Sergey Senozhatsky improves zram's post-processing selection algorithm.
This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of shadow
entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in the
hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page into
small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio size
rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel Butt
removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations" from
Mike Rapoport teaches x86 to use large pages for read-only-execute
module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in tests
over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a single
VMA, rather than requiring that multiple VMAs be created for this.
Improved efficiencies for userspace memory allocators are expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP from
the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep is
enabled.
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZzwFqgAKCRDdBJ7gKXxA
jkeuAQCkl+BmeYHE6uG0hi3pRxkupseR6DEOAYIiTv0/l8/GggD/Z3jmEeqnZaNq
xyyenpibWgUoShU2wZ/Ha8FE5WDINwg=
=JfWR
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
- The series "zram: optimal post-processing target selection" from
Sergey Senozhatsky improves zram's post-processing selection
algorithm. This leads to improved memory savings.
- Wei Yang has gone to town on the mapletree code, contributing several
series which clean up the implementation:
- "refine mas_mab_cp()"
- "Reduce the space to be cleared for maple_big_node"
- "maple_tree: simplify mas_push_node()"
- "Following cleanup after introduce mas_wr_store_type()"
- "refine storing null"
- The series "selftests/mm: hugetlb_fault_after_madv improvements" from
David Hildenbrand fixes this selftest for s390.
- The series "introduce pte_offset_map_{ro|rw}_nolock()" from Qi Zheng
implements some rationaizations and cleanups in the page mapping
code.
- The series "mm: optimize shadow entries removal" from Shakeel Butt
optimizes the file truncation code by speeding up the handling of
shadow entries.
- The series "Remove PageKsm()" from Matthew Wilcox completes the
migration of this flag over to being a folio-based flag.
- The series "Unify hugetlb into arch_get_unmapped_area functions" from
Oscar Salvador implements a bunch of consolidations and cleanups in
the hugetlb code.
- The series "Do not shatter hugezeropage on wp-fault" from Dev Jain
takes away the wp-fault time practice of turning a huge zero page
into small pages. Instead we replace the whole thing with a THP. More
consistent cleaner and potentiall saves a large number of pagefaults.
- The series "percpu: Add a test case and fix for clang" from Andy
Shevchenko enhances and fixes the kernel's built in percpu test code.
- The series "mm/mremap: Remove extra vma tree walk" from Liam Howlett
optimizes mremap() by avoiding doing things which we didn't need to
do.
- The series "Improve the tmpfs large folio read performance" from
Baolin Wang teaches tmpfs to copy data into userspace at the folio
size rather than as individual pages. A 20% speedup was observed.
- The series "mm/damon/vaddr: Fix issue in
damon_va_evenly_split_region()" fro Zheng Yejian fixes DAMON
splitting.
- The series "memcg-v1: fully deprecate charge moving" from Shakeel
Butt removes the long-deprecated memcgv2 charge moving feature.
- The series "fix error handling in mmap_region() and refactor" from
Lorenzo Stoakes cleanup up some of the mmap() error handling and
addresses some potential performance issues.
- The series "x86/module: use large ROX pages for text allocations"
from Mike Rapoport teaches x86 to use large pages for
read-only-execute module text.
- The series "page allocation tag compression" from Suren Baghdasaryan
is followon maintenance work for the new page allocation profiling
feature.
- The series "page->index removals in mm" from Matthew Wilcox remove
most references to page->index in mm/. A slow march towards shrinking
struct page.
- The series "damon/{self,kunit}tests: minor fixups for DAMON debugfs
interface tests" from Andrew Paniakin performs maintenance work for
DAMON's self testing code.
- The series "mm: zswap swap-out of large folios" from Kanchana Sridhar
improves zswap's batching of compression and decompression. It is a
step along the way towards using Intel IAA hardware acceleration for
this zswap operation.
- The series "kasan: migrate the last module test to kunit" from
Sabyrzhan Tasbolatov completes the migration of the KASAN built-in
tests over to the KUnit framework.
- The series "implement lightweight guard pages" from Lorenzo Stoakes
permits userapace to place fault-generating guard pages within a
single VMA, rather than requiring that multiple VMAs be created for
this. Improved efficiencies for userspace memory allocators are
expected.
- The series "memcg: tracepoint for flushing stats" from JP Kobryn uses
tracepoints to provide increased visibility into memcg stats flushing
activity.
- The series "zram: IDLE flag handling fixes" from Sergey Senozhatsky
fixes a zram buglet which potentially affected performance.
- The series "mm: add more kernel parameters to control mTHP" from
Maíra Canal enhances our ability to control/configuremultisize THP
from the kernel boot command line.
- The series "kasan: few improvements on kunit tests" from Sabyrzhan
Tasbolatov has a couple of fixups for the KASAN KUnit tests.
- The series "mm/list_lru: Split list_lru lock into per-cgroup scope"
from Kairui Song optimizes list_lru memory utilization when lockdep
is enabled.
* tag 'mm-stable-2024-11-18-19-27' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (215 commits)
cma: enforce non-zero pageblock_order during cma_init_reserved_mem()
mm/kfence: add a new kunit test test_use_after_free_read_nofault()
zram: fix NULL pointer in comp_algorithm_show()
memcg/hugetlb: add hugeTLB counters to memcg
vmstat: call fold_vm_zone_numa_events() before show per zone NUMA event
mm: mmap_lock: check trace_mmap_lock_$type_enabled() instead of regcount
zram: ZRAM_DEF_COMP should depend on ZRAM
MAINTAINERS/MEMORY MANAGEMENT: add document files for mm
Docs/mm/damon: recommend academic papers to read and/or cite
mm: define general function pXd_init()
kmemleak: iommu/iova: fix transient kmemleak false positive
mm/list_lru: simplify the list_lru walk callback function
mm/list_lru: split the lock to per-cgroup scope
mm/list_lru: simplify reparenting and initial allocation
mm/list_lru: code clean up for reparenting
mm/list_lru: don't export list_lru_add
mm/list_lru: don't pass unnecessary key parameters
kasan: add kunit tests for kmalloc_track_caller, kmalloc_node_track_caller
kasan: change kasan_atomics kunit test as KUNIT_CASE_SLOW
kasan: use EXPORT_SYMBOL_IF_KUNIT to export symbols
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcToAAKCRCRxhvAZXjc
osL9AP948FFumJRC28gDJ4xp+X4eohNOfkgoEG8FTbF2zU6ulwD+O0pr26FqpFli
pqlG+38UdATImpfqqWjPbb72sBYcfQg=
=wLUh
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.13.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"Features:
- Fixup and improve NLM and kNFSD file lock callbacks
Last year both GFS2 and OCFS2 had some work done to make their
locking more robust when exported over NFS. Unfortunately, part of
that work caused both NLM (for NFS v3 exports) and kNFSD (for
NFSv4.1+ exports) to no longer send lock notifications to clients
This in itself is not a huge problem because most NFS clients will
still poll the server in order to acquire a conflicted lock
It's important for NLM and kNFSD that they do not block their
kernel threads inside filesystem's file_lock implementations
because that can produce deadlocks. We used to make sure of this by
only trusting that posix_lock_file() can correctly handle blocking
lock calls asynchronously, so the lock managers would only setup
their file_lock requests for async callbacks if the filesystem did
not define its own lock() file operation
However, when GFS2 and OCFS2 grew the capability to correctly
handle blocking lock requests asynchronously, they started
signalling this behavior with EXPORT_OP_ASYNC_LOCK, and the check
for also trusting posix_lock_file() was inadvertently dropped, so
now most filesystems no longer produce lock notifications when
exported over NFS
Fix this by using an fop_flag which greatly simplifies the problem
and grooms the way for future uses by both filesystems and lock
managers alike
- Add a sysctl to delete the dentry when a file is removed instead of
making it a negative dentry
Commit 681ce86235 ("vfs: Delete the associated dentry when
deleting a file") introduced an unconditional deletion of the
associated dentry when a file is removed. However, this led to
performance regressions in specific benchmarks, such as
ilebench.sum_operations/s, prompting a revert in commit
4a4be1ad3a ("Revert "vfs: Delete the associated dentry when
deleting a file""). This reintroduces the concept conditionally
through a sysctl
- Expand the statmount() system call:
* Report the filesystem subtype in a new fs_subtype field to
e.g., report fuse filesystem subtypes
* Report the superblock source in a new sb_source field
* Add a new way to return filesystem specific mount options in an
option array that returns filesystem specific mount options
separated by zero bytes and unescaped. This allows caller's to
retrieve filesystem specific mount options and immediately pass
them to e.g., fsconfig() without having to unescape or split
them
* Report security (LSM) specific mount options in a separate
security option array. We don't lump them together with
filesystem specific mount options as security mount options are
generic and most users aren't interested in them
The format is the same as for the filesystem specific mount
option array
- Support relative paths in fsconfig()'s FSCONFIG_SET_STRING command
- Optimize acl_permission_check() to avoid costly {g,u}id ownership
checks if possible
- Use smp_mb__after_spinlock() to avoid full smp_mb() in evict()
- Add synchronous wakeup support for ep_poll_callback.
Currently, epoll only uses wake_up() to wake up task. But sometimes
there are epoll users which want to use the synchronous wakeup flag
to give a hint to the scheduler, e.g., the Android binder driver.
So add a wake_up_sync() define, and use wake_up_sync() when sync is
true in ep_poll_callback()
Fixes:
- Fix kernel documentation for inode_insert5() and iget5_locked()
- Annotate racy epoll check on file->f_ep
- Make F_DUPFD_QUERY associative
- Avoid filename buffer overrun in initramfs
- Don't let statmount() return empty strings
- Add a cond_resched() to dump_user_range() to avoid hogging the CPU
- Don't query the device logical blocksize multiple times for hfsplus
- Make filemap_read() check that the offset is positive or zero
Cleanups:
- Various typo fixes
- Cleanup wbc_attach_fdatawrite_inode()
- Add __releases annotation to wbc_attach_and_unlock_inode()
- Add hugetlbfs tracepoints
- Fix various vfs kernel doc parameters
- Remove obsolete TODO comment from io_cancel()
- Convert wbc_account_cgroup_owner() to take a folio
- Fix comments for BANDWITH_INTERVAL and wb_domain_writeout_add()
- Reorder struct posix_acl to save 8 bytes
- Annotate struct posix_acl with __counted_by()
- Replace one-element array with flexible array member in freevxfs
- Use idiomatic atomic64_inc_return() in alloc_mnt_ns()"
* tag 'vfs-6.13.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (35 commits)
statmount: retrieve security mount options
vfs: make evict() use smp_mb__after_spinlock instead of smp_mb
statmount: add flag to retrieve unescaped options
fs: add the ability for statmount() to report the sb_source
writeback: wbc_attach_fdatawrite_inode out of line
writeback: add a __releases annoation to wbc_attach_and_unlock_inode
fs: add the ability for statmount() to report the fs_subtype
fs: don't let statmount return empty strings
fs:aio: Remove TODO comment suggesting hash or array usage in io_cancel()
hfsplus: don't query the device logical block size multiple times
freevxfs: Replace one-element array with flexible array member
fs: optimize acl_permission_check()
initramfs: avoid filename buffer overrun
fs/writeback: convert wbc_account_cgroup_owner to take a folio
acl: Annotate struct posix_acl with __counted_by()
acl: Realign struct posix_acl to save 8 bytes
epoll: Add synchronous wakeup support for ep_poll_callback
coredump: add cond_resched() to dump_user_range
mm/page-writeback.c: Fix comment of wb_domain_writeout_add()
mm/page-writeback.c: Update comment for BANDWIDTH_INTERVAL
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZzcScQAKCRCRxhvAZXjc
oj+5AP4k822a77wc/3iPFk379naIvQ4dsrgemh0/Pb6ZvzvkFQEAi3vFCfzCDR2x
SkJF/RwXXKZv6U31QXMRt2Qo6wfBuAc=
=nVlm
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs multigrain timestamps from Christian Brauner:
"This is another try at implementing multigrain timestamps. This time
with significant help from the timekeeping maintainers to reduce the
performance impact.
