With so many counter addresses recently discovered as being wrong, it is
desirable to at least have a central database of information, rather
than two: one through the SYS_COUNT_* registers (used for
ndo_get_stats64), and the other through the offset field of struct
ocelot_stat_layout elements (used for ethtool -S).
The strategy will be to keep the SYS_COUNT_* definitions as the single
source of truth, but for that we need to expand our current definitions
to cover all registers. Then we need to convert the ocelot region
creation logic, and stats worker, to the read semantics imposed by going
through SYS_COUNT_* absolute register addresses, rather than offsets
of 32-bit words relative to SYS_COUNT_RX_OCTETS (which should have been
SYS_CNT, by the way).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot counters are 32-bit and require periodic reading, every 2
seconds, by ocelot_port_update_stats(), so that wraparounds are
detected.
Currently, the counters reported by ocelot_get_stats64() come from the
32-bit hardware counters directly, rather than from the 64-bit
accumulated ocelot->stats, and this is a problem for their integrity.
The strategy is to make ocelot_get_stats64() able to cherry-pick
individual stats from ocelot->stats the way in which it currently reads
them out from SYS_COUNT_* registers. But currently it can't, because
ocelot->stats is an opaque u64 array that's used only to feed data into
ethtool -S.
To solve that problem, we need to make ocelot->stats indexable, and
associate each element with an element of struct ocelot_stat_layout used
by ethtool -S.
This makes ocelot_stat_layout a fat (and possibly sparse) array, so we
need to change the way in which we access it. We no longer need
OCELOT_STAT_END as a sentinel, because we know the array's size
(OCELOT_NUM_STATS). We just need to skip the array elements that were
left unpopulated for the switch revision (ocelot, felix, seville).
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
ocelot_get_stats64() currently runs unlocked and therefore may collide
with ocelot_port_update_stats() which indirectly accesses the same
counters. However, ocelot_get_stats64() runs in atomic context, and we
cannot simply take the sleepable ocelot->stats_lock mutex. We need to
convert it to an atomic spinlock first. Do that as a preparatory change.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
When adjusting the PTP clock, the base time of the TAS configuration
will become unreliable. We need reset the TAS configuration by using a
new base time.
For example, if the driver gets a base time 0 of Qbv configuration from
user, and current time is 20000. The driver will set the TAS base time
to be 20000. After the PTP clock adjustment, the current time becomes
10000. If the TAS base time is still 20000, it will be a future time,
and TAS entry list will stop running. Another example, if the current
time becomes to be 10000000 after PTP clock adjust, a large time offset
can cause the hardware to hang.
This patch introduces a tas_clock_adjust() function to reset the TAS
module by using a new base time after the PTP clock adjustment. This can
avoid issues above.
Due to PTP clock adjustment can occur at any time, it may conflict with
the TAS configuration. We introduce a new TAS lock to serialize the
access to the TAS registers.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
There is a desire for the felix driver to gain support for multiple
tag_8021q CPU ports, but the current model prevents it.
This is because ocelot_apply_bridge_fwd_mask() only takes into
consideration whether a port is a tag_8021q CPU port, but not whose CPU
port it is.
We need a model where we can have a direct affinity between an ocelot
port and a tag_8021q CPU port. This serves as the basis for multiple CPU
ports.
Declare a "dsa_8021q_cpu" backpointer in struct ocelot_port which
encodes that affinity. Repurpose the "ocelot_set_dsa_8021q_cpu" API to
"ocelot_assign_dsa_8021q_cpu" to express the change of paradigm.
Note that this change makes the first practical use of the new
ocelot_port->index field in ocelot_port_unassign_dsa_8021q_cpu(), where
we need to remove the old tag_8021q CPU port from the reserved VLAN range.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Absorb the final details of calling ocelot_port_{,un}set_dsa_8021q_cpu(),
i.e. the need to lock &ocelot->fwd_domain_lock, into the callee, to
simplify the caller and permit easier code reuse later.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add more logic to ocelot_port_{,un}set_dsa_8021q_cpu() from the ocelot
switch lib by encapsulating the ocelot_apply_bridge_fwd_mask() call that
felix used to have.
This is necessary because the CPU port change procedure will also need
to do this, and it's good to reduce code duplication by having an entry
point in the ocelot switch lib that does all that is needed.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
PGID_CPU must be updated every time a port is configured or unconfigured
as a tag_8021q CPU port. The ocelot switch lib already has a hook for
that operation, so move the updating of PGID_CPU to those hooks.
These bits are pretty specific to DSA, so normally I would keep them out
of the common switch lib, but when tag_8021q is in use, this has
implications upon the forwarding mask determined by
ocelot_apply_bridge_fwd_mask() and called extensively by the switch lib.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
For symmetry with host FDBs and MDBs where the indirection is now
handled outside the ocelot switch lib, do the same for bridge port
flags (unicast/multicast/broadcast flooding).
