1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

19 commits

Author SHA1 Message Date
Jacob Keller
baeb705fd6 ice: always check VF VSI pointer values
The ice_get_vf_vsi function can return NULL in some cases, such as if
handling messages during a reset where the VSI is being removed and
recreated.

Several places throughout the driver do not bother to check whether this
VSI pointer is valid. Static analysis tools maybe report issues because
they detect paths where a potentially NULL pointer could be dereferenced.

Fix this by checking the return value of ice_get_vf_vsi everywhere.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-05-05 11:28:36 -07:00
Jacob Keller
9880d3d6f9 ice: add newline to dev_dbg in ice_vf_fdir_dump_info
The debug print in ice_vf_fdir_dump_info does not end in newlines. This can
look confusing when reading the kernel log, as the next print will
immediately continue on the same line.

Fix this by adding the forgotten newline.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Reviewed-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-05-05 11:28:36 -07:00
Jacob Keller
109aba47ca ice: introduce ice_vf_lib.c, ice_vf_lib.h, and ice_vf_lib_private.h
Introduce the ice_vf_lib.c file along with the ice_vf_lib.h and
ice_vf_lib_private.h header files.

These files will house the generic VF structures and access functions.
Move struct ice_vf and its dependent definitions into this new header
file.

The ice_vf_lib.c is compiled conditionally on CONFIG_PCI_IOV. Some of
its functionality is required by all driver files. However, some of its
functionality will only be required by other files also conditionally
compiled based on CONFIG_PCI_IOV.

Declaring these functions used only in CONFIG_PCI_IOV files in
ice_vf_lib.h is verbose. This is because we must provide a fallback
implementation for each function in this header since it is included in
files which may not be compiled with CONFIG_PCI_IOV.

Instead, introduce a new ice_vf_lib_private.h header which verifies that
CONFIG_PCI_IOV is enabled. This header is intended to be directly
included in .c files which are CONFIG_PCI_IOV only. Add a #error
indication that will complain if the file ever gets included by another
C file on a kernel with CONFIG_PCI_IOV disabled. Add a comment
indicating the nature of the file and why it is useful.

This makes it so that we can easily define functions exposed from
ice_vf_lib.c into other virtualization files without needing to add
fallback implementations for every single function.

This begins the path to separate out generic code which will be reused
by other virtualization implementations from ice_sriov.h and ice_sriov.c

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-03-15 13:22:13 -07:00
Jacob Keller
3d5985a185 ice: convert VF storage to hash table with krefs and RCU
The ice driver stores VF structures in a simple array which is allocated
once at the time of VF creation. The VF structures are then accessed
from the array by their VF ID. The ID must be between 0 and the number
of allocated VFs.

Multiple threads can access this table:

 * .ndo operations such as .ndo_get_vf_cfg or .ndo_set_vf_trust
 * interrupts, such as due to messages from the VF using the virtchnl
   communication
 * processing such as device reset
 * commands to add or remove VFs

The current implementation does not keep track of when all threads are
done operating on a VF and can potentially result in use-after-free
issues caused by one thread accessing a VF structure after it has been
released when removing VFs. Some of these are prevented with various
state flags and checks.

In addition, this structure is quite static and does not support a
planned future where virtualization can be more dynamic. As we begin to
look at supporting Scalable IOV with the ice driver (as opposed to just
supporting Single Root IOV), this structure is not sufficient.

In the future, VFs will be able to be added and removed individually and
dynamically.

To allow for this, and to better protect against a whole class of
use-after-free bugs, replace the VF storage with a combination of a hash
table and krefs to reference track all of the accesses to VFs through
the hash table.

A hash table still allows efficient look up of the VF given its ID, but
also allows adding and removing VFs. It does not require contiguous VF
IDs.

The use of krefs allows the cleanup of the VF memory to be delayed until
after all threads have released their reference (by calling ice_put_vf).

To prevent corruption of the hash table, a combination of RCU and the
mutex table_lock are used. Addition and removal from the hash table use
the RCU-aware hash macros. This allows simple read-only look ups that
iterate to locate a single VF can be fast using RCU. Accesses which
modify the hash table, or which can't take RCU because they sleep, will
hold the mutex lock.