Thomas provided a base branch that contains the required timekeeping
interfaces for the VFS. It serves as the base for the multi-grain
timestamp work:
- Multigrain timestamps allow the kernel to use fine-grained
timestamps when an inode's attributes is being actively observed
via ->getattr(). With this support, it's possible for a file to get
a fine-grained timestamp, and another modified after it to get a
coarse-grained stamp that is earlier than the fine-grained time. If
this happens then the files can appear to have been modified in
reverse order, which breaks VFS ordering guarantees.
To prevent this, a floor value is maintained for multigrain
timestamps. Whenever a fine-grained timestamp is handed out, record
it, and when later coarse-grained stamps are handed out, ensure
they are not earlier than that value. If the coarse-grained
timestamp is earlier than the fine-grained floor, return the floor
value instead.
The timekeeper changes add a static singleton atomic64_t into
timekeeper.c that is used to keep track of the latest fine-grained
time ever handed out. This is tracked as a monotonic ktime_t value
to ensure that it isn't affected by clock jumps. Because it is
updated at different times than the rest of the timekeeper object,
the floor value is managed independently of the timekeeper via a
cmpxchg() operation, and sits on its own cacheline.
Two new public timekeeper interfaces are added:
(1) ktime_get_coarse_real_ts64_mg() fills a timespec64 with the
later of the coarse-grained clock and the floor time
(2) ktime_get_real_ts64_mg() gets the fine-grained clock value,
and tries to swap it into the floor. A timespec64 is filled
with the result.
- The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around
1 per jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting
via NFSv3, which relies on timestamps to validate caches. A lot of
changes can happen in a jiffy, so timestamps aren't sufficient to
help the client decide when to invalidate the cache. Even with
NFSv4, a lot of exported filesystems don't properly support a
change attribute and are subject to the same problems with
timestamp granularity. Other applications have similar issues with
timestamps (e.g backup applications).
If we were to always use fine-grained timestamps, that would
improve the situation, but that becomes rather expensive, as the
underlying filesystem would have to log a lot more metadata
updates.
This adds a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in
inode->i_ctime_nsec as a flag that indicates whether the current
timestamps have been queried via stat() or the like. When it's set,
we allow the kernel to use a fine-grained timestamp iff it's
necessary to make the ctime show a different value.
This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible
for a file being changed to get a fine-grained timestamp. A file
that is altered just a bit later can then get a coarse-grained one
that appears older than the earlier fine-grained time. This
violates timestamp ordering guarantees.
This is where the earlier mentioned timkeeping interfaces help. A
global monotonic atomic64_t value is kept that acts as a timestamp
floor. When we go to stamp a file, we first get the latter of the
current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it
with that value.
If it has been queried, then first see whether the current coarse
time is later than the existing ctime. If it is, then we accept
that value. If it isn't, then we get a fine-grained time and try to
swap that into the global floor. Whether that succeeds or fails, we
take the resulting floor time, convert it to realtime and try to
swap that into the ctime.
We take the result of the ctime swap whether it succeeds or fails,
since either is just as valid.
Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same
floor value as multigrain filesystems)"
* tag 'vfs-6.13.mgtime' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: reduce pointer chasing in is_mgtime() test
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
timekeeping: Add percpu counter for tracking floor swap events
timekeeping: Add interfaces for handling timestamps with a floor value
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps
The is_mgtime test checks whether the FS_MGTIME flag is set in the
fstype. To get there from the inode though, we have to dereference 3
pointers.
Add a new IOP_MGTIME flag, and have inode_init_always() set that flag
when the fstype flag is set. Then, make is_mgtime test for IOP_MGTIME
instead.
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241113-mgtime-v1-1-84e256980e11@kernel.org
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
It literally directly follows a spin_lock() call.
This whacks an explicit barrier on x86-64.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20241113155103.4194099-1-mjguzik@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Now isolation no longer takes the list_lru global node lock, only use the
per-cgroup lock instead. And this lock is inside the list_lru_one being
walked, no longer needed to pass the lock explicitly.
Link: https://lkml.kernel.org/r/20241104175257.60853-7-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Currently, every list_lru has a per-node lock that protects adding,
deletion, isolation, and reparenting of all list_lru_one instances
belonging to this list_lru on this node. This lock contention is heavy
when multiple cgroups modify the same list_lru.
This lock can be split into per-cgroup scope to reduce contention.
To achieve this, we need a stable list_lru_one for every cgroup. This
commit adds a lock to each list_lru_one and introduced a helper function
lock_list_lru_of_memcg, making it possible to pin the list_lru of a memcg.
Then reworked the reparenting process.
Reparenting will switch the list_lru_one instances one by one. By locking
each instance and marking it dead using the nr_items counter, reparenting
ensures that all items in the corresponding cgroup (on-list or not,
because items have a stable cgroup, see below) will see the list_lru_one
switch synchronously.
Objcg reparent is also moved after list_lru reparent so items will have a
stable mem cgroup until all list_lru_one instances are drained.
The only caller that doesn't work the *_obj interfaces are direct calls to
list_lru_{add,del}. But it's only used by zswap and that's also based on
objcg, so it's fine.
This also changes the bahaviour of the isolation function when LRU_RETRY
or LRU_REMOVED_RETRY is returned, because now releasing the lock could
unblock reparenting and free the list_lru_one, isolation function will
have to return withoug re-lock the lru.
prepare() {
mkdir /tmp/test-fs
modprobe brd rd_nr=1 rd_size=33554432
mkfs.xfs -f /dev/ram0
mount -t xfs /dev/ram0 /tmp/test-fs
for i in $(seq 1 512); do
mkdir "/tmp/test-fs/$i"
for j in $(seq 1 10240); do
echo TEST-CONTENT > "/tmp/test-fs/$i/$j"
done &
done; wait
}
do_test() {
read_worker() {
sleep 1
tar -cv "$1" &>/dev/null
}
read_in_all() {
cd "/tmp/test-fs" && ls
for i in $(seq 1 512); do
(exec sh -c 'echo "$PPID"') > "/sys/fs/cgroup/benchmark/$i/cgroup.procs"
read_worker "$i" &
done; wait
}
for i in $(seq 1 512); do
mkdir -p "/sys/fs/cgroup/benchmark/$i"
done
echo +memory > /sys/fs/cgroup/benchmark/cgroup.subtree_control
echo 512M > /sys/fs/cgroup/benchmark/memory.max
echo 3 > /proc/sys/vm/drop_caches
time read_in_all
}
Above script simulates compression of small files in multiple cgroups
with memory pressure. Run prepare() then do_test for 6 times:
Before:
real 0m7.762s user 0m11.340s sys 3m11.224s
real 0m8.123s user 0m11.548s sys 3m2.549s
real 0m7.736s user 0m11.515s sys 3m11.171s
real 0m8.539s user 0m11.508s sys 3m7.618s
real 0m7.928s user 0m11.349s sys 3m13.063s
real 0m8.105s user 0m11.128s sys 3m14.313s
After this commit (about ~15% faster):
real 0m6.953s user 0m11.327s sys 2m42.912s
real 0m7.453s user 0m11.343s sys 2m51.942s
real 0m6.916s user 0m11.269s sys 2m43.957s
real 0m6.894s user 0m11.528s sys 2m45.346s
real 0m6.911s user 0m11.095s sys 2m43.168s
real 0m6.773s user 0m11.518s sys 2m40.774s
Link: https://lkml.kernel.org/r/20241104175257.60853-6-ryncsn@gmail.com
Signed-off-by: Kairui Song <kasong@tencent.com>
Cc: Chengming Zhou <zhouchengming@bytedance.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Qi Zheng <zhengqi.arch@bytedance.com>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Shakeel Butt <shakeel.butt@linux.dev>
Cc: Waiman Long <longman@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Some minor corrections to the inode_insert5 and iget5_locked kernel
documentation.
Signed-off-by: Andreas Gruenbacher <agruenba@redhat.com>
Link: https://lore.kernel.org/r/20241004115151.44834-1-agruenba@redhat.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Jeff Layton <jlayton@kernel.org> says:
The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around 1
per jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide when to invalidate the cache. Even with NFSv4, a lot of
exported filesystems don't properly support a change attribute and are
subject to the same problems with timestamp granularity. Other
applications have similar issues with timestamps (e.g backup
applications).
If we were to always use fine-grained timestamps, that would improve the
situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
What we need is a way to only use fine-grained timestamps when they are
being actively queried. Use the (unused) top bit in inode->i_ctime_nsec
as a flag that indicates whether the current timestamps have been
queried via stat() or the like. When it's set, we allow the kernel to
use a fine-grained timestamp iff it's necessary to make the ctime show
a different value.
This solves the problem of being able to distinguish the timestamp
between updates, but introduces a new problem: it's now possible for a
file being changed to get a fine-grained timestamp. A file that is
altered just a bit later can then get a coarse-grained one that appears
older than the earlier fine-grained time. This violates timestamp
ordering guarantees.
To remedy this, keep a global monotonic atomic64_t value that acts as a
timestamp floor. When we go to stamp a file, we first get the latter of
the current floor value and the current coarse-grained time. If the
inode ctime hasn't been queried then we just attempt to stamp it with
that value.
If it has been queried, then first see whether the current coarse time
is later than the existing ctime. If it is, then we accept that value.
If it isn't, then we get a fine-grained time and try to swap that into
the global floor. Whether that succeeds or fails, we take the resulting
floor time, convert it to realtime and try to swap that into the ctime.
We take the result of the ctime swap whether it succeeds or fails, since
either is just as valid.
Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same floor
value as multigrain filesystems).