The only caller of the ocelot switch lib which uses the NPI port is the
Felix DSA driver.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
For symmetry with host FDBs where the indirection is now handled outside
the ocelot switch lib, do the same for host MDB entries. The only caller
of the ocelot switch lib which uses the NPI port is the Felix DSA driver.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
I remembered why we had the host FDB migration procedure in place.
It is true that host FDB entry migration can be done by changing the
value of PGID_CPU, but the problem is that only host FDB entries learned
while operating in NPI mode go to PGID_CPU. When the CPU port operates
in tag_8021q mode, the FDB entries are learned towards the unicast PGID
equal to the physical port number of this CPU port, bypassing the
PGID_CPU indirection.
So host FDB entries learned in tag_8021q mode are not migrated any
longer towards the NPI port.
Fix this by extracting the NPI port -> PGID_CPU redirection from the
ocelot switch lib, moving it to the Felix DSA driver, and applying it
for any CPU port regardless of its kind (NPI or tag_8021q).
Fixes: a51c1c3f32 ("net: dsa: felix: stop migrating FDBs back and forth on tag proto change")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The felix driver is the only user of dsa_port_walk_mdbs(), and there
isn't even a good reason for it, considering that the host MDB entries
are already saved by the ocelot switch lib in the ocelot->multicast list.
Rewrite the multicast entry migration procedure around the
ocelot->multicast list so we can delete dsa_port_walk_mdbs().
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since the blamed commit, VCAP filters can appear on more than one list.
If their action is "trap", they are chained on ocelot->traps via
filter->trap_list. This is in addition to their normal placement on the
VCAP block->rules list head.
Therefore, when we free a VCAP filter, we must remove it from all lists
it is a member of, including ocelot->traps.
There are at least 2 bugs which are direct consequences of this design
decision.
First is the incorrect usage of list_empty(), meant to denote whether
"filter" is chained into ocelot->traps via filter->trap_list.
This does not do the correct thing, because list_empty() checks whether
"head->next == head", but in our case, head->next == head->prev == NULL.
So we dereference NULL pointers and die when we call list_del().
Second is the fact that not all places that should remove the filter
from ocelot->traps do so. One example is ocelot_vcap_block_remove_filter(),
which is where we have the main kfree(filter). By keeping freed filters
in ocelot->traps we end up in a use-after-free in
felix_update_trapping_destinations().
Attempting to fix all the buggy patterns is a whack-a-mole game which
makes the driver unmaintainable. Actually this is what the previous
patch version attempted to do:
https://patchwork.kernel.org/project/netdevbpf/patch/20220503115728.834457-3-vladimir.oltean@nxp.com/
but it introduced another set of bugs, because there are other places in
which create VCAP filters, not just ocelot_vcap_filter_create():
- ocelot_trap_add()
- felix_tag_8021q_vlan_add_rx()
- felix_tag_8021q_vlan_add_tx()
Relying on the convention that all those code paths must call
INIT_LIST_HEAD(&filter->trap_list) is not going to scale.
So let's do what should have been done in the first place and keep a
bool in struct ocelot_vcap_filter which denotes whether we are looking
at a trapping rule or not. Iterating now happens over the main VCAP IS2
block->rules. The advantage is that we no longer risk having stale
references to a freed filter, since it is only present in that list.
Fixes: e42bd4ed09 ("net: mscc: ocelot: keep traps in a list")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
There is a desire to share the oclot_stats_layout struct outside of the
current vsc7514 driver. In order to do so, the length of the array needs to
be known at compile time, and defined in the struct ocelot and struct
felix_info.
Since the array is defined in a .c file and would be declared in the header
file via:
extern struct ocelot_stat_layout[];
the size of the array will not be known at compile time to outside modules.
To fix this, remove the need for defining the number of stats at compile
time and allow this number to be determined at initialization.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
DSA, through dsa_port_bridge_leave(), first notifies the port of the
fact that it left a bridge, then, if that bridge was VLAN-aware, it
notifies the port of the change in VLAN awareness state, towards
VLAN-unaware mode.
So ocelot_port_vlan_filtering() can be called when ocelot_port->bridge
is NULL, and this makes ocelot_add_vlan_unaware_pvid() create a struct
ocelot_bridge_vlan with a vid of 0 and an "untagged" setting of true on
that port.
In a way this structure correctly reflects the reality, but by design,
VID 0 (OCELOT_STANDALONE_PVID) was not meant to be kept in the bridge
VLAN list of the driver, but managed separately.
Having OCELOT_STANDALONE_PVID in ocelot->vlans makes us trip up on
several sanity checks that did not expect to have this VID there.
For example, after we leave a VLAN-aware bridge and we re-join it, we
can no longer program egress-tagged VLANs to hardware:
# ip link add br0 type bridge vlan_filtering 1 && ip link set br0 up
# ip link set swp0 master br0
# ip link set swp0 nomaster
# ip link set swp0 master br0
# bridge vlan add dev swp0 vid 100
Error: mscc_ocelot_switch_lib: Port with more than one egress-untagged VLAN cannot have egress-tagged VLANs.
