1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

14 commits

Author SHA1 Message Date
Mykola Lysenko
7df5072cc0 bpf: Small BPF verifier log improvements
In particular these include:

  1) Remove output of inv for scalars in print_verifier_state
  2) Replace inv with scalar in verifier error messages
  3) Remove _value suffixes for umin/umax/s32_min/etc (except map_value)
  4) Remove output of id=0
  5) Remove output of ref_obj_id=0

Signed-off-by: Mykola Lysenko <mykolal@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220301222745.1667206-1-mykolal@fb.com
2022-03-03 16:54:10 +01:00
Colin Ian King
819d11507f bpf, selftests: Fix spelling mistake "tained" -> "tainted"
There appears to be a spelling mistake in a bpf test message. Fix it.

Signed-off-by: Colin Ian King <colin.i.king@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20211217182400.39296-1-colin.i.king@gmail.com
2021-12-17 23:15:16 +01:00
Daniel Borkmann
b1a7288ded bpf, selftests: Add test case trying to taint map value pointer
Add a test case which tries to taint map value pointer arithmetic into a
unknown scalar with subsequent export through the map.

Before fix:

  # ./test_verifier 1186
  #1186/u map access: trying to leak tained dst reg FAIL
  Unexpected success to load!
  verification time 24 usec
  stack depth 8
  processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1
  #1186/p map access: trying to leak tained dst reg FAIL
  Unexpected success to load!
  verification time 8 usec
  stack depth 8
  processed 15 insns (limit 1000000) max_states_per_insn 0 total_states 1 peak_states 1 mark_read 1
  Summary: 0 PASSED, 0 SKIPPED, 2 FAILED

After fix:

  # ./test_verifier 1186
  #1186/u map access: trying to leak tained dst reg OK
  #1186/p map access: trying to leak tained dst reg OK
  Summary: 2 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-12-16 19:46:06 +01:00
Daniel Borkmann
a6c39de76d bpf, selftests: Add test cases for pointer alu from multiple paths
Add several test cases for checking update_alu_sanitation_state() under
multiple paths:

  # ./test_verifier
  [...]
  #1061/u map access: known scalar += value_ptr unknown vs const OK
  #1061/p map access: known scalar += value_ptr unknown vs const OK
  #1062/u map access: known scalar += value_ptr const vs unknown OK
  #1062/p map access: known scalar += value_ptr const vs unknown OK
  #1063/u map access: known scalar += value_ptr const vs const (ne) OK
  #1063/p map access: known scalar += value_ptr const vs const (ne) OK
  #1064/u map access: known scalar += value_ptr const vs const (eq) OK
  #1064/p map access: known scalar += value_ptr const vs const (eq) OK
  #1065/u map access: known scalar += value_ptr unknown vs unknown (eq) OK
  #1065/p map access: known scalar += value_ptr unknown vs unknown (eq) OK
  #1066/u map access: known scalar += value_ptr unknown vs unknown (lt) OK
  #1066/p map access: known scalar += value_ptr unknown vs unknown (lt) OK
  #1067/u map access: known scalar += value_ptr unknown vs unknown (gt) OK
  #1067/p map access: known scalar += value_ptr unknown vs unknown (gt) OK
  [...]
  Summary: 1762 PASSED, 0 SKIPPED, 0 FAILED

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-07-16 16:57:07 +02:00
Daniel Borkmann
973377ffe8 bpf, selftests: Adjust few selftest outcomes wrt unreachable code
In almost all cases from test_verifier that have been changed in here, we've
had an unreachable path with a load from a register which has an invalid
address on purpose. This was basically to make sure that we never walk this
path and to have the verifier complain if it would otherwise. Change it to
match on the right error for unprivileged given we now test these paths
under speculative execution.

There's one case where we match on exact # of insns_processed. Due to the
extra path, this will of course mismatch on unprivileged. Thus, restrict the
test->insn_processed check to privileged-only.

In one other case, we result in a 'pointer comparison prohibited' error. This
is similarly due to verifying an 'invalid' branch where we end up with a value
pointer on one side of the comparison.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-06-14 23:06:38 +02:00
Daniel Borkmann
1bad6fd52b bpf, selftests: Adjust few selftest result_unpriv outcomes
Given we don't need to simulate the speculative domain for registers with
immediates anymore since the verifier uses direct imm-based rewrites instead
of having to mask, we can also lift a few cases that were previously rejected.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-05-25 22:08:53 +02:00
Daniel Borkmann
d7a5091351 bpf: Update selftests to reflect new error states
Update various selftest error messages:

 * The 'Rx tried to sub from different maps, paths, or prohibited types'
   is reworked into more specific/differentiated error messages for better
   guidance.

 * The change into 'value -4294967168 makes map_value pointer be out of
   bounds' is due to moving the mixed bounds check into the speculation
   handling and thus occuring slightly later than above mentioned sanity
   check.