* patches from https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org:
tmpfs: add support for multigrain timestamps
btrfs: convert to multigrain timestamps
ext4: switch to multigrain timestamps
xfs: switch to multigrain timestamps
Documentation: add a new file documenting multigrain timestamps
fs: add percpu counters for significant multigrain timestamp events
fs: tracepoints around multigrain timestamp events
fs: handle delegated timestamps in setattr_copy_mgtime
fs: have setattr_copy handle multigrain timestamps appropriately
fs: add infrastructure for multigrain timestamps
Link: https://lore.kernel.org/r/20241002-mgtime-v10-0-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
New percpu counters for counting various stats around multigrain
timestamp events, and a new debugfs file for displaying them when
CONFIG_DEBUG_FS is enabled:
- number of attempted ctime updates
- number of successful i_ctime_nsec swaps
- number of fine-grained timestamp fetches
- number of floor value swap events
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-7-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Add some tracepoints around various multigrain timestamp events.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-6-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
An update to the inode ctime typically requires the latest clock
value possible. The exception to this rule is when there is a nfsd write
delegation and the server is proxying timestamps from the client.
When nfsd gets a CB_GETATTR response, update the timestamp value in the
inode to the values that the client is tracking. The client doesn't send
a ctime value (since that's always determined by the exported
filesystem), but it can send a mtime value. In the case where it does,
update the ctime to a value commensurate with that instead of the
current time.
If ATTR_DELEG is set, then use ia_ctime value instead of setting the
timestamp to the current time.
With the addition of delegated timestamps, the server may receive a
request to update only the atime, which doesn't involve a ctime update.
Trust the ATTR_CTIME flag in the update and only update the ctime when
it's set.
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-5-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
Patch series "remove PF_MEMALLOC_NORECLAIM" v3.
This patch (of 2):
bch2_new_inode relies on PF_MEMALLOC_NORECLAIM to try to allocate a new
inode to achieve GFP_NOWAIT semantic while holding locks. If this
allocation fails it will drop locks and use GFP_NOFS allocation context.
We would like to drop PF_MEMALLOC_NORECLAIM because it is really
dangerous to use if the caller doesn't control the full call chain with
this flag set. E.g. if any of the function down the chain needed
GFP_NOFAIL request the PF_MEMALLOC_NORECLAIM would override this and
cause unexpected failure.
While this is not the case in this particular case using the scoped gfp
semantic is not really needed bacause we can easily pus the allocation
context down the chain without too much clutter.
[akpm@linux-foundation.org: fix kerneldoc warnings]
Link: https://lkml.kernel.org/r/20240926172940.167084-1-mhocko@kernel.org
Link: https://lkml.kernel.org/r/20240926172940.167084-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dave Chinner <dchinner@redhat.com>
Reviewed-by: Jan Kara <jack@suse.cz> # For vfs changes
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: James Morris <jmorris@namei.org>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Paul Moore <paul@paul-moore.com>
Cc: Serge E. Hallyn <serge@hallyn.com>
Cc: Yafang Shao <laoar.shao@gmail.com>
Cc: Matthew Wilcox (Oracle) <willy@infradead.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The VFS has always used coarse-grained timestamps when updating the
ctime and mtime after a change. This has the benefit of allowing
filesystems to optimize away a lot metadata updates, down to around 1
per jiffy, even when a file is under heavy writes.
Unfortunately, this has always been an issue when we're exporting via
NFSv3, which relies on timestamps to validate caches. A lot of changes
can happen in a jiffy, so timestamps aren't sufficient to help the
client decide when to invalidate the cache. Even with NFSv4, a lot of
exported filesystems don't properly support a change attribute and are
subject to the same problems with timestamp granularity. Other
applications have similar issues with timestamps (e.g backup
applications).
If fine-grained timestamps were always used, that would improve the
situation, but that becomes rather expensive, as the underlying
filesystem would have to log a lot more metadata updates.
What is needed is a way to only use fine-grained timestamps when they
are being actively queried. Use the (unused) top bit in
inode->i_ctime_nsec as a flag that indicates whether the current
timestamps have been queried via stat() or the like. When it's set,
allow the update to use a fine-grained timestamp iff it's necessary to
make the ctime show a different value.
If it has been queried, then first see whether the current coarse time
is later than the existing ctime. If it is, accept that value. If it
isn't, then get a fine-grained timestamp and attempt to stamp the inode
ctime with that value. If that races with another concurrent stamp, then
abandon the update and take the new value without retrying.
Filesystems can opt into this by setting the FS_MGTIME fstype flag.
Others should be unaffected (other than being subject to the same floor
value as multigrain filesystems).
Tested-by: Randy Dunlap <rdunlap@infradead.org> # documentation bits
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jeff Layton <jlayton@kernel.org>
Link: https://lore.kernel.org/r/20241002-mgtime-v10-3-d1c4717f5284@kernel.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
rcu_pending, btree key cache rework: this solves lock contenting in the
key cache, eliminating the biggest source of the srcu lock hold time
warnings, and drastically improving performance on some metadata heavy
workloads - on multithreaded creates we're now 3-4x faster than xfs.
We're now using an rhashtable instead of the system inode hash table;
this is another significant performance improvement on multithreaded
metadata workloads, eliminating more lock contention.
for_each_btree_key_in_subvolume_upto(): new helper for iterating over
keys within a specific subvolume, eliminating a lot of open coded
"subvolume_get_snapshot()" and also fixing another source of srcu lock
time warnings, by running each loop iteration in its own transaction (as
the existing for_each_btree_key() does).
More work on btree_trans locking asserts; we now assert that we don't
hold btree node locks when trans->locked is false, which is important
because we don't use lockdep for tracking individual btree node locks.
Some cleanups and improvements in the bset.c btree node lookup code,
from Alan.
Rework of btree node pinning, which we use in backpointers fsck. The old
hacky implementation, where the shrinker just skipped over nodes in the
pinned range, was causing OOMs; instead we now use another shrinker with
a much higher seeks number for pinned nodes.
Rebalance now uses BCH_WRITE_ONLY_SPECIFIED_DEVS; this fixes an issue
where rebalance would sometimes fall back to allocating from the full
filesystem, which is not what we want when it's trying to move data to a
specific target.
Use __GFP_ACCOUNT, GFP_RECLAIMABLE for btree node, key cache
allocations.
Idmap mounts are now supported - Hongbo.
Rename whiteouts are now supported - Hongbo.
Erasure coding can now handle devices being marked as failed, or
forcibly removed. We still need the evacuate path for erasure coding,
but it's getting very close to ready for people to start using.
Status, and when will we be taking off experimental:
----------------------------------------------------
Going by critical, user facing bugs getting found and fixed, we're
nearly there. There are a couple key items that need to be finished
before we can take off the experimental label:
- The end-user experience is still pretty painful when the root
filesystem needs a fsck; we need some form of limited self healing so
that necessary repair gets run automatically. Errors (by type) are
recorded in the superblock, so what we need to do next is convert
remaining inconsistent() errors to fsck() errors (so that all runtime
inconsistencies are logged in the superblock), and we need to go
through the list of fsck errors and classify them by which fsck passes
are needed to repair them.
- We need comprehensive torture testing for all our repair paths, to
shake out remaining bugs there. Thomas has been working on the tooling
for this, so this is coming soonish.
Slightly less critical items:
- We need to improve the end-user experience for degraded mounts: right
now, a degraded root filesystem means dropping to an initramfs shell
or somehow inputting mount options manually (we don't want to allow
degraded mounts without some form of user input, except on unattended
servers) - we need the mount helper to prompt the user to allow
mounting degraded, and make sure this works with systemd.
- Scalabiity: we have users running 100TB+ filesystems, and that's
effectively the limit right now due to fsck times. We have some
reworks in the pipeline to address this, we're aiming to make petabyte
sized filesystems practical.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmbvHQoACgkQE6szbY3K
bnYfAw/+IXQ43/O+Jzs0MLD7pKZnrlbHiX9FqYLazD40vWvkyRTQOwgTn8pVNhq3
4YWmtuZyqh036YC+bGqYFOhz20YetS5UdgbClpwmc99JJ6xsY+Z1mdpYfz5oq1Dw
/pBX5iYb3rAt8UbQoZ8lcWM+GpT3GKJVgJuiLB2gRp9gATFesuh+0qU42oIVVVU5
4y3VhDBUmRk4XqEnk8hr7EIDMW0wWP3aptxYMZzeUPW0x1cEQ+FWrJo5D6lXv2KK
dKv3MogvA0FFNi/eNexclPiu2pXtI7vrxT7umsxAICHLt41rWpV5ttE6io3bC4ZN
qvwF9w2CpmKPKchFru9PO+QrWHVR7e6bphwf3TzyoKZ7tTn42f1RQlub7gBzI3bz
ai5ZwGRIvpUoPVBj+CO+Ipog81uUb23Ma+gXg1akEFBOAb+o7I3KOOSBh5l+0cHj
3Ov1n0TLcsoO2cqoqfsV2QubW9YcWEZ76g5mKwQnUn8Cs6Fp0wWaIyK9aNkIAxcr
tNDPGtH1gKitxUvju5i/LyI7y1UoeFvqJFee0VsU6QnixHn1ySzhePsJt6UEnIJT
Ia3C96Igqu2mV9FxhfGHj/qi7TGjqqkZHa8+B610cDpgf15cx7Ps2DYjkuQMFCqZ
Q3Q1o5De9roRq5xF2hLiYJCbzJKqd5ichFsBtLQuX572ICxbICg=
=oVCy
-----END PGP SIGNATURE-----
Merge tag 'bcachefs-2024-09-21' of git://evilpiepirate.org/bcachefs
Pull bcachefs updates from Kent Overstreet:
- rcu_pending, btree key cache rework: this solves lock contenting in
the key cache, eliminating the biggest source of the srcu lock hold
time warnings, and drastically improving performance on some metadata
heavy workloads - on multithreaded creates we're now 3-4x faster than
xfs.
- We're now using an rhashtable instead of the system inode hash table;
this is another significant performance improvement on multithreaded
metadata workloads, eliminating more lock contention.
- for_each_btree_key_in_subvolume_upto(): new helper for iterating over
keys within a specific subvolume, eliminating a lot of open coded
"subvolume_get_snapshot()" and also fixing another source of srcu
lock time warnings, by running each loop iteration in its own
transaction (as the existing for_each_btree_key() does).
- More work on btree_trans locking asserts; we now assert that we don't
hold btree node locks when trans->locked is false, which is important
because we don't use lockdep for tracking individual btree node
locks.
- Some cleanups and improvements in the bset.c btree node lookup code,
from Alan.
- Rework of btree node pinning, which we use in backpointers fsck. The
old hacky implementation, where the shrinker just skipped over nodes
in the pinned range, was causing OOMs; instead we now use another
shrinker with a much higher seeks number for pinned nodes.
- Rebalance now uses BCH_WRITE_ONLY_SPECIFIED_DEVS; this fixes an issue
where rebalance would sometimes fall back to allocating from the full
filesystem, which is not what we want when it's trying to move data
to a specific target.