But this configuration is in fact supported by the hardware, since we
could use OCELOT_PORT_TAG_NATIVE. According to its comment:
/* all VLANs except the native VLAN and VID 0 are egress-tagged */
yet when assessing the eligibility for this mode, we do not check for
VID 0 in ocelot_port_uses_native_vlan(), instead we just ensure that
ocelot_port_num_untagged_vlans() == 1. This is simply because VID 0
doesn't have a bridge VLAN structure.
The way I identify the problem is that ocelot_port_vlan_filtering(false)
only means to call ocelot_add_vlan_unaware_pvid() when we dynamically
turn off VLAN awareness for a bridge we are under, and the PVID changes
from the bridge PVID to a reserved PVID based on the bridge number.
Since OCELOT_STANDALONE_PVID is statically added to the VLAN table
during ocelot_vlan_init() and never removed afterwards, calling
ocelot_add_vlan_unaware_pvid() for it is not intended and does not serve
any purpose.
Fix the issue by avoiding the call to ocelot_add_vlan_unaware_pvid(vid=0)
when we're resetting VLAN awareness after leaving the bridge, to become
a standalone port.
Fixes: 54c3198460 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Both the felix DSA driver and ocelot switchdev driver declare
dev->features & NETIF_F_HW_VLAN_CTAG_FILTER under certain circumstances*,
so the 8021q module will add VID 0 to our RX filter when the port goes
up, to ensure 802.1p traffic is not dropped.
We treat VID 0 as a special value (OCELOT_STANDALONE_PVID) which
deliberately does not have a struct ocelot_bridge_vlan associated with
it. Instead, this gets programmed to the VLAN table in ocelot_vlan_init().
If we allow external calls to modify VID 0, we reach the following
situation:
# ip link add br0 type bridge vlan_filtering 1 && ip link set br0 up
# ip link set swp0 master br0
# ip link set swp0 up # this adds VID 0 to ocelot->vlans with untagged=false
bridge vlan
port vlan-id
swp0 1 PVID Egress Untagged # the bridge also adds VID 1
br0 1 PVID Egress Untagged
# bridge vlan add dev swp0 vid 100 untagged
Error: mscc_ocelot_switch_lib: Port with egress-tagged VLANs cannot have more than one egress-untagged (native) VLAN.
This configuration should have been accepted, because
ocelot_port_manage_port_tag() should select OCELOT_PORT_TAG_NATIVE.
Yet it isn't, because we have an entry in ocelot->vlans which says
VID 0 should be egress-tagged, something the hardware can't do.
Fix this by suppressing additions/deletions on VID 0 and managing this
VLAN exclusively using OCELOT_STANDALONE_PVID.
*DSA toggles it when the port becomes VLAN-aware by joining a VLAN-aware
bridge. Ocelot declares it unconditionally for some reason.
Fixes: 54c3198460 ("net: mscc: ocelot: enforce FDB isolation when VLAN-unaware")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When the user runs:
bridge link set dev $br_port mcast_flood on
this command should affect not only L2 multicast, but also IPv4 and IPv6
multicast.
In the Ocelot switch, unknown multicast gets flooded according to
different PGIDs according to its type, and PGID_MC only handles L2
multicast. Therefore, by leaving PGID_MCIPV4 and PGID_MCIPV6 at their
default value of 0, unknown IP multicast traffic is never flooded.
Fixes: 421741ea56 ("net: mscc: ocelot: offload bridge port flags to device")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220415151950.219660-1-vladimir.oltean@nxp.com
Signed-off-by: Paolo Abeni <pabeni@redhat.com>
Per-flow mirroring with the VCAP IS2 TCAM (in itself handled as an
offload for tc-flower) is done by setting the MIRROR_ENA bit from the
action vector of the filter. The packet is mirrored to the port mask
configured in the ANA:ANA:MIRRORPORTS register (the same port mask as
the destinations for port-based mirroring).
Functionality was tested with:
tc qdisc add dev swp3 clsact
tc filter add dev swp3 ingress protocol ip \
flower skip_sw ip_proto icmp \
action mirred egress mirror dev swp1
and pinging through swp3, while seeing that the ICMP replies are
mirrored towards swp1.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Ocelot switches perform port-based ingress mirroring if
ANA:PORT:PORT_CFG field SRC_MIRROR_ENA is set, and egress mirroring if
the port is in ANA:ANA:EMIRRORPORTS.
Both ingress-mirrored and egress-mirrored frames are copied to the port
mask from ANA:ANA:MIRRORPORTS.
So the choice of limiting to a single mirror port via ocelot_mirror_get()
and ocelot_mirror_put() may seem bizarre, but the hardware model doesn't
map very well to the user space model. If the user wants to mirror the
ingress of swp1 towards swp2 and the ingress of swp3 towards swp4, we'd
have to program ANA:ANA:MIRRORPORTS with BIT(2) | BIT(4), and that would
make swp1 be mirrored towards swp4 too, and swp3 towards swp2. But there
are no tc-matchall rules to describe those actions.
