1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

14051 commits

Author SHA1 Message Date
Paul E. McKenney
5d4b865949 rcu: Fix day-zero grace-period initialization/cleanup race
The current approach to grace-period initialization is vulnerable to
extremely low-probability races.  These races stem from the fact that
the old grace period is marked completed on the same traversal through
the rcu_node structure that is marking the start of the new grace period.
This means that some rcu_node structures will believe that the old grace
period is still in effect at the same time that other rcu_node structures
believe that the new grace period has already started.

These sorts of disagreements can result in too-short grace periods,
as shown in the following scenario:

1.	CPU 0 completes a grace period, but needs an additional
	grace period, so starts initializing one, initializing all
	the non-leaf rcu_node structures and the first leaf rcu_node
	structure.  Because CPU 0 is both completing the old grace
	period and starting a new one, it marks the completion of
	the old grace period and the start of the new grace period
	in a single traversal of the rcu_node structures.

	Therefore, CPUs corresponding to the first rcu_node structure
	can become aware that the prior grace period has completed, but
	CPUs corresponding to the other rcu_node structures will see
	this same prior grace period as still being in progress.

2.	CPU 1 passes through a quiescent state, and therefore informs
	the RCU core.  Because its leaf rcu_node structure has already
	been initialized, this CPU's quiescent state is applied to the
	new (and only partially initialized) grace period.

3.	CPU 1 enters an RCU read-side critical section and acquires
	a reference to data item A.  Note that this CPU believes that
	its critical section started after the beginning of the new
	grace period, and therefore will not block this new grace period.

4.	CPU 16 exits dyntick-idle mode.  Because it was in dyntick-idle
	mode, other CPUs informed the RCU core of its extended quiescent
	state for the past several grace periods.  This means that CPU 16
	is not yet aware that these past grace periods have ended.  Assume
	that CPU 16 corresponds to the second leaf rcu_node structure --
	which has not yet been made aware of the new grace period.

5.	CPU 16 removes data item A from its enclosing data structure
	and passes it to call_rcu(), which queues a callback in the
	RCU_NEXT_TAIL segment of the callback queue.

6.	CPU 16 enters the RCU core, possibly because it has taken a
	scheduling-clock interrupt, or alternatively because it has
	more than 10,000 callbacks queued.  It notes that the second
	most recent grace period has completed (recall that because it
	corresponds to the second as-yet-uninitialized rcu_node structure,
	it cannot yet become aware that the most recent grace period has
	completed), and therefore advances its callbacks.  The callback
	for data item A is therefore in the RCU_NEXT_READY_TAIL segment
	of the callback queue.

7.	CPU 0 completes initialization of the remaining leaf rcu_node
	structures for the new grace period, including the structure
	corresponding to CPU 16.

8.	CPU 16 again enters the RCU core, again, possibly because it has
	taken a scheduling-clock interrupt, or alternatively because
	it now has more than 10,000 callbacks queued.	It notes that
	the most recent grace period has ended, and therefore advances
	its callbacks.	The callback for data item A is therefore in
	the RCU_DONE_TAIL segment of the callback queue.

9.	All CPUs other than CPU 1 pass through quiescent states.  Because
	CPU 1 already passed through its quiescent state, the new grace
	period completes.  Note that CPU 1 is still in its RCU read-side
	critical section, still referencing data item A.

10.	Suppose that CPU 2 wais the last CPU to pass through a quiescent
	state for the new grace period, and suppose further that CPU 2
	did not have any callbacks queued, therefore not needing an
	additional grace period.  CPU 2 therefore traverses all of the
	rcu_node structures, marking the new grace period as completed,
	but does not initialize a new grace period.

11.	CPU 16 yet again enters the RCU core, yet again possibly because
	it has taken a scheduling-clock interrupt, or alternatively
	because it now has more than 10,000 callbacks queued.	It notes
	that the new grace period has ended, and therefore advances
	its callbacks.	The callback for data item A is therefore in
	the RCU_DONE_TAIL segment of the callback queue.  This means
	that this callback is now considered ready to be invoked.

12.	CPU 16 invokes the callback, freeing data item A while CPU 1
	is still referencing it.

This scenario represents a day-zero bug for TREE_RCU.  This commit
therefore ensures that the old grace period is marked completed in
all leaf rcu_node structures before a new grace period is marked
started in any of them.