By using this design, we have a stronger guarantee that the VF structure
can't be released until after all threads are finished operating on it.
We also pave the way for the more dynamic Scalable IOV implementation in
the future.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-03-03 11:57:18 -08:00
Jacob Keller
c4c2c7db64 ice: convert ice_for_each_vf to include VF entry iterator
The ice_for_each_vf macro is intended to be used to loop over all VFs.
The current implementation relies on an iterator that is the index into
the VF array in the PF structure. This forces all users to perform a
look up themselves.

This abstraction forces a lot of duplicate work on callers and leaks the
interface implementation to the caller. Replace this with an
implementation that includes the VF pointer the primary iterator. This
version simplifies callers which just want to iterate over every VF, as
they no longer need to perform their own lookup.

The "i" iterator value is replaced with a new unsigned int "bkt"
parameter, as this will match the necessary interface for replacing
the VF array with a hash table. For now, the bkt is the VF ID, but in
the future it will simply be the hash bucket index. Document that it
should not be treated as a VF ID.

This change aims to simplify switching from the array to a hash table. I
considered alternative implementations such as an xarray but decided
that the hash table was the simplest and most suitable implementation. I
also looked at methods to hide the bkt iterator entirely, but I couldn't
come up with a feasible solution that worked for hash table iterators.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-03-03 08:46:48 -08:00
Jacob Keller
b03d519d34 ice: store VF pointer instead of VF ID
The VSI structure contains a vf_id field used to associate a VSI with a
VF. This is used mainly for ICE_VSI_VF as well as partially for
ICE_VSI_CTRL associated with the VFs.

This API was designed with the idea that VFs are stored in a simple
array that was expected to be static throughout most of the driver's
life.

We plan on refactoring VF storage in a few key ways:

  1) converting from a simple static array to a hash table
  2) using krefs to track VF references obtained from the hash table
  3) use RCU to delay release of VF memory until after all references
     are dropped

This is motivated by the goal to ensure that the lifetime of VF
structures is accounted for, and prevent various use-after-free bugs.

With the existing vsi->vf_id, the reference tracking for VFs would
become somewhat convoluted, because each VSI maintains a vf_id field
which will then require performing a look up. This means all these flows
will require reference tracking and proper usage of rcu_read_lock, etc.

We know that the VF VSI will always be backed by a valid VF structure,
because the VSI is created during VF initialization and removed before
the VF is destroyed. Rely on this and store a reference to the VF in the
VSI structure instead of storing a VF ID. This will simplify the usage
and avoid the need to perform lookups on the hash table in the future.

For ICE_VSI_VF, it is expected that vsi->vf is always non-NULL after
ice_vsi_alloc succeeds. Because of this, use WARN_ON when checking if a
vsi->vf pointer is valid when dealing with VF VSIs. This will aid in
debugging code which violates this assumption and avoid more disastrous
panics.

Signed-off-by: Jacob Keller <jacob.e.keller@intel.com>
Tested-by: Konrad Jankowski <konrad0.jankowski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2022-03-03 08:46:47 -08:00
Tony Nguyen
2ccc1c1ccc ice: Remove excess error variables
ice_status previously had a variable to contain these values where other
error codes had a variable as well. With ice_status now being an int,
there is no need for two variables to hold error values. In cases where
this occurs, remove one of the excess variables and use a single one.
Some initialization of variables are no longer needed and have been
removed.

Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Gurucharan G <gurucharanx.g@intel.com>
2021-12-14 10:19:13 -08:00
Tony Nguyen
5518ac2a64 ice: Cleanup after ice_status removal
Clean up code after changing ice_status to int. Rearrange to fix reverse
Christmas tree and pull lines up where applicable.

Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Gurucharan G <gurucharanx.g@intel.com>
2021-12-14 10:19:13 -08:00
Tony Nguyen
d54699e27d ice: Remove enum ice_status
Replace uses of ice_status to, as equivalent as possible, error codes.
Remove enum ice_status and its helper conversion function as they are no
longer needed.

Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Gurucharan G <gurucharanx.g@intel.com>
2021-12-14 10:19:13 -08:00
Tony Nguyen
5e24d5984c ice: Use int for ice_status
To prepare for removal of ice_status, change the variables from
ice_status to int. This eases the transition when values are changed to
return standard int error codes over enum ice_status.

Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
Tested-by: Gurucharan G <gurucharanx.g@intel.com>
2021-12-14 10:19:13 -08:00
Jeff Guo
60f44fe4cd ice: refactor PTYPE validating
Since the capability of a PTYPE within a specific package could be
negotiated by checking the HW bit map, it means that there's no need
to maintain a different PTYPE list for each type of the package when
parsing PTYPE. So refactor the PTYPE validating mechanism.

Signed-off-by: Jeff Guo <jia.guo@intel.com>
Tested-by: Tony Brelinski <tony.brelinski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-12-14 08:06:47 -08:00
Anirudh Venkataramanan
7e408e07b4 ice: Drop leading underscores in enum ice_pf_state
Remove the leading underscores in enum ice_pf_state. This is not really
communicating anything and is unnecessary. No functional change.

Signed-off-by: Anirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: Tony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-04-14 17:00:05 -07:00
Qi Zhang
d6218317e2 ice: Check FDIR program status for AVF
Enable returning FDIR completion status by checking the
ctrl_vsi Rx queue descriptor value.

To enable returning FDIR completion status from ctrl_vsi Rx queue,
COMP_Queue and COMP_Report of FDIR filter programming descriptor
needs to be properly configured. After program request sent to ctrl_vsi
Tx queue, ctrl_vsi Rx queue interrupt will be triggered and
completion status will be returned.

Driver will first issue request in ice_vc_fdir_add_fltr(), then
pass FDIR context to the background task in interrupt service routine
ice_vc_fdir_irq_handler() and finally deal with them in
ice_flush_fdir_ctx(). ice_flush_fdir_ctx() will check the descriptor's
value, fdir context, and then send back virtual channel message to VF
by calling ice_vc_add_fdir_fltr_post(). An additional timer will be
setup in case of hardware interrupt timeout.

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Brett Creeley <brett.creeley@intel.com>
Signed-off-by: Jesse Brandeburg <jesse.brandeburg@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
213528fed2 ice: Add more FDIR filter type for AVF
FDIR for AVF can forward
- L2TPV3 packets by matching session id.
- IPSEC ESP packets by matching security parameter index.
- IPSEC AH packets by matching security parameter index.
- NAT_T ESP packets by matching security parameter index.
- Any PFCP session packets(s field is 1).

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
ef9e4cc589 ice: Add GTPU FDIR filter for AVF
Add new FDIR filter type to forward GTPU packets by matching TEID or QFI.
The filter is only enabled when COMMS DDP package is downloaded.

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
21606584f1 ice: Add non-IP Layer2 protocol FDIR filter for AVF
Add new filter type that allow forward non-IP Ethernet packets base on its
ethertype. The filter is only enabled when COMMS DDP package is loaded.

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
346bf25043 ice: Add new actions support for VF FDIR
Add two new actions support for VF FDIR:

A passthrough action does not specify the destination queue, but
just allow the packet go to next pipeline stage, a typical use
cases is combined with a software mark (FDID) action.

Allow specify a 2^n continuous queues as the destination of a FDIR rule.
Packet distribution is based on current RSS configure.

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
0ce332fd62 ice: Add FDIR pattern action parser for VF
Add basic FDIR flow list and pattern / action parse functions for VF.

Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00
Qi Zhang
1f7ea1cd6a ice: Enable FDIR Configure for AVF
The virtual channel is going to be extended to support FDIR and
RSS configure from AVF. New data structures and OP codes will be
added, the patch enable the FDIR part.

To support above advanced AVF feature, we need to figure out
what kind of data structure should be passed from VF to PF to describe
an FDIR rule or RSS config rule. The common part of the requirement is
we need a data structure to represent the input set selection of a rule's
hash key.