Now, we could offload a matchall rule with multiple mirred actions, one
per desired mirror port, and force the user to stick to the multi-action
rule format for subsequent matchall filters. But both DSA and ocelot
have the flow_offload_has_one_action() check for the matchall offload,
plus the fact that it will get cumbersome to cross-check matchall
mirrors with flower mirrors (which will be added in the next patch).
As a result, we limit the configuration to a single mirror port, with
the possibility of lifting the restriction in the future.
Frames injected from the CPU don't get egress-mirrored, since they are
sent with the BYPASS bit in the injection frame header, and this
bypasses the analyzer module (effectively also the mirroring logic).
I don't know what to do/say about this.
Functionality was tested with:
tc qdisc add dev swp3 clsact
tc filter add dev swp3 ingress \
matchall skip_sw \
action mirred egress mirror dev swp1
and pinging through swp3, while seeing that the ICMP replies are
mirrored towards swp1.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
IEEE_8021QAZ_MAX_TCS is defined in include/uapi/linux/dcbnl.h, which is
included by net/dcbnl.h. Then, linux/netdevice.h conditionally includes
net/dcbnl.h if CONFIG_DCB is enabled.
Therefore, when CONFIG_DCB is disabled, this indirect dependency is
broken.
There isn't a good reason to include net/dcbnl.h headers into the ocelot
switch library which exports low-level hardware API, so replace
IEEE_8021QAZ_MAX_TCS with OCELOT_NUM_TC which has the same value.
Fixes: 978777d0fb ("net: dsa: felix: configure default-prio and dscp priorities")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220315131215.273450-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Follow the established programming model for this driver and provide
shims in the felix DSA driver which call the implementations from the
ocelot switch lib. The ocelot switchdev driver wasn't integrated with
dcbnl due to lack of hardware availability.
The switch doesn't have any fancy QoS classification enabled by default.
The provided getters will create a default-prio app table entry of 0,
and no dscp entry. However, the getters have been made to actually
retrieve the hardware configuration rather than static values, to be
future proof in case DSA will need this information from more call paths.
For default-prio, there is a single field per port, in ANA_PORT_QOS_CFG,
called QOS_DEFAULT_VAL.
DSCP classification is enabled per-port, again via ANA_PORT_QOS_CFG
(field QOS_DSCP_ENA), and individual DSCP values are configured as
trusted or not through register ANA_DSCP_CFG (replicated 64 times).
An untrusted DSCP value falls back to other QoS classification methods.
If trusted, the selected ANA_DSCP_CFG register also holds the QoS class
in the QOS_DSCP_VAL field.
The hardware also supports DSCP remapping (DSCP value X is translated to
DSCP value Y before the QoS class is determined based on the app table
entry for Y) and DSCP packet rewriting. The dcbnl framework, for being
so flexible in other useless areas, doesn't appear to support this.
So this functionality has been left out.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order for the Felix DSA driver to be able to turn on/off flooding
towards its CPU port, we need to redirect calls on the NPI port to
actually act upon the index in the analyzer block that corresponds to
the CPU port module. This was never necessary until now because DSA
(or the bridge) never called ocelot_port_bridge_flags() for the NPI
port.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Currently ocelot uses a pvid of 0 for standalone ports and ports under a
VLAN-unaware bridge, and the pvid of the bridge for ports under a
VLAN-aware bridge. Standalone ports do not perform learning, but packets
received on them are still subject to FDB lookups. So if the MAC DA that
a standalone port receives has been also learned on a VLAN-unaware
bridge port, ocelot will attempt to forward to that port, even though it
can't, so it will drop packets.
So there is a desire to avoid that, and isolate the FDBs of different
bridges from one another, and from standalone ports.
The ocelot switch library has two distinct entry points: the felix DSA
driver and the ocelot switchdev driver.
We need to code up a minimal bridge_num allocation in the ocelot
switchdev driver too, this is copied from DSA with the exception that
ocelot does not care about DSA trees, cross-chip bridging etc. So it
only looks at its own ports that are already in the same bridge.
The ocelot switchdev driver uses the bridge_num it has allocated itself,
while the felix driver uses the bridge_num allocated by DSA. They are
both stored inside ocelot_port->bridge_num by the common function
ocelot_port_bridge_join() which receives the bridge_num passed by value.
Once we have a bridge_num, we can only use it to enforce isolation
between VLAN-unaware bridges. As far as I can see, ocelot does not have
anything like a FID that further makes VLAN 100 from a port be different
to VLAN 100 from another port with regard to FDB lookup. So we simply
deny multiple VLAN-aware bridges.
For VLAN-unaware bridges, we crop the 4000-4095 VLAN region and we
allocate a VLAN for each bridge_num. This will be used as the pvid of
each port that is under that VLAN-unaware bridge, for as long as that
bridge is VLAN-unaware.
VID 0 remains only for standalone ports. It is okay if all standalone
ports use the same VID 0, since they perform no address learning, the
FDB will contain no entry in VLAN 0, so the packets will always be
flooded to the only possible destination, the CPU port.