That said, it would have been insanely difficult to force this race to
happen before the grace-period initialization process was preemptible.
Therefore, this commit is not a candidate for -stable.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>

Conflicts:

	kernel/rcutree.c
2012-09-23 07:41:55 -07:00
Paul E. McKenney
7e5c2dfb4d rcu: Make rcutree module parameters visible in sysfs
The module parameters blimit, qhimark, and qlomark (and more
recently, rcu_fanout_leaf) have permission masks of zero, so
that their values are not visible from sysfs.  This is unnecessary
and inconvenient to administrators who might like an easy way to
see what these values are on a running system.  This commit therefore
sets their permission masks to 0444, allowing them to be read but
not written.

Reported-by: Rusty Russell <rusty@ozlabs.org>
Reported-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:55 -07:00
Paul E. McKenney
d40011f601 rcu: Control grace-period duration from sysfs
Although almost everyone is well-served by the defaults, some uses of RCU
benefit from shorter grace periods, while others benefit more from the
greater efficiency provided by longer grace periods.  Situations requiring
a large number of grace periods to elapse (and wireshark startup has
been called out as an example of this) are helped by lower-latency
grace periods.  Furthermore, in some embedded applications, people are
willing to accept a small degradation in update efficiency (due to there
being more of the shorter grace-period operations) in order to gain the
lower latency.

In contrast, those few systems with thousands of CPUs need longer grace
periods because the CPU overhead of a grace period rises roughly
linearly with the number of CPUs.  Such systems normally do not make
much use of facilities that require large numbers of grace periods to
elapse, so this is a good tradeoff.

Therefore, this commit allows the durations to be controlled from sysfs.
There are two sysfs parameters, one named "jiffies_till_first_fqs" that
specifies the delay in jiffies from the end of grace-period initialization
until the first attempt to force quiescent states, and the other named
"jiffies_till_next_fqs" that specifies the delay (again in jiffies)
between subsequent attempts to force quiescent states.  They both default
to three jiffies, which is compatible with the old hard-coded behavior.

At some future time, it may be possible to automatically increase the
grace-period length with the number of CPUs, but we do not yet have
sufficient data to do a good job.  Preliminary data indicates that we
should add an addiitonal jiffy to each of the delays for every 200 CPUs
in the system, but more experimentation is needed.  For now, the number
of systems with more than 1,000 CPUs is small enough that this can be
relegated to boot-time hand tuning.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:54 -07:00
Paul E. McKenney
394f2769aa rcu: Prevent force_quiescent_state() memory contention
Large systems running RCU_FAST_NO_HZ kernels see extreme memory
contention on the rcu_state structure's ->fqslock field.  This
can be avoided by disabling RCU_FAST_NO_HZ, either at compile time
or at boot time (via the nohz kernel boot parameter), but large
systems will no doubt become sensitive to energy consumption.
This commit therefore uses a combining-tree approach to spread the
memory contention across new cache lines in the leaf rcu_node structures.
This can be thought of as a tournament lock that has only a try-lock
acquisition primitive.

The effect on small systems is minimal, because such systems have
an rcu_node "tree" consisting of a single node.  In addition, this
functionality is not used on fastpaths.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:54 -07:00
Paul E. McKenney
4605c0143c rcu: Adjust debugfs tracing for kthread-based quiescent-state forcing
Moving quiescent-state forcing into a kthread dispenses with the need
for the ->n_rp_need_fqs field, so this commit removes it.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:54 -07:00
Paul E. McKenney
b4be093fee rcu: Allow RCU quiescent-state forcing to be preempted
RCU quiescent-state forcing is currently carried out without preemption
points, which can result in excessive latency spikes on large systems
(many hundreds or thousands of CPUs).  This patch therefore inserts
a voluntary preemption point into force_qs_rnp(), which should greatly
reduce the magnitude of these spikes.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:54 -07:00
Paul E. McKenney
4cdfc175c2 rcu: Move quiescent-state forcing into kthread
As the first step towards allowing quiescent-state forcing to be
preemptible, this commit moves RCU quiescent-state forcing into the
same kthread that is now used to initialize and clean up after grace
periods.  This is yet another step towards keeping scheduling
latency down to a dull roar.

