];
};
By making use of the mechanism above, we will get a compiler warning
in case the flexible array does not occur last in the structure, which
will help us prevent some kind of undefined behavior bugs from being
inadvertently introduced[3] to the codebase from now on.
Also, notice that, dynamic memory allocations won't be affected by
this change:
"Flexible array members have incomplete type, and so the sizeof operator
may not be applied. As a quirk of the original implementation of
zero-length arrays, sizeof evaluates to zero."[1]
This issue was found with the help of Coccinelle.
[1] https://gcc.gnu.org/onlinedocs/gcc/Zero-Length.html
[2] https://github.com/KSPP/linux/issues/21
[3] commit 7649773293 ("cxgb3/l2t: Fix undefined behaviour")
Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com>
Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Similar to write-coherent resources, make sure that from the user-space
point of view, GPU rendered contents is automatically available for
reading by the CPU.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Deepak Rawat <drawat@vmware.com>
This infrastructure will, for coherent resources, make sure that
from the user-space point of view, data written by the CPU is immediately
automatically available to the GPU at resource validation time.
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@surriel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Jérôme Glisse <jglisse@redhat.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Signed-off-by: Thomas Hellstrom <thellstrom@vmware.com>
Reviewed-by: Deepak Rawat <drawat@vmware.com>