The CPU port module doesn't need to be member of the VLANs to receive
packets, but if we use the DSA tag_8021q protocol, those packets are
part of the data plane as far as ocelot is concerned, so there it needs
to. Just ensure that the DSA tag_8021q CPU port is a member of all
reserved VLANs when it is created, and is removed when it is deleted.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
This adds the logic in the Felix DSA driver and Ocelot switch library.
For Ocelot switches, the DEST_IDX that is the output of the MAC table
lookup is a logical port (equal to physical port, if no LAG is used, or
a dynamically allocated number otherwise). The allocation we have in
place for LAG IDs is different from DSA's, so we can't use that:
- DSA allocates a continuous range of LAG IDs starting from 1
- Ocelot appears to require that physical ports and LAG IDs are in the
same space of [0, num_phys_ports), and additionally, ports that aren't
in a LAG must have physical port id == logical port id
The implication is that an FDB entry towards a LAG might need to be
deleted and reinstalled when the LAG ID changes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot switch library does not need this information, but the felix
DSA driver does.
As a reminder, the VSC9959 switch in LS1028A doesn't have an IRQ line
for packet extraction, so to be notified that a PTP packet needs to be
dequeued, it receives that packet also over Ethernet, by setting up a
packet trap. The Felix driver needs to install special kinds of traps
for packets in need of RX timestamps, such that the packets are
replicated both over Ethernet and over the CPU port module.
But the Ocelot switch library sets up more than one trap for PTP event
messages; it also traps PTP general messages, MRP control messages etc.
Those packets don't need PTP timestamps, so there's no reason for the
Felix driver to send them to the CPU port module.
By knowing which traps need PTP timestamps, the Felix driver can
adjust the traps installed using ocelot_trap_add() such that only those
will actually get delivered to the CPU port module.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
When using the ocelot-8021q tagging protocol, the CPU port isn't
configured as an NPI port, but is a regular port. So a "trap to CPU"
operation is actually a "redirect" operation. So DSA needs to set up the
trapping action one way or another, depending on the tagging protocol in
use.
To ease DSA's work of modifying the action, keep all currently installed
traps in a list, so that DSA can live-patch them when the tagging
protocol changes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The MRP assist code installs a VCAP IS2 trapping rule for each port, but
since the key and the action is the same, just the ingress port mask
differs, there isn't any need to do this. We can save some space in the
TCAM by using a single filter and adjusting the ingress port mask.
Reuse the ocelot_trap_add() and ocelot_trap_del() functions for this
purpose.
Now that the cookies are no longer per port, we need to change the
allocation scheme such that MRP traps use a fixed number.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Every use case that needed VCAP filters (in order: DSA tag_8021q, MRP,
PTP traps) has hardcoded filter identifiers that worked well enough for
that use case alone. But when two or more of those use cases would be
used together, some of those identifiers would overlap, leading to
breakage.
Add definitions for each cookie and centralize them in ocelot_vcap.h,
such that the overlaps are more obvious.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_vlan_member_del() will free the struct ocelot_bridge_vlan, so if
this is the same as the port's pvid_vlan which we access afterwards,
what we're accessing is freed memory.
Fix the bug by determining whether to clear ocelot_port->pvid_vlan prior
to calling ocelot_vlan_member_del().
Fixes: d4004422f6 ("net: mscc: ocelot: track the port pvid using a pointer")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Create and utilize bulk regmap reads instead of single access for gathering
stats. The background reading of statistics happens frequently, and over
a few contiguous memory regions.
High speed PCIe buses and MMIO access will probably see negligible
performance increase. Lower speed buses like SPI and I2C could see
significant performance increase, since the bus configuration and register
access times account for a large percentage of data transfer time.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Tested-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
The ocelot_update_stats function only needs to read from one port, yet it
was updating the stats for all ports. Update to only read the stats that
are necessary.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
An ongoing workqueue populates the stats buffer. At the same time, a user
might query the statistics. While writing to the buffer is mutex-locked,
reading from the buffer wasn't. This could lead to buggy reads by ethtool.
This patch fixes the former blamed commit, but the bug was introduced in
the latter.
Signed-off-by: Colin Foster <colin.foster@in-advantage.com>
Fixes: 1e1caa9735 ("ocelot: Clean up stats update deferred work")
Fixes: a556c76adc ("net: mscc: Add initial Ocelot switch support")
Reported-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/all/20220210150451.416845-2-colin.foster@in-advantage.com/
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The filters for the PTP trap keys are incorrectly configured, in the
sense that is2_entry_set() only looks at trap->key.ipv4.dport or
trap->key.ipv6.dport if trap->key.ipv4.proto or trap->key.ipv6.proto is
set to IPPROTO_TCP or IPPROTO_UDP.
But we don't do that, so is2_entry_set() goes through the "else" branch
of the IP protocol check, and ends up installing a rule for "Any IP
protocol match" (because msk is also 0). The UDP port is ignored.