- Use __GFP_ACCOUNT, GFP_RECLAIMABLE for btree node, key cache
allocations.
- Idmap mounts are now supported (Hongbo Li)
- Rename whiteouts are now supported (Hongbo Li)
- Erasure coding can now handle devices being marked as failed, or
forcibly removed. We still need the evacuate path for erasure coding,
but it's getting very close to ready for people to start using.
* tag 'bcachefs-2024-09-21' of git://evilpiepirate.org/bcachefs: (99 commits)
bcachefs: return err ptr instead of null in read sb clean
bcachefs: Remove duplicated include in backpointers.c
bcachefs: Don't drop devices with stripe pointers
bcachefs: bch2_ec_stripe_head_get() now checks for change in rw devices
bcachefs: bch_fs.rw_devs_change_count
bcachefs: bch2_dev_remove_stripes()
bcachefs: bch2_trigger_ptr() calculates sectors even when no device
bcachefs: improve error messages in bch2_ec_read_extent()
bcachefs: improve error message on too few devices for ec
bcachefs: improve bch2_new_stripe_to_text()
bcachefs: ec_stripe_head.nr_created
bcachefs: bch_stripe.disk_label
bcachefs: stripe_to_mem()
bcachefs: EIO errcode cleanup
bcachefs: Rework btree node pinning
bcachefs: split up btree cache counters for live, freeable
bcachefs: btree cache counters should be size_t
bcachefs: Don't count "skipped access bit" as touched in btree cache scan
bcachefs: Failed devices no longer require mounting in degraded mode
bcachefs: bch2_dev_rcu_noerror()
...
bcachefs is switching to an rhashtable for vfs inodes instead of the
standard inode.c hashtable, so we need this exported, or - a static
inline makes more sense for a single atomic_inc().
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
The i_state member is an unsigned long so that it can be used with the
wait bit infrastructure which expects unsigned long. This wastes 4 bytes
which we're unlikely to ever use. Switch to using the var event wait
mechanism using the address of the bit. Thanks to Linus for the address
idea.
Link: https://lore.kernel.org/r/20240823-work-i_state-v3-1-5cd5fd207a57@kernel.org
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Hi, all
Recently I noticed a bug[1] in btrfs, after digged it into
and I believe it'a race in vfs.
Let's assume there's a inode (ie ino 261) with i_count 1 is
called by iput(), and there's a concurrent thread calling
generic_shutdown_super().
cpu0: cpu1:
iput() // i_count is 1
->spin_lock(inode)
->dec i_count to 0
->iput_final() generic_shutdown_super()
->__inode_add_lru() ->evict_inodes()
// cause some reason[2] ->if (atomic_read(inode->i_count)) continue;
// return before // inode 261 passed the above check
// list_lru_add_obj() // and then schedule out
->spin_unlock()
// note here: the inode 261
// was still at sb list and hash list,
// and I_FREEING|I_WILL_FREE was not been set
btrfs_iget()
// after some function calls
->find_inode()
// found the above inode 261
->spin_lock(inode)
// check I_FREEING|I_WILL_FREE
// and passed
->__iget()
->spin_unlock(inode) // schedule back
->spin_lock(inode)
// check (I_NEW|I_FREEING|I_WILL_FREE) flags,
// passed and set I_FREEING
iput() ->spin_unlock(inode)
->spin_lock(inode) ->evict()
// dec i_count to 0
->iput_final()
->spin_unlock()
->evict()
Now, we have two threads simultaneously evicting
the same inode, which may trigger the BUG(inode->i_state & I_CLEAR)
statement both within clear_inode() and iput().
To fix the bug, recheck the inode->i_count after holding i_lock.
Because in the most scenarios, the first check is valid, and
the overhead of spin_lock() can be reduced.
If there is any misunderstanding, please let me know, thanks.
[1]: https://lore.kernel.org/linux-btrfs/000000000000eabe1d0619c48986@google.com/
[2]: The reason might be 1. SB_ACTIVE was removed or 2. mapping_shrinkable()
return false when I reproduced the bug.
Reported-by: syzbot+67ba3c42bcbb4665d3ad@syzkaller.appspotmail.com
Closes: https://syzkaller.appspot.com/bug?extid=67ba3c42bcbb4665d3ad
CC: stable@vger.kernel.org
Fixes: 63997e98a3 ("split invalidate_inodes()")
Signed-off-by: Julian Sun <sunjunchao2870@gmail.com>
Link: https://lore.kernel.org/r/20240823130730.658881-1-sunjunchao2870@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Most commonly neither I_LRU_ISOLATING nor I_SYNC are set, but the stock
kernel takes a back-to-back relock trip to check for them.
It probably can be avoided altogether, but for now massage things back
to just one lock acquire.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20240813143626.1573445-1-mjguzik@gmail.com
Reviewed-by: Zhihao Cheng <chengzhihao1@huawei.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Afaict, we can just rely on inode->i_dio_count for waiting instead of
this awkward indirection through __I_DIO_WAKEUP. This survives LTP dio
and xfstests dio tests.
Link: https://lore.kernel.org/r/20240816-vfs-misc-dio-v1-1-80fe21a2c710@kernel.org
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Jeff Layton <jlayton@kernel.org>
Signed-off-by: Christian Brauner <brauner@kernel.org>
The inode reclaiming process(See function prune_icache_sb) collects all
reclaimable inodes and mark them with I_FREEING flag at first, at that
time, other processes will be stuck if they try getting these inodes
(See function find_inode_fast), then the reclaiming process destroy the
inodes by function dispose_list(). Some filesystems(eg. ext4 with
ea_inode feature, ubifs with xattr) may do inode lookup in the inode
evicting callback function, if the inode lookup is operated under the
inode lru traversing context, deadlock problems may happen.
Case 1: In function ext4_evict_inode(), the ea inode lookup could happen
if ea_inode feature is enabled, the lookup process will be stuck
under the evicting context like this:
1. File A has inode i_reg and an ea inode i_ea
2. getfattr(A, xattr_buf) // i_ea is added into lru // lru->i_ea
3. Then, following three processes running like this:
PA PB
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// i_reg is added into lru, lru->i_ea->i_reg
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
i_ea->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(i_reg)
spin_unlock(&i_reg->i_lock)
spin_unlock(lru_lock)
rm file A
i_reg->nlink = 0
iput(i_reg) // i_reg->nlink is 0, do evict
ext4_evict_inode
ext4_xattr_delete_inode
ext4_xattr_inode_dec_ref_all
ext4_xattr_inode_iget
ext4_iget(i_ea->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(i_ea) ----→ AA deadlock
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&i_ea->i_state)
Case 2: In deleted inode writing function ubifs_jnl_write_inode(), file
deleting process holds BASEHD's wbuf->io_mutex while getting the
xattr inode, which could race with inode reclaiming process(The
reclaiming process could try locking BASEHD's wbuf->io_mutex in
inode evicting function), then an ABBA deadlock problem would
happen as following:
1. File A has inode ia and a xattr(with inode ixa), regular file B has
inode ib and a xattr.
2. getfattr(A, xattr_buf) // ixa is added into lru // lru->ixa
3. Then, following three processes running like this:
PA PB PC
echo 2 > /proc/sys/vm/drop_caches
shrink_slab
prune_dcache_sb
// ib and ia are added into lru, lru->ixa->ib->ia
prune_icache_sb
list_lru_walk_one
inode_lru_isolate
ixa->i_state |= I_FREEING // set inode state
inode_lru_isolate
__iget(ib)
spin_unlock(&ib->i_lock)
spin_unlock(lru_lock)
rm file B
ib->nlink = 0
rm file A
iput(ia)
ubifs_evict_inode(ia)
ubifs_jnl_delete_inode(ia)
ubifs_jnl_write_inode(ia)
make_reservation(BASEHD) // Lock wbuf->io_mutex
ubifs_iget(ixa->i_ino)
iget_locked
find_inode_fast
__wait_on_freeing_inode(ixa)
| iput(ib) // ib->nlink is 0, do evict
| ubifs_evict_inode
| ubifs_jnl_delete_inode(ib)
↓ ubifs_jnl_write_inode
ABBA deadlock ←-----make_reservation(BASEHD)
dispose_list // cannot be executed by prune_icache_sb
wake_up_bit(&ixa->i_state)
Fix the possible deadlock by using new inode state flag I_LRU_ISOLATING
to pin the inode in memory while inode_lru_isolate() reclaims its pages
instead of using ordinary inode reference. This way inode deletion
cannot be triggered from inode_lru_isolate() thus avoiding the deadlock.
evict() is made to wait for I_LRU_ISOLATING to be cleared before
proceeding with inode cleanup.
Link: https://lore.kernel.org/all/37c29c42-7685-d1f0-067d-63582ffac405@huaweicloud.com/
Link: https://bugzilla.kernel.org/show_bug.cgi?id=219022
Fixes: e50e5129f3 ("ext4: xattr-in-inode support")
Fixes: 7959cf3a75 ("ubifs: journal: Handle xattrs like files")
Cc: stable@vger.kernel.org
Signed-off-by: Zhihao Cheng <chengzhihao1@huawei.com>
Link: https://lore.kernel.org/r/20240809031628.1069873-1-chengzhihao@huaweicloud.com
Reviewed-by: Jan Kara <jack@suse.cz>
Suggested-by: Jan Kara <jack@suse.cz>
Suggested-by: Mateusz Guzik <mjguzik@gmail.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>
const qualify the struct ctl_table argument in the proc_handler function
signatures. This is a prerequisite to moving the static ctl_table
structs into .rodata data which will ensure that proc_handler function
pointers cannot be modified.
This patch has been generated by the following coccinelle script:
```
virtual patch
@r1@
identifier ctl, write, buffer, lenp, ppos;
identifier func !~ "appldata_(timer|interval)_handler|sched_(rt|rr)_handler|rds_tcp_skbuf_handler|proc_sctp_do_(hmac_alg|rto_min|rto_max|udp_port|alpha_beta|auth|probe_interval)";
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos);
@r2@
identifier func, ctl, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int write, void *buffer, size_t *lenp, loff_t *ppos)
{ ... }
@r3@
identifier func;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int , void *, size_t *, loff_t *);
@r4@
identifier func, ctl;
@@
int func(
- struct ctl_table *ctl
+ const struct ctl_table *ctl
,int , void *, size_t *, loff_t *);
@r5@
identifier func, write, buffer, lenp, ppos;
@@
int func(
- struct ctl_table *
+ const struct ctl_table *
,int write, void *buffer, size_t *lenp, loff_t *ppos);
```
* Code formatting was adjusted in xfs_sysctl.c to comply with code
conventions. The xfs_stats_clear_proc_handler,
xfs_panic_mask_proc_handler and xfs_deprecated_dointvec_minmax where
adjusted.
* The ctl_table argument in proc_watchdog_common was const qualified.
This is called from a proc_handler itself and is calling back into
another proc_handler, making it necessary to change it as part of the
proc_handler migration.