Updated to change from raw_spin_lock_irqsave() to raw_spin_lock_irq()
and to remove the now-unused rcu_state structure fields as suggested by
Peter Zijlstra.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-09-23 07:41:54 -07:00
Dimitri Sivanich
b402b73b3a rcu: Segregate rcu_state fields to improve cache locality
The fields in the rcu_state structure that are protected by the
root rcu_node structure's ->lock can share a cache line with the
fields protected by ->onofflock.  This can result in excessive
memory contention on large systems, so this commit applies
____cacheline_internodealigned_in_smp to the ->onofflock field in
order to segregate them.

Signed-off-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Dimitri Sivanich <sivanich@sgi.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:53 -07:00
Paul E. McKenney
b626c1b689 rcu: Provide OOM handler to motivate lazy RCU callbacks
In kernels built with CONFIG_RCU_FAST_NO_HZ=y, CPUs can accumulate a
large number of lazy callbacks, which as the name implies will be slow
to be invoked.  This can be a problem on small-memory systems, where the
default 6-second sleep for CPUs having only lazy RCU callbacks could well
be fatal.  This commit therefore installs an OOM hander that ensures that
every CPU with lazy callbacks has at least one non-lazy callback, in turn
ensuring timely advancement for these callbacks.

Updated to fix bug that disabled OOM killing, noted by Lai Jiangshan.

Updated to push the for_each_rcu_flavor() loop into rcu_oom_notify_cpu(),
thus reducing the number of IPIs, as suggested by Steven Rostedt.  Also
to make the for_each_online_cpu() loop be preemptible.  (Later, it might
be good to use smp_call_function(), as suggested by Peter Zijlstra.)

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Sasha Levin <levinsasha928@gmail.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:53 -07:00
Paul E. McKenney
bfa00b4c40 rcu: Prevent offline CPUs from executing RCU core code
Earlier versions of RCU invoked the RCU core from the CPU_DYING notifier
in order to note a quiescent state for the outgoing CPU.  Because the
CPU is marked "offline" during the execution of the CPU_DYING notifiers,
the RCU core had to tolerate being invoked from an offline CPU.  However,
commit b1420f1c (Make rcu_barrier() less disruptive) left only tracing
code in the CPU_DYING notifier, so the RCU core need no longer execute
on offline CPUs.  This commit therefore enforces this restriction.

Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:53 -07:00
Paul E. McKenney
7fdefc10e1 rcu: Break up rcu_gp_kthread() into subfunctions
Then rcu_gp_kthread() function is too large and furthermore needs to
have the force_quiescent_state() code pulled in.  This commit therefore
breaks up rcu_gp_kthread() into rcu_gp_init() and rcu_gp_cleanup().

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:53 -07:00
Paul E. McKenney
c856bafae7 rcu: Allow RCU grace-period cleanup to be preempted
RCU grace-period cleanup is currently carried out with interrupts
disabled, which can result in excessive latency spikes on large systems
(many hundreds or thousands of CPUs).  This patch therefore makes the
RCU grace-period cleanup be preemptible, including voluntary preemption
points, which should eliminate those latency spikes.  Similar spikes from
forcing of quiescent states will be dealt with similarly by later patches.

Updated to replace uses of spin_lock_irqsave() with spin_lock_irq(), as
suggested by Peter Zijlstra.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:53 -07:00
Paul E. McKenney
cabc49c1ff rcu: Move RCU grace-period cleanup into kthread
As a first step towards allowing grace-period cleanup to be preemptible,
this commit moves the RCU grace-period cleanup into the same kthread
that is now used to initialize grace periods.  This is needed to keep
scheduling latency down to a dull roar.

[ paulmck: Get rid of stray spin_lock_irqsave() calls. ]

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
755609a908 rcu: Allow RCU grace-period initialization to be preempted
RCU grace-period initialization is currently carried out with interrupts
disabled, which can result in 200-microsecond latency spikes on systems
on which RCU has been configured for 4096 CPUs.  This patch therefore
makes the RCU grace-period initialization be preemptible, which should
eliminate those latency spikes.  Similar spikes from grace-period cleanup
and the forcing of quiescent states will be dealt with similarly by later
patches.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
79bce67243 rcu: Prevent initialization-time quiescent-state race
The next step in reducing RCU's grace-period initialization latency on
large systems will make this initialization preemptible.  Unfortunately,
making the grace-period initialization subject to interrupts (let alone
preemption) exposes the following race on systems whose rcu_node tree
contains more than one node:

1.	CPU 31 starts initializing the grace period, including the
    	first leaf rcu_node structures, and is then preempted.