This means that when we run "ptp4l -i swp0 -4", all IP traffic is
trapped to the CPU, which hinders bridging.
Fix this by specifying the IP protocol in the VCAP IS2 filters for PTP
over UDP.
Fixes: 96ca08c058 ("net: mscc: ocelot: set up traps for PTP packets")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Add support for flushing the MAC table on a given port in the ocelot
switch library, and use this functionality in the felix DSA driver.
This operation is needed when a port leaves a bridge to become
standalone, and when the learning is disabled, and when the STP state
changes to a state where no FDB entry should be present.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Reviewed-by: Florian Fainelli <f.fainelli@gmail.com>
Link: https://lore.kernel.org/r/20220107144229.244584-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Assuming the test setup described here:
https://patchwork.kernel.org/project/netdevbpf/cover/20210205130240.4072854-1-vladimir.oltean@nxp.com/
(swp1 and swp2 are in bond0, and bond0 is in a bridge with swp0)
it can be seen that when swp1 goes down (on either board A or B), then
traffic that should go through that port isn't forwarded anywhere.
A dump of the PGID table shows the following:
PGID_DST[0] = ports 0
PGID_DST[1] = ports 1
PGID_DST[2] = ports 2
PGID_DST[3] = ports 3
PGID_DST[4] = ports 4
PGID_DST[5] = ports 5
PGID_DST[6] = no ports
PGID_AGGR[0] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[1] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[2] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[3] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[4] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[5] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[6] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[7] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[8] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[9] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[10] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[11] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[12] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[13] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[14] = ports 0, 1, 2, 3, 4, 5
PGID_AGGR[15] = ports 0, 1, 2, 3, 4, 5
PGID_SRC[0] = ports 1, 2
PGID_SRC[1] = ports 0
PGID_SRC[2] = ports 0
PGID_SRC[3] = no ports
PGID_SRC[4] = no ports
PGID_SRC[5] = no ports
PGID_SRC[6] = ports 0, 1, 2, 3, 4, 5
Whereas a "good" PGID configuration for that setup should have looked
like this:
PGID_DST[0] = ports 0
PGID_DST[1] = ports 1, 2
PGID_DST[2] = ports 1, 2
PGID_DST[3] = ports 3
PGID_DST[4] = ports 4
PGID_DST[5] = ports 5
PGID_DST[6] = no ports
PGID_AGGR[0] = ports 0, 2, 3, 4, 5
PGID_AGGR[1] = ports 0, 2, 3, 4, 5
PGID_AGGR[2] = ports 0, 2, 3, 4, 5
PGID_AGGR[3] = ports 0, 2, 3, 4, 5
PGID_AGGR[4] = ports 0, 2, 3, 4, 5
PGID_AGGR[5] = ports 0, 2, 3, 4, 5
PGID_AGGR[6] = ports 0, 2, 3, 4, 5
PGID_AGGR[7] = ports 0, 2, 3, 4, 5
PGID_AGGR[8] = ports 0, 2, 3, 4, 5
PGID_AGGR[9] = ports 0, 2, 3, 4, 5
PGID_AGGR[10] = ports 0, 2, 3, 4, 5
PGID_AGGR[11] = ports 0, 2, 3, 4, 5
PGID_AGGR[12] = ports 0, 2, 3, 4, 5
PGID_AGGR[13] = ports 0, 2, 3, 4, 5
PGID_AGGR[14] = ports 0, 2, 3, 4, 5
PGID_AGGR[15] = ports 0, 2, 3, 4, 5
PGID_SRC[0] = ports 1, 2
PGID_SRC[1] = ports 0
PGID_SRC[2] = ports 0
PGID_SRC[3] = no ports
PGID_SRC[4] = no ports
PGID_SRC[5] = no ports
PGID_SRC[6] = ports 0, 1, 2, 3, 4, 5
In other words, in the "bad" configuration, the attempt is to remove the
inactive swp1 from the destination ports via PGID_DST. But when a MAC
table entry is learned, it is learned towards PGID_DST 1, because that
is the logical port id of the LAG itself (it is equal to the lowest
numbered member port). So when swp1 becomes inactive, if we set
PGID_DST[1] to contain just swp1 and not swp2, the packet will not have
any chance to reach the destination via swp2.
The "correct" way to remove swp1 as a destination is via PGID_AGGR
(remove swp1 from the aggregation port groups for all aggregation
codes). This means that PGID_DST[1] and PGID_DST[2] must still contain
both swp1 and swp2. This makes the MAC table still treat packets
destined towards the single-port LAG as "multicast", and the inactive
ports are removed via the aggregation code tables.
The change presented here is a design one: the ocelot_get_bond_mask()
function used to take an "only_active_ports" argument. We don't need
that. The only call site that specifies only_active_ports=true,
ocelot_set_aggr_pgids(), must retrieve the entire bonding mask, because
it must program that into PGID_DST. Additionally, it must also clear the
inactive ports from the bond mask here, which it can't do if bond_mask
just contains the active ports:
ac = ocelot_read_rix(ocelot, ANA_PGID_PGID, i);
ac &= ~bond_mask; <---- here
/* Don't do division by zero if there was no active
* port. Just make all aggregation codes zero.