An input set selection is a group of fields be selected from one or more
network protocol layers that could be identified as a specific flow.
For example, select dst IP address from an IPv4 header combined with
dst port from the TCP header as the input set for an IPv4/TCP flow.

The patch adds a new data structure virtchnl_proto_hdrs to abstract
a network protocol headers group which is composed of layers of network
protocol header(virtchnl_proto_hdr).

A protocol header contains a 32 bits mask (field_selector) to describe
which fields are selected as input sets, as well as a header type
(enum virtchnl_proto_hdr_type). Each bit is mapped to a field in
enum virtchnl_proto_hdr_field guided by its header type.

+------------+-----------+------------------------------+
|            | Proto Hdr | Header Type A                |
|            |           +------------------------------+
|            |           | BIT 31 | ... | BIT 1 | BIT 0 |
|            |-----------+------------------------------+
|Proto Hdrs  | Proto Hdr | Header Type B                |
|            |           +------------------------------+
|            |           | BIT 31 | ... | BIT 1 | BIT 0 |
|            |-----------+------------------------------+
|            | Proto Hdr | Header Type C                |
|            |           +------------------------------+
|            |           | BIT 31 | ... | BIT 1 | BIT 0 |
|            |-----------+------------------------------+
|            |    ....                                  |
+-------------------------------------------------------+

All fields in enum virtchnl_proto_hdr_fields are grouped with header type
and the value of the first field of a header type is always 32 aligned.

enum proto_hdr_type {
        header_type_A = 0;
        header_type_B = 1;
        ....
}

enum proto_hdr_field {
        /* header type A */
        header_A_field_0 = 0,
        header_A_field_1 = 1,
        header_A_field_2 = 2,
        header_A_field_3 = 3,

        /* header type B */
        header_B_field_0 = 32, // = header_type_B << 5
        header_B_field_0 = 33,
        header_B_field_0 = 34
        header_B_field_0 = 35,
        ....
};

So we have:
proto_hdr_type = proto_hdr_field / 32
bit offset = proto_hdr_field % 32

To simply the protocol header's operations, couple help macros are added.
For example, to select src IP and dst port as input set for an IPv4/UDP
flow.

we have:
struct virtchnl_proto_hdr hdr[2];

VIRTCHNL_SET_PROTO_HDR_TYPE(&hdr[0], IPV4)
VIRTCHNL_ADD_PROTO_HDR_FIELD(&hdr[0], IPV4, SRC)

VIRTCHNL_SET_PROTO_HDR_TYPE(&hdr[1], UDP)
VIRTCHNL_ADD_PROTO_HDR_FIELD(&hdr[1], UDP, DST)

The byte array is used to store the protocol header of a training package.
The byte array must be network order.

The patch added virtual channel support for iAVF FDIR add/validate/delete
filter. iAVF FDIR is Flow Director for Intel Adaptive Virtual Function
which can direct Ethernet packets to the queues of the Network Interface
Card. Add/delete command is adding or deleting one rule for each virtual
channel message, while validate command is just verifying if this rule
is valid without any other operations.

To add or delete one rule, driver needs to config TCAM and Profile,
build training packets which contains the input set value, and send
the training packets through FDIR Tx queue. In addition, driver needs to
manage the software context to avoid adding duplicated rules, deleting
non-existent rule, input set conflicts and other invalid cases.

NOTE:
Supported pattern/actions and their parse functions are not be included in
this patch, they will be added in a separate one.

Signed-off-by: Jeff Guo <jia.guo@intel.com>
Signed-off-by: Yahui Cao <yahui.cao@intel.com>
Signed-off-by: Simei Su <simei.su@intel.com>
Signed-off-by: Beilei Xing <beilei.xing@intel.com>
Signed-off-by: Qi Zhang <qi.z.zhang@intel.com>
Tested-by: Chen Bo <BoX.C.Chen@intel.com>
Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
2021-03-22 11:32:12 -07:00