Co-developed-by: Thomas Weißschuh <linux@weissschuh.net>
Signed-off-by: Thomas Weißschuh <linux@weissschuh.net>
Co-developed-by: Joel Granados <j.granados@samsung.com>
Signed-off-by: Joel Granados <j.granados@samsung.com>
In __wait_on_freeing_inode() we warn in case the inode_hash_lock is held
but the inode is unhashed. We then release the inode_lock. So using
"locked" as parameter name is confusing. Use is_inode_hash_locked as
parameter name instead.
Signed-off-by: Christian Brauner <brauner@kernel.org>
Lockless hash lookup can find and lock the inode after it gets the
I_FREEING flag set, at which point it blocks waiting for teardown in
evict() to finish.
However, the flag is still set even after evict() wakes up all waiters.
This results in a race where if the inode lock is taken late enough, it
can happen after both hash removal and wakeups, meaning there is nobody
to wake the racing thread up.
This worked prior to RCU-based lookup because the entire ordeal was
synchronized with the inode hash lock.
Since unhashing requires the inode lock, we can safely check whether it
happened after acquiring it.
Link: https://lore.kernel.org/v9fs/20240717102458.649b60be@kernel.org/
Reported-by: Dominique Martinet <asmadeus@codewreck.org>
Fixes: 7180f8d91f ("vfs: add rcu-based find_inode variants for iget ops")
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20240718151838.611807-1-mjguzik@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZpEG2wAKCRCRxhvAZXjc
ooW/AQDzyY+xNGt4OPMvlyFUHd5RcyiLsMhYrkKc3FaIFjesVgD+PFW5PPW12c0V
Z4VHg9w1HDDuUn4XvELs7OXZpek7RgU=
=eDC8
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.11.inode' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull vfs inode / dentry updates from Christian Brauner:
"This contains smaller performance improvements to inodes and dentries:
inode:
- Add rcu based inode lookup variants.
They avoid one inode hash lock acquire in the common case thereby
significantly reducing contention. We already support RCU-based
operations but didn't take advantage of them during inode
insertion.
Callers of iget_locked() get the improvement without any code
changes. Callers that need a custom callback can switch to
iget5_locked_rcu() as e.g., did btrfs.
With 20 threads each walking a dedicated 1000 dirs * 1000 files
directory tree to stat(2) on a 32 core + 24GB ram vm:
before: 3.54s user 892.30s system 1966% cpu 45.549 total
after: 3.28s user 738.66s system 1955% cpu 37.932 total (-16.7%)
Long-term we should pick up the effort to introduce more
fine-grained locking and possibly improve on the currently used
hash implementation.
- Start zeroing i_state in inode_init_always() instead of doing it in
individual filesystems.
This allows us to remove an unneeded lock acquire in new_inode()
and not burden individual filesystems with this.
dcache:
- Move d_lockref out of the area used by RCU lookup to avoid
cacheline ping poing because the embedded name is sharing a
cacheline with d_lockref.
- Fix dentry size on 32bit with CONFIG_SMP=y so it does actually end
up with 128 bytes in total"
* tag 'vfs-6.11.inode' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs:
fs: fix dentry size
vfs: move d_lockref out of the area used by RCU lookup
bcachefs: remove now spurious i_state initialization
xfs: remove now spurious i_state initialization in xfs_inode_alloc
vfs: partially sanitize i_state zeroing on inode creation
xfs: preserve i_state around inode_init_always in xfs_reinit_inode
btrfs: use iget5_locked_rcu
vfs: add rcu-based find_inode variants for iget ops
new_inode used to have the following:
spin_lock(&inode_lock);
inodes_stat.nr_inodes++;
list_add(&inode->i_list, &inode_in_use);
list_add(&inode->i_sb_list, &sb->s_inodes);
inode->i_ino = ++last_ino;
inode->i_state = 0;
spin_unlock(&inode_lock);
over time things disappeared, got moved around or got replaced (global
inode lock with a per-inode lock), eventually this got reduced to:
spin_lock(&inode->i_lock);
inode->i_state = 0;
spin_unlock(&inode->i_lock);
But the lock acquire here does not synchronize against anyone.
Additionally iget5_locked performs i_state = 0 assignment without any
locks to begin with, the two combined look confusing at best.
It looks like the current state is a leftover which was not cleaned up.
Ideally it would be an invariant that i_state == 0 to begin with, but
achieving that would require dealing with all filesystem alloc handlers
one by one.
In the meantime drop the misleading locking and move i_state zeroing to
inode_init_always so that others don't need to deal with it by hand.
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20240611120626.513952-3-mjguzik@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
This avoids one inode hash lock acquire in the common case on inode
creation, in effect significantly reducing contention.
On the stock kernel said lock is typically taken twice:
1. once to check if the inode happens to already be present
2. once to add it to the hash
The back-to-back lock/unlock pattern is known to degrade performance
significantly, which is further exacerbated if the hash is heavily
populated (long chains to walk, extending hold time). Arguably hash
sizing and hashing algo need to be revisited, but that's beyond the
scope of this patch.
With the acquire from step 1 eliminated with RCU lookup throughput
increases significantly at the scale of 20 cores (benchmark results at
the bottom).
So happens the hash already supports RCU-based operation, but lookups on
inode insertions didn't take advantage of it.
This of course has its limits as the global lock is still a bottleneck.
There was a patchset posted which introduced fine-grained locking[1] but
it appears staled. Apart from that doubt was expressed whether a
handrolled hash implementation is appropriate to begin with, suggesting
replacement with rhashtables. Nobody committed to carrying [1] across
the finish line or implementing anything better, thus the bandaid below.
iget_locked consumers (notably ext4) get away without any changes
because inode comparison method is built-in.
iget5_locked consumers pass a custom callback. Since removal of locking
adds more problems (inode can be changing) it's not safe to assume all
filesystems happen to cope. Thus iget5_locked_rcu gets added, requiring
manual conversion of interested filesystems.
In order to reduce code duplication find_inode and find_inode_fast grow
an argument indicating whether inode hash lock is held, which is passed
down in case sleeping is necessary. They always rcu_read_lock, which is
redundant but harmless. Doing it conditionally reduces readability for
no real gain that I can see. RCU-alike restrictions were already put on
callbacks due to the hash spinlock being held.
Benchmarking:
There is a real cache-busting workload scanning millions of files in
parallel (it's a backup appliance), where the initial lookup is
guaranteed to fail resulting in the two lock acquires on stock kernel
(and one with the patch at hand).
Implemented below is a synthetic benchmark providing the same behavior.
[I shall note the workload is not running on Linux, instead it was
causing trouble elsewhere. Benchmark below was used while addressing
said problems and was found to adequately represent the real workload.]
Total real time fluctuates by 1-2s.
With 20 threads each walking a dedicated 1000 dirs * 1000 files
directory tree to stat(2) on a 32 core + 24GB RAM vm:
ext4 (needed mkfs.ext4 -N 24000000):
before: 3.77s user 890.90s system 1939% cpu 46.118 total
after: 3.24s user 397.73s system 1858% cpu 21.581 total (-53%)
That's 20 million files to visit, while the machine can only cache about
15 million at a time (obtained from ext4_inode_cache object count in
/proc/slabinfo). Since each terminal inode is only visited once per run
this amounts to 0% hit ratio for the dentry cache and the hash table
(there are however hits for the intermediate directories).
On repeated runs the kernel caches the last ~15 mln, meaning there is ~5
mln of uncached inodes which are going to be visited first, evicting the
previously cached state as it happens.
Lack of hits can be trivially verified with bpftrace, like so:
bpftrace -e 'kretprobe:find_inode_fast { @[kstack(), retval != 0] = count(); }'\
-c "/bin/sh walktrees /testfs 20"
Best ran more than once.
Expected results after "warmup":
[snip]
@[
__ext4_iget+275
ext4_lookup+224
__lookup_slow+130
walk_component+219
link_path_walk.part.0.constprop.0+614
path_lookupat+62
filename_lookup+204
vfs_statx+128
vfs_fstatat+131
__do_sys_newfstatat+38
do_syscall_64+87
entry_SYSCALL_64_after_hwframe+118
, 1]: 20000
@[
__ext4_iget+275
ext4_lookup+224
__lookup_slow+130
walk_component+219
path_lookupat+106
filename_lookup+204
vfs_statx+128
vfs_fstatat+131
__do_sys_newfstatat+38
do_syscall_64+87
entry_SYSCALL_64_after_hwframe+118
, 1]: 20000000
That is 20 million calls for the initial lookup and 20 million after
allocating a new inode, all of them failing to return a value != 0
(i.e., they are returning NULL -- no match found).
Of course aborting the benchmark in the middle and starting it again (or
messing with the state in other ways) is going to alter these results.