2.	CPU 0 refers to the first leaf rcu_node structure, and notes
    	that a new grace period has started.  It passes through a
    	quiescent state shortly thereafter, and informs the RCU core
    	of this rite of passage.

3.	CPU 0 enters an RCU read-side critical section, acquiring
    	a pointer to an RCU-protected data item.

4.	CPU 31 takes an interrupt whose handler removes the data item
	referenced by CPU 0 from the data structure, and registers an
	RCU callback in order to free it.

5.	CPU 31 resumes initializing the grace period, including its
    	own rcu_node structure.  In invokes rcu_start_gp_per_cpu(),
    	which advances all callbacks, including the one registered
    	in #4 above, to be handled by the current grace period.

6.	The remaining CPUs pass through quiescent states and inform
    	the RCU core, but CPU 0 remains in its RCU read-side critical
    	section, still referencing the now-removed data item.

7.	The grace period completes and all the callbacks are invoked,
    	including the one that frees the data item that CPU 0 is still
    	referencing.  Oops!!!

One way to avoid this race is to remove grace-period acceleration from
rcu_start_gp_per_cpu().  Now, the only reason for this acceleration was
to allow CPUs bringing RCU out of idle state to have their callbacks
invoked after only one grace period, rather than the two grace periods
that would otherwise be required.  But this acceleration does not
work when RCU grace-period initialization is moved to a kthread because
the CPU posting the callback is no longer necessarily the CPU that is
initializing the resulting grace period.

This commit therefore removes this now-pointless (and soon to be dangerous)
grace-period acceleration, thus avoiding the above race.

Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
b3dbec76e5 rcu: Move RCU grace-period initialization into a kthread
As the first step towards allowing grace-period initialization to be
preemptible, this commit moves the RCU grace-period initialization
into its own kthread.  This is needed to keep large-system scheduling
latency at reasonable levels.

Also change raw_spin_lock_irqsave() to raw_spin_lock_irq() as suggested
by Peter Zijlstra in review comments.

Reported-by: Mike Galbraith <mgalbraith@suse.de>
Reported-by: Dimitri Sivanich <sivanich@sgi.com>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Reviewed-by: Josh Triplett <josh@joshtriplett.org>
2012-09-23 07:41:52 -07:00
Paul E. McKenney
a10d206ef1 rcu: Fix day-one dyntick-idle stall-warning bug
Each grace period is supposed to have at least one callback waiting
for that grace period to complete.  However, if CONFIG_NO_HZ=n, an
extra callback-free grace period is no big problem -- it will chew up
a tiny bit of CPU time, but it will complete normally.  In contrast,
CONFIG_NO_HZ=y kernels have the potential for all the CPUs to go to
sleep indefinitely, in turn indefinitely delaying completion of the
callback-free grace period.  Given that nothing is waiting on this grace
period, this is also not a problem.

That is, unless RCU CPU stall warnings are also enabled, as they are
in recent kernels.  In this case, if a CPU wakes up after at least one
minute of inactivity, an RCU CPU stall warning will result.  The reason
that no one noticed until quite recently is that most systems have enough
OS noise that they will never remain absolutely idle for a full minute.
But there are some embedded systems with cut-down userspace configurations
that consistently get into this situation.

All this begs the question of exactly how a callback-free grace period
gets started in the first place.  This can happen due to the fact that
CPUs do not necessarily agree on which grace period is in progress.
If a CPU still believes that the grace period that just completed is
still ongoing, it will believe that it has callbacks that need to wait for
another grace period, never mind the fact that the grace period that they
were waiting for just completed.  This CPU can therefore erroneously
decide to start a new grace period.  Note that this can happen in
TREE_RCU and TREE_PREEMPT_RCU even on a single-CPU system:  Deadlock
considerations mean that the CPU that detected the end of the grace
period is not necessarily officially informed of this fact for some time.

Once this CPU notices that the earlier grace period completed, it will
invoke its callbacks.  It then won't have any callbacks left.  If no
other CPU has any callbacks, we now have a callback-free grace period.