 * The change into 'math between map_value pointer and register with
   unbounded min value' is similarly due to register sanity check coming
   before the mixed bounds check.

 * The case of 'map access: known scalar += value_ptr from different maps'
   now loads fine given masks are the same from the different paths (despite
   max map value size being different).

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Reviewed-by: John Fastabend <john.fastabend@gmail.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-04-16 23:52:15 +02:00
Piotr Krysiuk
0a13e3537e bpf, selftests: Fix up some test_verifier cases for unprivileged
Fix up test_verifier error messages for the case where the original error
message changed, or for the case where pointer alu errors differ between
privileged and unprivileged tests. Also, add alternative tests for keeping
coverage of the original verifier rejection error message (fp alu), and
newly reject map_ptr += rX where rX == 0 given we now forbid alu on these
types for unprivileged. All test_verifier cases pass after the change. The
test case fixups were kept separate to ease backporting of core changes.

Signed-off-by: Piotr Krysiuk <piotras@gmail.com>
Co-developed-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Alexei Starovoitov <ast@kernel.org>
2021-03-17 21:57:46 +01:00
Yonghong Song
d56b74b9e1 tools/bpf: Add verifier tests for 32bit pointer/scalar arithmetic
Added two test_verifier subtests for 32bit pointer/scalar arithmetic
with BPF_SUB operator. They are passing verifier now.

Signed-off-by: Yonghong Song <yhs@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200618234632.3321367-1-yhs@fb.com
2020-06-19 23:34:43 +02:00
Andrii Nakryiko
457f44363a bpf: Implement BPF ring buffer and verifier support for it
This commit adds a new MPSC ring buffer implementation into BPF ecosystem,
which allows multiple CPUs to submit data to a single shared ring buffer. On
the consumption side, only single consumer is assumed.

Motivation
----------
There are two distinctive motivators for this work, which are not satisfied by
existing perf buffer, which prompted creation of a new ring buffer
implementation.
  - more efficient memory utilization by sharing ring buffer across CPUs;
  - preserving ordering of events that happen sequentially in time, even
  across multiple CPUs (e.g., fork/exec/exit events for a task).

These two problems are independent, but perf buffer fails to satisfy both.
Both are a result of a choice to have per-CPU perf ring buffer.  Both can be
also solved by having an MPSC implementation of ring buffer. The ordering
problem could technically be solved for perf buffer with some in-kernel
counting, but given the first one requires an MPSC buffer, the same solution
would solve the second problem automatically.

Semantics and APIs
------------------
Single ring buffer is presented to BPF programs as an instance of BPF map of
type BPF_MAP_TYPE_RINGBUF. Two other alternatives considered, but ultimately
rejected.

One way would be to, similar to BPF_MAP_TYPE_PERF_EVENT_ARRAY, make
BPF_MAP_TYPE_RINGBUF could represent an array of ring buffers, but not enforce
"same CPU only" rule. This would be more familiar interface compatible with
existing perf buffer use in BPF, but would fail if application needed more
advanced logic to lookup ring buffer by arbitrary key. HASH_OF_MAPS addresses
this with current approach. Additionally, given the performance of BPF
ringbuf, many use cases would just opt into a simple single ring buffer shared
among all CPUs, for which current approach would be an overkill.

Another approach could introduce a new concept, alongside BPF map, to
represent generic "container" object, which doesn't necessarily have key/value
interface with lookup/update/delete operations. This approach would add a lot
of extra infrastructure that has to be built for observability and verifier
support. It would also add another concept that BPF developers would have to
familiarize themselves with, new syntax in libbpf, etc. But then would really
provide no additional benefits over the approach of using a map.
BPF_MAP_TYPE_RINGBUF doesn't support lookup/update/delete operations, but so
doesn't few other map types (e.g., queue and stack; array doesn't support
delete, etc).

The approach chosen has an advantage of re-using existing BPF map
infrastructure (introspection APIs in kernel, libbpf support, etc), being
familiar concept (no need to teach users a new type of object in BPF program),
and utilizing existing tooling (bpftool). For common scenario of using
a single ring buffer for all CPUs, it's as simple and straightforward, as
would be with a dedicated "container" object. On the other hand, by being
a map, it can be combined with ARRAY_OF_MAPS and HASH_OF_MAPS map-in-maps to
implement a wide variety of topologies, from one ring buffer for each CPU
(e.g., as a replacement for perf buffer use cases), to a complicated
application hashing/sharding of ring buffers (e.g., having a small pool of
ring buffers with hashed task's tgid being a look up key to preserve order,
but reduce contention).

Key and value sizes are enforced to be zero. max_entries is used to specify
the size of ring buffer and has to be a power of 2 value.