Benchmark can be found here: https://people.freebsd.org/~mjg/fstree.tgz
[1] https://lore.kernel.org/all/20231206060629.2827226-1-david@fromorbit.com/
Signed-off-by: Mateusz Guzik <mjguzik@gmail.com>
Link: https://lore.kernel.org/r/20240611173824.535995-2-mjguzik@gmail.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
- Subvolume children btree; this is needed for providing a userspace
interface for walking subvolumes, which will come later
- Lots of improvements to directory structure checking
- Improved journal pipelining, significantly improving performance on
high iodepth write workloads
- Discard path improvements: the discard path is more efficient, and no
longer flushes the journal unnecessarily
- Buffered write path can now avoid taking the inode lock
- new mm helper: memalloc_flags_{save|restore}
- mempool now does kvmalloc mempools
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEKnAFLkS8Qha+jvQrE6szbY3KbnYFAmXycEcACgkQE6szbY3K
bnYUTg/+K4Nv2EdAqOCyHRTKaF2OgJDUb25ZDmbGpfT1XyPrNB7/+CxHqSdEP7/e
FVuhtP61vnQAImDv82u9iZiab/TnuCZPUrjSobFEvrWYoGRtP9Bm9MyYB28NzmMa
AXGmS4yJGVwtxxrFNxZP98IbiHYiHSoYbkqxX2E5VgLag8Ru8peb7oD0Ro3zw0rb
z+6UM/seJ7on5i/9IJEMKKXFVEoZC2J5DAVoe1TghG2kgOw3cKu5OUdltLPOY5jL
jkm5J5wa6Ep46nufHat92yiMxXIQrf4U9LkXxzTi5ThoSmt+Af2qXcBjqTTVqd2D
1dGxj+UG8iu4DCCbQC6EA7J5EMvxfJM0+9lk1ULUgxUs3X69co6nlI6XH1fwEMqk
KpIqd35+Y/IYgogt9ioXI0dtXyL7dbaTVt6NZhc9SaPGPX+C2V0+l4bqToFdNaPH
0KATjjyQaJRE4ZFIjr6GliYOtKWDLi/HPEyoBivniUn7cF5vjSvti+cSQwNDSPpa
6jOd5Y923Iq9ZqDAPM3+mvTH8nNaaf2T2fmbPNrc5pdWbha9bGwOU71zvKHNFGm/
66ZsnwhKSk+uwglTMZHPKSkJJXUYAHESw3slQtEWHZVlliArc55+pBHwE00bvRt7
KHUUqkqXBUPzbp/kdZGylMAdH9+8j9TE5QJ2RaoryFm/eCfexmI=
=6xnj
-----END PGP SIGNATURE-----
Merge tag 'bcachefs-2024-03-13' of https://evilpiepirate.org/git/bcachefs
Pull bcachefs updates from Kent Overstreet:
- Subvolume children btree; this is needed for providing a userspace
interface for walking subvolumes, which will come later
- Lots of improvements to directory structure checking
- Improved journal pipelining, significantly improving performance on
high iodepth write workloads
- Discard path improvements: the discard path is more efficient, and no
longer flushes the journal unnecessarily
- Buffered write path can now avoid taking the inode lock
- new mm helper: memalloc_flags_{save|restore}
- mempool now does kvmalloc mempools
* tag 'bcachefs-2024-03-13' of https://evilpiepirate.org/git/bcachefs: (128 commits)
bcachefs: time_stats: shrink time_stat_buffer for better alignment
bcachefs: time_stats: split stats-with-quantiles into a separate structure
bcachefs: mean_and_variance: put struct mean_and_variance_weighted on a diet
bcachefs: time_stats: add larger units
bcachefs: pull out time_stats.[ch]
bcachefs: reconstruct_alloc cleanup
bcachefs: fix bch_folio_sector padding
bcachefs: Fix btree key cache coherency during replay
bcachefs: Always flush write buffer in delete_dead_inodes()
bcachefs: Fix order of gc_done passes
bcachefs: fix deletion of indirect extents in btree_gc
bcachefs: Prefer struct_size over open coded arithmetic
bcachefs: Kill unused flags argument to btree_split()
bcachefs: Check for writing superblocks with nonsense member seq fields
bcachefs: fix bch2_journal_buf_to_text()
lib/generic-radix-tree.c: Make nodes more reasonably sized
bcachefs: copy_(to|from)_user_errcode()
bcachefs: Split out bkey_types.h
bcachefs: fix lost journal buf wakeup due to improved pipelining
bcachefs: intercept mountoption value for bool type
...
Rename and export __file_remove_privs(); for a buffered write path that
doesn't take the inode lock we need to be able to check if the operation
needs to do work first.
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZem4UQAKCRCRxhvAZXjc
ouERAQDg63R9s3bKmUgGqngf9cfr//VCTE+WVARwOUTdn2iDbwEA1IME7X1kL/Vz
EdhEjyqO6xom+ao/Vqxe0XIDNz70vgs=
=8RdE
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.9.iomap' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull iomap updates from Christian Brauner:
- Restore read-write hints in struct bio through the bi_write_hint
member for the sake of UFS devices in mobile applications. This can
result in up to 40% lower write amplification in UFS devices. The
patch series that builds on this will be coming in via the SCSI
maintainers (Bart)
- Overhaul the iomap writeback code. Afterwards ->map_blocks() is able
to map multiple blocks at once as long as they're in the same folio.
This reduces CPU usage for buffered write workloads on e.g., xfs on
systems with lots of cores (Christoph)
- Record processed bytes in iomap_iter() trace event (Kassey)
- Extend iomap_writepage_map() trace event after Christoph's
->map_block() changes to map mutliple blocks at once (Zhang)
* tag 'vfs-6.9.iomap' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (22 commits)
iomap: Add processed for iomap_iter
iomap: add pos and dirty_len into trace_iomap_writepage_map
block, fs: Restore the per-bio/request data lifetime fields
fs: Propagate write hints to the struct block_device inode
fs: Move enum rw_hint into a new header file
fs: Split fcntl_rw_hint()
fs: Verify write lifetime constants at compile time
fs: Fix rw_hint validation
iomap: pass the length of the dirty region to ->map_blocks
iomap: map multiple blocks at a time
iomap: submit ioends immediately
iomap: factor out a iomap_writepage_map_block helper
iomap: only call mapping_set_error once for each failed bio
iomap: don't chain bios
iomap: move the iomap_sector sector calculation out of iomap_add_to_ioend
iomap: clean up the iomap_alloc_ioend calling convention
iomap: move all remaining per-folio logic into iomap_writepage_map
iomap: factor out a iomap_writepage_handle_eof helper
iomap: move the PF_MEMALLOC check to iomap_writepages
iomap: move the io_folios field out of struct iomap_ioend
...
The function inode_set_ctime_current simply retrieves the current time
and assigns it to the field __i_ctime without any alterations. Therefore,
it is possible to set ctime to now directly using inode_set_ctime_to_ts
Signed-off-by: Nguyen Dinh Phi <phind.uet@gmail.com>
Link: https://lore.kernel.org/r/20240228173031.3208743-1-phind.uet@gmail.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
Move enum rw_hint into a new header file to prepare for using this data
type in the block layer. Add the attribute __packed to reduce the space
occupied by instances of this data type from four bytes to one byte.
Change the data type of i_write_hint from u8 into enum rw_hint.
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Chao Yu <chao@kernel.org> # for the F2FS part
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: Jan Kara <jack@suse.cz>
Cc: Christoph Hellwig <hch@lst.de>
Signed-off-by: Bart Van Assche <bvanassche@acm.org>
Link: https://lore.kernel.org/r/20240202203926.2478590-5-bvanassche@acm.org
Signed-off-by: Christian Brauner <brauner@kernel.org>
We met a kernel crash issue when running stress-ng testing, and the
system crashes when printing the dentry name in dump_mapping().
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
pc : dentry_name+0xd8/0x224
lr : pointer+0x22c/0x370
sp : ffff800025f134c0
......
Call trace:
dentry_name+0xd8/0x224
pointer+0x22c/0x370
vsnprintf+0x1ec/0x730
vscnprintf+0x2c/0x60
vprintk_store+0x70/0x234
vprintk_emit+0xe0/0x24c
vprintk_default+0x3c/0x44
vprintk_func+0x84/0x2d0
printk+0x64/0x88
__dump_page+0x52c/0x530
dump_page+0x14/0x20
set_migratetype_isolate+0x110/0x224
start_isolate_page_range+0xc4/0x20c
offline_pages+0x124/0x474
memory_block_offline+0x44/0xf4
memory_subsys_offline+0x3c/0x70
device_offline+0xf0/0x120
......
The root cause is that, one thread is doing page migration, and we will
use the target page's ->mapping field to save 'anon_vma' pointer between
page unmap and page move, and now the target page is locked and refcount
is 1.
Currently, there is another stress-ng thread performing memory hotplug,
attempting to offline the target page that is being migrated. It discovers
that the refcount of this target page is 1, preventing the offline operation,
thus proceeding to dump the page. However, page_mapping() of the target
page may return an incorrect file mapping to crash the system in dump_mapping(),
since the target page->mapping only saves 'anon_vma' pointer without setting
PAGE_MAPPING_ANON flag.
The page migration issue has been fixed by commit d1adb25df7 ("mm: migrate:
fix getting incorrect page mapping during page migration"). In addition,
Matthew suggested we should also improve dump_mapping()'s robustness to
resilient against the kernel crash [1].
With checking the 'dentry.parent' and 'dentry.d_name.name' used by
dentry_name(), I can see dump_mapping() will output the invalid dentry
instead of crashing the system when this issue is reproduced again.
[12211.189128] page:fffff7de047741c0 refcount:1 mapcount:0 mapping:ffff989117f55ea0 index:0x1 pfn:0x211dd07
[12211.189144] aops:0x0 ino:1 invalid dentry:74786574206e6870
[12211.189148] flags: 0x57ffffc0000001(locked|node=1|zone=2|lastcpupid=0x1fffff)
[12211.189150] page_type: 0xffffffff()
[12211.189153] raw: 0057ffffc0000001 0000000000000000 dead000000000122 ffff989117f55ea0
[12211.189154] raw: 0000000000000001 0000000000000001 00000001ffffffff 0000000000000000
[12211.189155] page dumped because: unmovable page
[1] https://lore.kernel.org/all/ZXxn%2F0oixJxxAnpF@casper.infradead.org/
Suggested-by: Matthew Wilcox <willy@infradead.org>
Signed-off-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Link: https://lore.kernel.org/r/937ab1f87328516821d39be672b6bc18861d9d3e.1705391420.git.baolin.wang@linux.alibaba.com
Signed-off-by: Christian Brauner <brauner@kernel.org>
broken in 6.5; we really can't lock two unrelated directories
without holding ->s_vfs_rename_mutex first and in case of
same-parent rename of a subdirectory 6.5 ends up doing just
that.
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQQqUNBr3gm4hGXdBJlZ7Krx/gZQ6wUCZZ+lyQAKCRBZ7Krx/gZQ
60MWAP94hTqeMIpjhsUIkrTnylrIFaiw4UCWFJzIRG1QQYKqCgD/XUaWI9np7dL6
0wR/j4CQSdJjiEFKUFE2pD3QoSuJYAQ=
=+x0+
-----END PGP SIGNATURE-----
Merge tag 'pull-rename' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull rename updates from Al Viro:
"Fix directory locking scheme on rename
This was broken in 6.5; we really can't lock two unrelated directories
without holding ->s_vfs_rename_mutex first and in case of same-parent
rename of a subdirectory 6.5 ends up doing just that"
* tag 'pull-rename' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs:
rename(): avoid a deadlock in the case of parents having no common ancestor
kill lock_two_inodes()
rename(): fix the locking of subdirectories
f2fs: Avoid reading renamed directory if parent does not change
ext4: don't access the source subdirectory content on same-directory rename
ext2: Avoid reading renamed directory if parent does not change
udf_rename(): only access the child content on cross-directory rename
ocfs2: Avoid touching renamed directory if parent does not change
reiserfs: Avoid touching renamed directory if parent does not change
To help make the move of sysctls out of kernel/sysctl.c not incur a size
penalty sysctl has been changed to allow us to not require the sentinel, the
final empty element on the sysctl array. Joel Granados has been doing all this
work. On the v6.6 kernel we got the major infrastructure changes required to
support this. For v6.7 we had all arch/ and drivers/ modified to remove
the sentinel. For v6.8-rc1 we get a few more updates for fs/ directory only.
The kernel/ directory is left but we'll save that for v6.9-rc1 as those patches
are still being reviewed. After that we then can expect also the removal of the
no longer needed check for procname == NULL.
Let us recap the purpose of this work:
- this helps reduce the overall build time size of the kernel and run time
memory consumed by the kernel by about ~64 bytes per array
- the extra 64-byte penalty is no longer inncurred now when we move sysctls
out from kernel/sysctl.c to their own files
Thomas Weißschuh also sent a few cleanups, for v6.9-rc1 we expect to see further
work by Thomas Weißschuh with the constificatin of the struct ctl_table.