This commit therefore makes CPUs check more carefully before starting a
new grace period.  This new check relies on an array of tail pointers
into each CPU's list of callbacks.  If the CPU is up to date on which
grace periods have completed, it checks to see if any callbacks follow
the RCU_DONE_TAIL segment, otherwise it checks to see if any callbacks
follow the RCU_WAIT_TAIL segment.  The reason that this works is that
the RCU_WAIT_TAIL segment will be promoted to the RCU_DONE_TAIL segment
as soon as the CPU is officially notified that the old grace period
has ended.

This change is to cpu_needs_another_gp(), which is called in a number
of places.  The only one that really matters is in rcu_start_gp(), where
the root rcu_node structure's ->lock is held, which prevents any
other CPU from starting or completing a grace period, so that the
comparison that determines whether the CPU is missing the completion
of a grace period is stable.

Reported-by: Becky Bruce <bgillbruce@gmail.com>
Reported-by: Subodh Nijsure <snijsure@grid-net.com>
Reported-by: Paul Walmsley <paul@pwsan.com>
Signed-off-by: Paul E. McKenney <paul.mckenney@linaro.org>
Signed-off-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Tested-by: Paul Walmsley <paul@pwsan.com>  # OMAP3730, OMAP4430
Cc: stable@vger.kernel.org
2012-09-23 07:31:52 -07:00
Linus Torvalds
519b3b742d Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer fix from Ingo Molnar:
 "One more timekeeping fix for v3.6"

* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  time: Fix timeekeping_get_ns overflow on 32bit systems
2012-09-21 14:25:46 -07:00
Linus Torvalds
c5c473e29c Merge branch 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue / powernow-k8 fix from Tejun Heo:
 "This is the fix for the bug where cpufreq/powernow-k8 was tripping
  BUG_ON() in try_to_wake_up_local() by migrating workqueue worker to a
  different CPU.

    https://bugzilla.kernel.org/show_bug.cgi?id=47301

  As discussed, the fix is now two parts - one to reimplement
  work_on_cpu() so that it doesn't create a new kthread each time and
  the actual fix which makes powernow-k8 use work_on_cpu() instead of
  performing manual migration.

  While pretty late in the merge cycle, both changes are on the safer
  side.  Jiri and I verified two existing users of work_on_cpu() and
  Duncan confirmed that the powernow-k8 fix survived about 18 hours of
  testing."

* 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  cpufreq/powernow-k8: workqueue user shouldn't migrate the kworker to another CPU
  workqueue: reimplement work_on_cpu() using system_wq
2012-09-19 11:00:07 -07:00
Tejun Heo
ed48ece27c workqueue: reimplement work_on_cpu() using system_wq
The existing work_on_cpu() implementation is hugely inefficient.  It
creates a new kthread, execute that single function and then let the
kthread die on each invocation.

Now that system_wq can handle concurrent executions, there's no
advantage of doing this.  Reimplement work_on_cpu() using system_wq
which makes it simpler and way more efficient.

stable: While this isn't a fix in itself, it's needed to fix a
        workqueue related bug in cpufreq/powernow-k8.  AFAICS, this
        shouldn't break other existing users.

Signed-off-by: Tejun Heo <tj@kernel.org>
Acked-by: Jiri Kosina <jkosina@suse.cz>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Len Brown <lenb@kernel.org>
Cc: Rafael J. Wysocki <rjw@sisk.pl>
Cc: stable@vger.kernel.org
2012-09-19 10:13:12 -07:00
Ingo Molnar
d0616c1775 Merge branch 'uprobes/core' of git://git.kernel.org/pub/scm/linux/kernel/git/oleg/misc into perf/core
Pull uprobes fixes + cleanups from Oleg Nesterov.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-19 17:03:07 +02:00
Linus Torvalds
4651afbbae Merge branch 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull another workqueue fix from Tejun Heo:
 "Unfortunately, yet another late fix.  This too is discovered and fixed
  by Lai.  This bug was introduced during this merge window by commit
  25511a4776 ("workqueue: reimplement CPU online rebinding to handle
  idle workers") which started using WORKER_REBIND flag for idle rebind
  too.

  The bug is relatively easy to trigger if the CPU rapidly goes through
  off, on and then off (and stay off).  The fix is on the safer side.
  This hasn't been on linux-next yet but I'm pushing early so that it
  can get more exposure before v3.6 release."