There are a bunch of similarities between perf buffer
(BPF_MAP_TYPE_PERF_EVENT_ARRAY) and new BPF ring buffer semantics:
  - variable-length records;
  - if there is no more space left in ring buffer, reservation fails, no
    blocking;
  - memory-mappable data area for user-space applications for ease of
    consumption and high performance;
  - epoll notifications for new incoming data;
  - but still the ability to do busy polling for new data to achieve the
    lowest latency, if necessary.

BPF ringbuf provides two sets of APIs to BPF programs:
  - bpf_ringbuf_output() allows to *copy* data from one place to a ring
    buffer, similarly to bpf_perf_event_output();
  - bpf_ringbuf_reserve()/bpf_ringbuf_commit()/bpf_ringbuf_discard() APIs
    split the whole process into two steps. First, a fixed amount of space is
    reserved. If successful, a pointer to a data inside ring buffer data area
    is returned, which BPF programs can use similarly to a data inside
    array/hash maps. Once ready, this piece of memory is either committed or
    discarded. Discard is similar to commit, but makes consumer ignore the
    record.

bpf_ringbuf_output() has disadvantage of incurring extra memory copy, because
record has to be prepared in some other place first. But it allows to submit
records of the length that's not known to verifier beforehand. It also closely
matches bpf_perf_event_output(), so will simplify migration significantly.

bpf_ringbuf_reserve() avoids the extra copy of memory by providing a memory
pointer directly to ring buffer memory. In a lot of cases records are larger
than BPF stack space allows, so many programs have use extra per-CPU array as
a temporary heap for preparing sample. bpf_ringbuf_reserve() avoid this needs
completely. But in exchange, it only allows a known constant size of memory to
be reserved, such that verifier can verify that BPF program can't access
memory outside its reserved record space. bpf_ringbuf_output(), while slightly
slower due to extra memory copy, covers some use cases that are not suitable
for bpf_ringbuf_reserve().

The difference between commit and discard is very small. Discard just marks
a record as discarded, and such records are supposed to be ignored by consumer
code. Discard is useful for some advanced use-cases, such as ensuring
all-or-nothing multi-record submission, or emulating temporary malloc()/free()
within single BPF program invocation.

Each reserved record is tracked by verifier through existing
reference-tracking logic, similar to socket ref-tracking. It is thus
impossible to reserve a record, but forget to submit (or discard) it.

bpf_ringbuf_query() helper allows to query various properties of ring buffer.
Currently 4 are supported:
  - BPF_RB_AVAIL_DATA returns amount of unconsumed data in ring buffer;
  - BPF_RB_RING_SIZE returns the size of ring buffer;
  - BPF_RB_CONS_POS/BPF_RB_PROD_POS returns current logical possition of
    consumer/producer, respectively.
Returned values are momentarily snapshots of ring buffer state and could be
off by the time helper returns, so this should be used only for
debugging/reporting reasons or for implementing various heuristics, that take
into account highly-changeable nature of some of those characteristics.

One such heuristic might involve more fine-grained control over poll/epoll
notifications about new data availability in ring buffer. Together with
BPF_RB_NO_WAKEUP/BPF_RB_FORCE_WAKEUP flags for output/commit/discard helpers,
it allows BPF program a high degree of control and, e.g., more efficient
batched notifications. Default self-balancing strategy, though, should be
adequate for most applications and will work reliable and efficiently already.

Design and implementation
-------------------------
This reserve/commit schema allows a natural way for multiple producers, either
on different CPUs or even on the same CPU/in the same BPF program, to reserve
independent records and work with them without blocking other producers. This
means that if BPF program was interruped by another BPF program sharing the
same ring buffer, they will both get a record reserved (provided there is
enough space left) and can work with it and submit it independently. This
applies to NMI context as well, except that due to using a spinlock during
reservation, in NMI context, bpf_ringbuf_reserve() might fail to get a lock,
in which case reservation will fail even if ring buffer is not full.

The ring buffer itself internally is implemented as a power-of-2 sized
circular buffer, with two logical and ever-increasing counters (which might
wrap around on 32-bit architectures, that's not a problem):
  - consumer counter shows up to which logical position consumer consumed the
    data;
  - producer counter denotes amount of data reserved by all producers.

Each time a record is reserved, producer that "owns" the record will
successfully advance producer counter. At that point, data is still not yet
ready to be consumed, though. Each record has 8 byte header, which contains
the length of reserved record, as well as two extra bits: busy bit to denote
that record is still being worked on, and discard bit, which might be set at
commit time if record is discarded. In the latter case, consumer is supposed
to skip the record and move on to the next one. Record header also encodes
record's relative offset from the beginning of ring buffer data area (in
pages). This allows bpf_ringbuf_commit()/bpf_ringbuf_discard() to accept only
the pointer to the record itself, without requiring also the pointer to ring
buffer itself. Ring buffer memory location will be restored from record
metadata header. This significantly simplifies verifier, as well as improving
API usability.