Due to Joel Granados's work, and to help bring in new blood, I have suggested
for him to become a maintainer and he's accepted. So for v6.9-rc1 I look forward
to seeing him sent you a pull request for further sysctl changes. This also
removes Iurii Zaikin as a maintainer as he has moved on to other projects and
has had no time to help at all.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEENnNq2KuOejlQLZofziMdCjCSiKcFAmWdWDESHG1jZ3JvZkBr
ZXJuZWwub3JnAAoJEM4jHQowkoinjJAP/jTNNoyzWisvrrvmXqR5txFGLOE+wW6x
Xv9avuiM+DTHsH/wK8CkXEivwDqYNAZEHU7NEcolS5bJX/ddSRwN9b5aSVlCrUdX
Ab4rXmpeSCNFp9zNszWJsDuBKIqjvsKw7qGleGtgZ2qAUHbbH30VROLWCggaee50
wU3icDLdwkasxrcMXy4Sq5dT5wYC4j/QelqBGIkYPT14Arl1im5zqPZ95gmO/s/6
mdicTAmq+hhAUfUBJBXRKtsvxY6CItxe55Q4fjpncLUJLHUw+VPVNoBKFWJlBwlh
LO3liKFfakPSkil4/en+/+zuMByd0JBkIzIJa+Kk5kjpbHRhK0RkmU4+Y5G5spWN
jjLfiv6RxInNaZ8EWQBMfjE95A7PmYDQ4TOH08+OvzdDIi6B0BB5tBGQpG9BnyXk
YsLg1Uo4CwE/vn1/a9w0rhadjUInvmAryhb/uSJYFz/lmApLm2JUpY3/KstwGetb
z+HmLstJb24Djkr6pH8DcjhzRBHeWQ5p0b4/6B+v1HqAUuEhdbyw1F2GrDywyF3R
h/UOAaKLm1+ffdA246o9TejKiDU96qEzzXMaCzPKyestaRZuiyuYEMDhYbvtsMV5
zIdMJj5HQ+U1KHDv4IN99DEj7+/vjE3f4Sjo+POFpQeQ8/d+fxpFNqXVv449dgnb
6xEkkxsR0ElM
=2qBt
-----END PGP SIGNATURE-----
Merge tag 'sysctl-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux
Pull sysctl updates from Luis Chamberlain:
"To help make the move of sysctls out of kernel/sysctl.c not incur a
size penalty sysctl has been changed to allow us to not require the
sentinel, the final empty element on the sysctl array. Joel Granados
has been doing all this work.
In the v6.6 kernel we got the major infrastructure changes required to
support this. For v6.7 we had all arch/ and drivers/ modified to
remove the sentinel. For v6.8-rc1 we get a few more updates for fs/
directory only.
The kernel/ directory is left but we'll save that for v6.9-rc1 as
those patches are still being reviewed. After that we then can expect
also the removal of the no longer needed check for procname == NULL.
Let us recap the purpose of this work:
- this helps reduce the overall build time size of the kernel and run
time memory consumed by the kernel by about ~64 bytes per array
- the extra 64-byte penalty is no longer inncurred now when we move
sysctls out from kernel/sysctl.c to their own files
Thomas Weißschuh also sent a few cleanups, for v6.9-rc1 we expect to
see further work by Thomas Weißschuh with the constificatin of the
struct ctl_table.
Due to Joel Granados's work, and to help bring in new blood, I have
suggested for him to become a maintainer and he's accepted. So for
v6.9-rc1 I look forward to seeing him sent you a pull request for
further sysctl changes. This also removes Iurii Zaikin as a maintainer
as he has moved on to other projects and has had no time to help at
all"
* tag 'sysctl-6.8-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/mcgrof/linux:
sysctl: remove struct ctl_path
sysctl: delete unused define SYSCTL_PERM_EMPTY_DIR
coda: Remove the now superfluous sentinel elements from ctl_table array
sysctl: Remove the now superfluous sentinel elements from ctl_table array
fs: Remove the now superfluous sentinel elements from ctl_table array
cachefiles: Remove the now superfluous sentinel element from ctl_table array
sysclt: Clarify the results of selftest run
sysctl: Add a selftest for handling empty dirs
sysctl: Fix out of bounds access for empty sysctl registers
MAINTAINERS: Add Joel Granados as co-maintainer for proc sysctl
MAINTAINERS: remove Iurii Zaikin from proc sysctl
are included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the
series
"maple_tree: add mt_free_one() and mt_attr() helpers"
"Some cleanups of maple tree"
- In the series "mm: use memmap_on_memory semantics for dax/kmem"
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few
fixes) in the patch series
"Add folio_zero_tail() and folio_fill_tail()"
"Make folio_start_writeback return void"
"Fix fault handler's handling of poisoned tail pages"
"Convert aops->error_remove_page to ->error_remove_folio"
"Finish two folio conversions"
"More swap folio conversions"
- Kefeng Wang has also contributed folio-related work in the series
"mm: cleanup and use more folio in page fault"
- Jim Cromie has improved the kmemleak reporting output in the
series "tweak kmemleak report format".
- In the series "stackdepot: allow evicting stack traces" Andrey
Konovalov to permits clients (in this case KASAN) to cause
eviction of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series "mm:
page_alloc: fixes for high atomic reserve caluculations".
- Dmitry Rokosov has added to the samples/ dorectory some sample
code for a userspace memcg event listener application. See the
series "samples: introduce cgroup events listeners".
- Some mapletree maintanance work from Liam Howlett in the series
"maple_tree: iterator state changes".
- Nhat Pham has improved zswap's approach to writeback in the
series "workload-specific and memory pressure-driven zswap
writeback".
- DAMON/DAMOS feature and maintenance work from SeongJae Park in
the series
"mm/damon: let users feed and tame/auto-tune DAMOS"
"selftests/damon: add Python-written DAMON functionality tests"
"mm/damon: misc updates for 6.8"
- Yosry Ahmed has improved memcg's stats flushing in the series
"mm: memcg: subtree stats flushing and thresholds".
- In the series "Multi-size THP for anonymous memory" Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series "More buffer_head
cleanups".
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
"userfaultfd move option". UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a "KSM Advisor", in the series
"mm/ksm: Add ksm advisor". This is a governor which tunes KSM's
scanning aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory
use in the series "mm/zswap: dstmem reuse optimizations and
cleanups".
- Matthew Wilcox has performed some maintenance work on the
writeback code, both code and within filesystems. The series is
"Clean up the writeback paths".
- Andrey Konovalov has optimized KASAN's handling of alloc and
free stack traces for secondary-level allocators, in the series
"kasan: save mempool stack traces".
- Andrey also performed some KASAN maintenance work in the series
"kasan: assorted clean-ups".
- David Hildenbrand has gone to town on the rmap code. Cleanups,
more pte batching, folio conversions and more. See the series
"mm/rmap: interface overhaul".
- Kinsey Ho has contributed some maintenance work on the MGLRU
code in the series "mm/mglru: Kconfig cleanup".
- Matthew Wilcox has contributed lruvec page accounting code
cleanups in the series "Remove some lruvec page accounting
functions".
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCZZyF2wAKCRDdBJ7gKXxA
jjWjAP42LHvGSjp5M+Rs2rKFL0daBQsrlvy6/jCHUequSdWjSgEAmOx7bc5fbF27
Oa8+DxGM9C+fwqZ/7YxU2w/WuUmLPgU=
=0NHs
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Many singleton patches against the MM code. The patch series which are
included in this merge do the following:
- Peng Zhang has done some mapletree maintainance work in the series
'maple_tree: add mt_free_one() and mt_attr() helpers'
'Some cleanups of maple tree'
- In the series 'mm: use memmap_on_memory semantics for dax/kmem'
Vishal Verma has altered the interworking between memory-hotplug
and dax/kmem so that newly added 'device memory' can more easily
have its memmap placed within that newly added memory.
- Matthew Wilcox continues folio-related work (including a few fixes)
in the patch series
'Add folio_zero_tail() and folio_fill_tail()'
'Make folio_start_writeback return void'
'Fix fault handler's handling of poisoned tail pages'
'Convert aops->error_remove_page to ->error_remove_folio'
'Finish two folio conversions'
'More swap folio conversions'
- Kefeng Wang has also contributed folio-related work in the series
'mm: cleanup and use more folio in page fault'
- Jim Cromie has improved the kmemleak reporting output in the series
'tweak kmemleak report format'.
- In the series 'stackdepot: allow evicting stack traces' Andrey
Konovalov to permits clients (in this case KASAN) to cause eviction
of no longer needed stack traces.
- Charan Teja Kalla has fixed some accounting issues in the page
allocator's atomic reserve calculations in the series 'mm:
page_alloc: fixes for high atomic reserve caluculations'.
- Dmitry Rokosov has added to the samples/ dorectory some sample code
for a userspace memcg event listener application. See the series
'samples: introduce cgroup events listeners'.
- Some mapletree maintanance work from Liam Howlett in the series
'maple_tree: iterator state changes'.
- Nhat Pham has improved zswap's approach to writeback in the series
'workload-specific and memory pressure-driven zswap writeback'.
- DAMON/DAMOS feature and maintenance work from SeongJae Park in the
series
'mm/damon: let users feed and tame/auto-tune DAMOS'
'selftests/damon: add Python-written DAMON functionality tests'
'mm/damon: misc updates for 6.8'
- Yosry Ahmed has improved memcg's stats flushing in the series 'mm:
memcg: subtree stats flushing and thresholds'.
- In the series 'Multi-size THP for anonymous memory' Ryan Roberts
has added a runtime opt-in feature to transparent hugepages which
improves performance by allocating larger chunks of memory during
anonymous page faults.
- Matthew Wilcox has also contributed some cleanup and maintenance
work against eh buffer_head code int he series 'More buffer_head
cleanups'.
- Suren Baghdasaryan has done work on Andrea Arcangeli's series
'userfaultfd move option'. UFFDIO_MOVE permits userspace heap
compaction algorithms to move userspace's pages around rather than
UFFDIO_COPY'a alloc/copy/free.
- Stefan Roesch has developed a 'KSM Advisor', in the series 'mm/ksm:
Add ksm advisor'. This is a governor which tunes KSM's scanning
aggressiveness in response to userspace's current needs.
- Chengming Zhou has optimized zswap's temporary working memory use
in the series 'mm/zswap: dstmem reuse optimizations and cleanups'.
- Matthew Wilcox has performed some maintenance work on the writeback
code, both code and within filesystems. The series is 'Clean up the
writeback paths'.
- Andrey Konovalov has optimized KASAN's handling of alloc and free
stack traces for secondary-level allocators, in the series 'kasan:
save mempool stack traces'.
- Andrey also performed some KASAN maintenance work in the series
'kasan: assorted clean-ups'.
- David Hildenbrand has gone to town on the rmap code. Cleanups, more
pte batching, folio conversions and more. See the series 'mm/rmap:
interface overhaul'.