*/
if (num_active_ports)
ac |= BIT(aggr_idx[i % num_active_ports]);
ocelot_write_rix(ocelot, ac, ANA_PGID_PGID, i);
So it becomes the responsibility of ocelot_set_aggr_pgids() to take
ocelot_port->lag_tx_active into consideration when populating the
aggr_idx array.
Fixes: 23ca3b727e ("net: mscc: ocelot: rebalance LAGs on link up/down events")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20220107164332.402133-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Since commit 94dd016ae5 ("bond: pass get_ts_info and SIOC[SG]HWTSTAMP
ioctl to active device") the user could get bond active interface's
PHC index directly. But when there is a failover, the bond active
interface will change, thus the PHC index is also changed. This may
break the user's program if they did not update the PHC timely.
This patch adds a new hwtstamp_config flag HWTSTAMP_FLAG_BONDED_PHC_INDEX.
When the user wants to get the bond active interface's PHC, they need to
add this flag and be aware the PHC index may be changed.
With the new flag. All flag checks in current drivers are removed. Only
the checking in net_hwtstamp_validate() is kept.
Suggested-by: Jakub Kicinski <kuba@kernel.org>
Signed-off-by: Hangbin Liu <liuhangbin@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
In order to support PTP in FDMA, PTP handling code is needed. Since
this is the same as for register-based extraction, export it with
a new ocelot_ptp_rx_timestamp() function.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
FDMA will need this code to prepare the injection frame header when
sending SKBs. Move this code into ocelot_ifh_port_set() and add
conditional IFH setting for vlan and rew op if they are not set.
Reviewed-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Clément Léger <clement.leger@bootlin.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
If err is true, the function will be returned, but mutex_lock isn't
released.
Reported-by: Zeal Robot <zealci@zte.com.cn>
Signed-off-by: Lv Ruyi <lv.ruyi@zte.com.cn>
Signed-off-by: David S. Miller <davem@davemloft.net>
The driver doesn't support RX timestamping for non-PTP packets, but it
declares that it does. Restrict the reported RX filters to PTP v2 over
L2 and over L4.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
IEEE 1588 support was declared too soon for the Ocelot switch. Out of
reset, this switch does not apply any special treatment for PTP packets,
i.e. when an event message is received, the natural tendency is to
forward it by MAC DA/VLAN ID. This poses a problem when the ingress port
is under a bridge, since user space application stacks (written
primarily for endpoint ports, not switches) like ptp4l expect that PTP
messages are always received on AF_PACKET / AF_INET sockets (depending
on the PTP transport being used), and never being autonomously
forwarded. Any forwarding, if necessary (for example in Transparent
Clock mode) is handled in software by ptp4l. Having the hardware forward
these packets too will cause duplicates which will confuse endpoints
connected to these switches.
So PTP over L2 barely works, in the sense that PTP packets reach the CPU
port, but they reach it via flooding, and therefore reach lots of other
unwanted destinations too. But PTP over IPv4/IPv6 does not work at all.
This is because the Ocelot switch have a separate destination port mask
for unknown IP multicast (which PTP over IP is) flooding compared to
unknown non-IP multicast (which PTP over L2 is) flooding. Specifically,
the driver allows the CPU port to be in the PGID_MC port group, but not
in PGID_MCIPV4 and PGID_MCIPV6. There are several presentations from
Allan Nielsen which explain that the embedded MIPS CPU on Ocelot
switches is not very powerful at all, so every penny they could save by
not allowing flooding to the CPU port module matters. Unknown IP
multicast did not make it.
The de facto consensus is that when a switch is PTP-aware and an
application stack for PTP is running, switches should have some sort of
trapping mechanism for PTP packets, to extract them from the hardware
data path. This avoids both problems:
(a) PTP packets are no longer flooded to unwanted destinations
(b) PTP over IP packets are no longer denied from reaching the CPU since
they arrive there via a trap and not via flooding
It is not the first time when this change is attempted. Last time, the
feedback from Allan Nielsen and Andrew Lunn was that the traps should
not be installed by default, and that PTP-unaware switching may be
desired for some use cases:
https://patchwork.ozlabs.org/project/netdev/patch/20190813025214.18601-5-yangbo.lu@nxp.com/
To address that feedback, the present patch adds the necessary packet
traps according to the RX filter configuration transmitted by user space
through the SIOCSHWTSTAMP ioctl. Trapping is done via VCAP IS2, where we
keep 5 filters, which are amended each time RX timestamping is enabled
or disabled on a port:
- 1 for PTP over L2
- 2 for PTP over IPv4 (UDP ports 319 and 320)
- 2 for PTP over IPv6 (UDP ports 319 and 320)
The cookie by which these filters (invisible to tc) are identified is
strategically chosen such that it does not collide with the filters used
for the ocelot-8021q tagging protocol by the Felix driver, or with the
MRP traps set up by the Ocelot library.