Producer counter increments are serialized under spinlock, so there is
a strict ordering between reservations. Commits, on the other hand, are
completely lockless and independent. All records become available to consumer
in the order of reservations, but only after all previous records where
already committed. It is thus possible for slow producers to temporarily hold
off submitted records, that were reserved later.

Reservation/commit/consumer protocol is verified by litmus tests in
Documentation/litmus-test/bpf-rb.

One interesting implementation bit, that significantly simplifies (and thus
speeds up as well) implementation of both producers and consumers is how data
area is mapped twice contiguously back-to-back in the virtual memory. This
allows to not take any special measures for samples that have to wrap around
at the end of the circular buffer data area, because the next page after the
last data page would be first data page again, and thus the sample will still
appear completely contiguous in virtual memory. See comment and a simple ASCII
diagram showing this visually in bpf_ringbuf_area_alloc().

Another feature that distinguishes BPF ringbuf from perf ring buffer is
a self-pacing notifications of new data being availability.
bpf_ringbuf_commit() implementation will send a notification of new record
being available after commit only if consumer has already caught up right up
to the record being committed. If not, consumer still has to catch up and thus
will see new data anyways without needing an extra poll notification.
Benchmarks (see tools/testing/selftests/bpf/benchs/bench_ringbuf.c) show that
this allows to achieve a very high throughput without having to resort to
tricks like "notify only every Nth sample", which are necessary with perf
buffer. For extreme cases, when BPF program wants more manual control of
notifications, commit/discard/output helpers accept BPF_RB_NO_WAKEUP and
BPF_RB_FORCE_WAKEUP flags, which give full control over notifications of data
availability, but require extra caution and diligence in using this API.

Comparison to alternatives
--------------------------
Before considering implementing BPF ring buffer from scratch existing
alternatives in kernel were evaluated, but didn't seem to meet the needs. They
largely fell into few categores:
  - per-CPU buffers (perf, ftrace, etc), which don't satisfy two motivations
    outlined above (ordering and memory consumption);
  - linked list-based implementations; while some were multi-producer designs,
    consuming these from user-space would be very complicated and most
    probably not performant; memory-mapping contiguous piece of memory is
    simpler and more performant for user-space consumers;
  - io_uring is SPSC, but also requires fixed-sized elements. Naively turning
    SPSC queue into MPSC w/ lock would have subpar performance compared to
    locked reserve + lockless commit, as with BPF ring buffer. Fixed sized
    elements would be too limiting for BPF programs, given existing BPF
    programs heavily rely on variable-sized perf buffer already;
  - specialized implementations (like a new printk ring buffer, [0]) with lots
    of printk-specific limitations and implications, that didn't seem to fit
    well for intended use with BPF programs.

  [0] https://lwn.net/Articles/779550/

Signed-off-by: Andrii Nakryiko <andriin@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20200529075424.3139988-2-andriin@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2020-06-01 14:38:22 -07:00
Ilya Leoshkevich
3461a0a021 selftests/bpf: fix "alu with different scalars 1" on s390
BPF_LDX_MEM is used to load the least significant byte of the retrieved
test_val.index, however, on big-endian machines it ends up retrieving
the most significant byte.

Change the test to load the whole int in order to make it
endianness-independent.

Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-07-16 09:20:08 -07:00
Daniel Borkmann
87dab7c3d5 bpf: add test cases for non-pointer sanitiation logic
Add two additional tests for further asserting the
BPF_ALU_NON_POINTER logic with cases that were missed
previously.

Cc: Marek Majkowski <marek@cloudflare.com>
Cc: Arthur Fabre <afabre@cloudflare.com>
Acked-by: Song Liu <songliubraving@fb.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-03-04 10:54:20 +01:00
Björn Töpel
e2c6f50e48 selftests/bpf: add "any alignment" annotation for some tests
RISC-V does, in-general, not have "efficient unaligned access". When
testing the RISC-V BPF JIT, some selftests failed in the verification
due to misaligned access. Annotate these tests with the
F_NEEDS_EFFICIENT_UNALIGNED_ACCESS flag.

Signed-off-by: Björn Töpel <bjorn.topel@gmail.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
2019-02-05 16:56:10 +01:00
Jakub Kicinski
40f2fbd5a5 selftests: bpf: break up test_verifier
Break up the first 10 kLoC of test verifier test cases
out into smaller files.  Looks like git line counting
gets a little flismy above 16 bit integers, so we need
two commits to break up test_verifier.

Signed-off-by: Jakub Kicinski <jakub.kicinski@netronome.com>
Acked-by: Jiong Wang <jiong.wang@netronome.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2019-01-27 21:37:45 -08:00