- Kinsey Ho has contributed some maintenance work on the MGLRU code
in the series 'mm/mglru: Kconfig cleanup'.
- Matthew Wilcox has contributed lruvec page accounting code cleanups
in the series 'Remove some lruvec page accounting functions'"
* tag 'mm-stable-2024-01-08-15-31' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (361 commits)
mm, treewide: rename MAX_ORDER to MAX_PAGE_ORDER
mm, treewide: introduce NR_PAGE_ORDERS
selftests/mm: add separate UFFDIO_MOVE test for PMD splitting
selftests/mm: skip test if application doesn't has root privileges
selftests/mm: conform test to TAP format output
selftests: mm: hugepage-mmap: conform to TAP format output
selftests/mm: gup_test: conform test to TAP format output
mm/selftests: hugepage-mremap: conform test to TAP format output
mm/vmstat: move pgdemote_* out of CONFIG_NUMA_BALANCING
mm: zsmalloc: return -ENOSPC rather than -EINVAL in zs_malloc while size is too large
mm/memcontrol: remove __mod_lruvec_page_state()
mm/khugepaged: use a folio more in collapse_file()
slub: use a folio in __kmalloc_large_node
slub: use folio APIs in free_large_kmalloc()
slub: use alloc_pages_node() in alloc_slab_page()
mm: remove inc/dec lruvec page state functions
mm: ratelimit stat flush from workingset shrinker
kasan: stop leaking stack trace handles
mm/mglru: remove CONFIG_TRANSPARENT_HUGEPAGE
mm/mglru: add dummy pmd_dirty()
...
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQRAhzRXHqcMeLMyaSiRxhvAZXjcogUCZZUxRQAKCRCRxhvAZXjc
ov/QAQDzvge3oQ9MEymmOiyzzcF+HhAXBr+9oEsYJjFc1p0TsgEA61gXjZo7F1jY
KBqd6znOZCR+Waj0kIVJRAo/ISRBqQc=
=0bRl
-----END PGP SIGNATURE-----
Merge tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs
Pull misc vfs updates from Christian Brauner:
"This contains the usual miscellaneous features, cleanups, and fixes
for vfs and individual fses.
Features:
- Add Jan Kara as VFS reviewer
- Show correct device and inode numbers in proc/<pid>/maps for vma
files on stacked filesystems. This is now easily doable thanks to
the backing file work from the last cycles. This comes with
selftests
Cleanups:
- Remove a redundant might_sleep() from wait_on_inode()
- Initialize pointer with NULL, not 0
- Clarify comment on access_override_creds()
- Rework and simplify eventfd_signal() and eventfd_signal_mask()
helpers
- Process aio completions in batches to avoid needless wakeups
- Completely decouple struct mnt_idmap from namespaces. We now only
keep the actual idmapping around and don't stash references to
namespaces
- Reformat maintainer entries to indicate that a given subsystem
belongs to fs/
- Simplify fput() for files that were never opened
- Get rid of various pointless file helpers
- Rename various file helpers
- Rename struct file members after SLAB_TYPESAFE_BY_RCU switch from
last cycle
- Make relatime_need_update() return bool
- Use GFP_KERNEL instead of GFP_USER when allocating superblocks
- Replace deprecated ida_simple_*() calls with their current ida_*()
counterparts
Fixes:
- Fix comments on user namespace id mapping helpers. They aren't
kernel doc comments so they shouldn't be using /**
- s/Retuns/Returns/g in various places
- Add missing parameter documentation on can_move_mount_beneath()
- Rename i_mapping->private_data to i_mapping->i_private_data
- Fix a false-positive lockdep warning in pipe_write() for watch
queues
- Improve __fget_files_rcu() code generation to improve performance
- Only notify writer that pipe resizing has finished after setting
pipe->max_usage otherwise writers are never notified that the pipe
has been resized and hang
- Fix some kernel docs in hfsplus
- s/passs/pass/g in various places
- Fix kernel docs in ntfs
- Fix kcalloc() arguments order reported by gcc 14
- Fix uninitialized value in reiserfs"
* tag 'vfs-6.8.misc' of git://git.kernel.org/pub/scm/linux/kernel/git/vfs/vfs: (36 commits)
reiserfs: fix uninit-value in comp_keys
watch_queue: fix kcalloc() arguments order
ntfs: dir.c: fix kernel-doc function parameter warnings
fs: fix doc comment typo fs tree wide
selftests/overlayfs: verify device and inode numbers in /proc/pid/maps
fs/proc: show correct device and inode numbers in /proc/pid/maps
eventfd: Remove usage of the deprecated ida_simple_xx() API
fs: super: use GFP_KERNEL instead of GFP_USER for super block allocation
fs/hfsplus: wrapper.c: fix kernel-doc warnings
fs: add Jan Kara as reviewer
fs/inode: Make relatime_need_update return bool
pipe: wakeup wr_wait after setting max_usage
file: remove __receive_fd()
file: stop exposing receive_fd_user()
fs: replace f_rcuhead with f_task_work
file: remove pointless wrapper
file: s/close_fd_get_file()/file_close_fd()/g
Improve __fget_files_rcu() code generation (and thus __fget_light())
file: massage cleanup of files that failed to open
fs/pipe: Fix lockdep false-positive in watchqueue pipe_write()
...
This commit comes at the tail end of a greater effort to remove the
empty elements at the end of the ctl_table arrays (sentinels) which
will reduce the overall build time size of the kernel and run time
memory bloat by ~64 bytes per sentinel (further information Link :
https://lore.kernel.org/all/ZO5Yx5JFogGi%2FcBo@bombadil.infradead.org/)
Remove sentinel elements ctl_table struct. Special attention was placed in
making sure that an empty directory for fs/verity was created when
CONFIG_FS_VERITY_BUILTIN_SIGNATURES is not defined. In this case we use the
register sysctl call that expects a size.
Signed-off-by: Joel Granados <j.granados@samsung.com>
Reviewed-by: Jan Kara <jack@suse.cz>
Reviewed-by: "Darrick J. Wong" <djwong@kernel.org>
Acked-by: Christian Brauner <brauner@kernel.org>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
Do the replacement:
s/simply passs @nop_mnt_idmap/simply pass @nop_mnt_idmap/
in the fs/ tree.
Found by chance while working on support for idmapped mounts in fuse.
Cc: Jan Kara <jack@suse.cz>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Christian Brauner <brauner@kernel.org>
Cc: <linux-fsdevel@vger.kernel.org>
Cc: <linux-kernel@vger.kernel.org>
Signed-off-by: Alexander Mikhalitsyn <aleksandr.mikhalitsyn@canonical.com>
Link: https://lore.kernel.org/r/20231215130927.136917-1-aleksandr.mikhalitsyn@canonical.com
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Christian Brauner <brauner@kernel.org>
Patch series "workload-specific and memory pressure-driven zswap
writeback", v8.
There are currently several issues with zswap writeback:
1. There is only a single global LRU for zswap, making it impossible to
perform worload-specific shrinking - an memcg under memory pressure
cannot determine which pages in the pool it owns, and often ends up
writing pages from other memcgs. This issue has been previously
observed in practice and mitigated by simply disabling
memcg-initiated shrinking:
https://lore.kernel.org/all/20230530232435.3097106-1-nphamcs@gmail.com/T/#u
But this solution leaves a lot to be desired, as we still do not
have an avenue for an memcg to free up its own memory locked up in
the zswap pool.
2. We only shrink the zswap pool when the user-defined limit is hit.
This means that if we set the limit too high, cold data that are
unlikely to be used again will reside in the pool, wasting precious
memory. It is hard to predict how much zswap space will be needed
ahead of time, as this depends on the workload (specifically, on
factors such as memory access patterns and compressibility of the
memory pages).
This patch series solves these issues by separating the global zswap LRU
into per-memcg and per-NUMA LRUs, and performs workload-specific (i.e
memcg- and NUMA-aware) zswap writeback under memory pressure. The new
shrinker does not have any parameter that must be tuned by the user, and
can be opted in or out on a per-memcg basis.
As a proof of concept, we ran the following synthetic benchmark: build the
linux kernel in a memory-limited cgroup, and allocate some cold data in
tmpfs to see if the shrinker could write them out and improved the overall
performance. Depending on the amount of cold data generated, we observe
from 14% to 35% reduction in kernel CPU time used in the kernel builds.
This patch (of 6):
The interface of list_lru is based on the assumption that the list node
and the data it represents belong to the same allocated on the correct
node/memcg. While this assumption is valid for existing slab objects LRU
such as dentries and inodes, it is undocumented, and rather inflexible for
certain potential list_lru users (such as the upcoming zswap shrinker and
the THP shrinker). It has caused us a lot of issues during our
development.
This patch changes list_lru interface so that the caller must explicitly
specify numa node and memcg when adding and removing objects. The old
list_lru_add() and list_lru_del() are renamed to list_lru_add_obj() and
list_lru_del_obj(), respectively.
It also extends the list_lru API with a new function, list_lru_putback,
which undoes a previous list_lru_isolate call. Unlike list_lru_add, it
does not increment the LRU node count (as list_lru_isolate does not
decrement the node count). list_lru_putback also allows for explicit
memcg and NUMA node selection.
Link: https://lkml.kernel.org/r/20231130194023.4102148-1-nphamcs@gmail.com
Link: https://lkml.kernel.org/r/20231130194023.4102148-2-nphamcs@gmail.com
Signed-off-by: Nhat Pham <nphamcs@gmail.com>
Suggested-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Tested-by: Bagas Sanjaya <bagasdotme@gmail.com>
Cc: Chris Li <chrisl@kernel.org>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Domenico Cerasuolo <cerasuolodomenico@gmail.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Muchun Song <muchun.song@linux.dev>
Cc: Roman Gushchin <roman.gushchin@linux.dev>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Vitaly Wool <vitaly.wool@konsulko.com>
Cc: Yosry Ahmed <yosryahmed@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
relatime_need_update should return bool to consistent with the function
__atime_needs_update that is caller
Signed-off-by: Hao Ge <gehao@kylinos.cn>
Link: https://lore.kernel.org/r/20231205064545.332322-1-gehao@kylinos.cn
Signed-off-by: Christian Brauner <brauner@kernel.org>
There's only one caller left (lock_two_nondirectories()), and it
needs less complexity. Fold lock_two_inodes() in there and
simplify.
Reviewed-by: Jan Kara <jack@suse.cz>
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
It is hard to find where mapping->private_lock, mapping->private_list and
mapping->private_data are used, due to private_XXX being a relatively
common name for variables and structure members in the kernel. To fit
with other members of struct address_space, rename them all to have an
i_ prefix. Tested with an allmodconfig build.
Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
Link: https://lore.kernel.org/r/20231117215823.2821906-1-willy@infradead.org
Acked-by: Darrick J. Wong <djwong@kernel.org>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christian Brauner <brauner@kernel.org>