Other alternatives were considered, like patching user space to do
something, but there are so many ways in which PTP packets could be made
to reach the CPU, generically speaking, that "do what?" is a very valid
question. The ptp4l program from the linuxptp stack already attempts to
do something: it calls setsockopt(IP_ADD_MEMBERSHIP) (and
PACKET_ADD_MEMBERSHIP, respectively) which translates in both cases into
a dev_mc_add() on the interface, in the kernel:
https://github.com/richardcochran/linuxptp/blob/v3.1.1/udp.c#L73https://github.com/richardcochran/linuxptp/blob/v3.1.1/raw.c
Reality shows that this is not sufficient in case the interface belongs
to a switchdev driver, as dev_mc_add() does not show the intention to
trap a packet to the CPU, but rather the intention to not drop it (it is
strictly for RX filtering, same as promiscuous does not mean to send all
traffic to the CPU, but to not drop traffic with unknown MAC DA). This
topic is a can of worms in itself, and it would be great if user space
could just stay out of it.
On the other hand, setting up PTP traps privately within the driver is
not new by any stretch of the imagination:
https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/ethernet/mellanox/mlxsw/spectrum_ptp.c#L833https://elixir.bootlin.com/linux/v5.16-rc2/source/drivers/net/dsa/hirschmann/hellcreek.c#L1050https://elixir.bootlin.com/linux/v5.16-rc2/source/include/linux/dsa/sja1105.h#L21
So this is the approach taken here as well. The difference here being
that we prepare and destroy the traps per port, dynamically at runtime,
as opposed to driver init time, because apparently, PTP-unaware
forwarding is a use case.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Reported-by: Po Liu <po.liu@nxp.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The ocelot driver, when asked to timestamp all receiving packets, 1588
v1 or NTP, says "nah, here's 1588 v2 for you".
According to this discussion:
https://patchwork.kernel.org/project/netdevbpf/patch/20211104133204.19757-8-martin.kaistra@linutronix.de/#24577647
drivers that downgrade from a wider request to a narrower response (or
even a response where the intersection with the request is empty) are
buggy, and should return -ERANGE instead. This patch fixes that.
Fixes: 4e3b0468e6 ("net: mscc: PTP Hardware Clock (PHC) support")
Suggested-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Acked-by: Richard Cochran <richardcochran@gmail.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The VSC9959 switch embedded within NXP LS1028A (and that version of
Ocelot switches only) supports cut-through forwarding - meaning it can
start the process of looking up the destination ports for a packet, and
forward towards those ports, before the entire packet has been received
(as opposed to the store-and-forward mode).
The up side is having lower forwarding latency for large packets. The
down side is that frames with FCS errors are forwarded instead of being
dropped. However, erroneous frames do not result in incorrect updates of
the FDB or incorrect policer updates, since these processes are deferred
inside the switch to the end of frame. Since the switch starts the
cut-through forwarding process after all packet headers (including IP,
if any) have been processed, packets with large headers and small
payload do not see the benefit of lower forwarding latency.
There are two cases that need special attention.
The first is when a packet is multicast (or flooded) to multiple
destinations, one of which doesn't have cut-through forwarding enabled.
The switch deals with this automatically by disabling cut-through
forwarding for the frame towards all destination ports.
The second is when a packet is forwarded from a port of lower link speed
towards a port of higher link speed. This is not handled by the hardware
and needs software intervention.
Since we practically need to update the cut-through forwarding domain
from paths that aren't serialized by the rtnl_mutex (phylink
mac_link_down/mac_link_up ops), this means we need to serialize physical
link events with user space updates of bonding/bridging domains.
Enabling cut-through forwarding is done per {egress port, traffic class}.
I don't see any reason why this would be a configurable option as long
as it works without issues, and there doesn't appear to be any user
space configuration tool to toggle this on/off, so this patch enables
cut-through forwarding on all eligible ports and traffic classes.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-2-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
The only called takes ocelot_port->bridge and passes it as the "bridge"
argument to this function, which then compares it with
ocelot_port->bridge. This is not useful.
Instead, we would like this function to return 0 if ocelot_port->bridge
is not present, which is what this patch does.
Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com>
Link: https://lore.kernel.org/r/20211125125808.2383984-1-vladimir.oltean@nxp.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
PSFP support gate and police action. This patch add the gate and police
action to flower parse action, check chain ID to determine which block
to offload. Adding psfp callback functions to add, delete and update gate
and police in PSFP table if hardware supports it.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
ocelot_mact_learn_streamdata() can be used in VSC9959 to overwrite an
FDB entry with stream data. The stream data includes SFID and SSID which
can be used for PSFP and FRER set.
ocelot_mact_lookup() can be used to check if the given {DMAC, VID} FDB
entry is exist, and also can retrieve the DEST_IDX and entry type for
the FDB entry.
Signed-off-by: Xiaoliang Yang <xiaoliang.yang_1@nxp.com>
Signed-off-by: David S. Miller <davem@davemloft.net>