* 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()
2012-09-17 16:05:23 -07:00
Lai Jiangshan
960bd11bf2 workqueue: always clear WORKER_REBIND in busy_worker_rebind_fn()
busy_worker_rebind_fn() didn't clear WORKER_REBIND if rebinding failed
(CPU is down again).  This used to be okay because the flag wasn't
used for anything else.

However, after 25511a477 "workqueue: reimplement CPU online rebinding
to handle idle workers", WORKER_REBIND is also used to command idle
workers to rebind.  If not cleared, the worker may confuse the next
CPU_UP cycle by having REBIND spuriously set or oops / get stuck by
prematurely calling idle_worker_rebind().

  WARNING: at /work/os/wq/kernel/workqueue.c:1323 worker_thread+0x4cd/0x5
 00()
  Hardware name: Bochs
  Modules linked in: test_wq(O-)
  Pid: 33, comm: kworker/1:1 Tainted: G           O 3.6.0-rc1-work+ #3
  Call Trace:
   [<ffffffff8109039f>] warn_slowpath_common+0x7f/0xc0
   [<ffffffff810903fa>] warn_slowpath_null+0x1a/0x20
   [<ffffffff810b3f1d>] worker_thread+0x4cd/0x500
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  ---[ end trace e977cf20f4661968 ]---
  BUG: unable to handle kernel NULL pointer dereference at           (null)
  IP: [<ffffffff810b3db0>] worker_thread+0x360/0x500
  PGD 0
  Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC
  Modules linked in: test_wq(O-)
  CPU 0
  Pid: 33, comm: kworker/1:1 Tainted: G        W  O 3.6.0-rc1-work+ #3 Bochs Bochs
  RIP: 0010:[<ffffffff810b3db0>]  [<ffffffff810b3db0>] worker_thread+0x360/0x500
  RSP: 0018:ffff88001e1c9de0  EFLAGS: 00010086
  RAX: 0000000000000000 RBX: ffff88001e633e00 RCX: 0000000000004140
  RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000009
  RBP: ffff88001e1c9ea0 R08: 0000000000000000 R09: 0000000000000001
  R10: 0000000000000002 R11: 0000000000000000 R12: ffff88001fc8d580
  R13: ffff88001fc8d590 R14: ffff88001e633e20 R15: ffff88001e1c6900
  FS:  0000000000000000(0000) GS:ffff88001fc00000(0000) knlGS:0000000000000000
  CS:  0010 DS: 0000 ES: 0000 CR0: 000000008005003b
  CR2: 0000000000000000 CR3: 00000000130e8000 CR4: 00000000000006f0
  DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
  DR3: 0000000000000000 DR6: 00000000ffff0ff0 DR7: 0000000000000400
  Process kworker/1:1 (pid: 33, threadinfo ffff88001e1c8000, task ffff88001e1c6900)
  Stack:
   ffff880000000000 ffff88001e1c9e40 0000000000000001 ffff88001e1c8010
   ffff88001e519c78 ffff88001e1c9e58 ffff88001e1c6900 ffff88001e1c6900
   ffff88001e1c6900 ffff88001e1c6900 ffff88001fc8d340 ffff88001fc8d340
  Call Trace:
   [<ffffffff810bc16e>] kthread+0xbe/0xd0
   [<ffffffff81bd2664>] kernel_thread_helper+0x4/0x10
  Code: b1 00 f6 43 48 02 0f 85 91 01 00 00 48 8b 43 38 48 89 df 48 8b 00 48 89 45 90 e8 ac f0 ff ff 3c 01 0f 85 60 01 00 00 48 8b 53 50 <8b> 02 83 e8 01 85 c0 89 02 0f 84 3b 01 00 00 48 8b 43 38 48 8b
  RIP  [<ffffffff810b3db0>] worker_thread+0x360/0x500
   RSP <ffff88001e1c9de0>
  CR2: 0000000000000000

There was no reason to keep WORKER_REBIND on failure in the first
place - WORKER_UNBOUND is guaranteed to be set in such cases
preventing incorrectly activating concurrency management.  Always
clear WORKER_REBIND.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-09-17 15:42:31 -07:00
Andrew Vagin
579035dc5d pid-namespace: limit value of ns_last_pid to (0, max_pid)
The kernel doesn't check the pid for negative values, so if you try to
write -2 to /proc/sys/kernel/ns_last_pid, you will get a kernel panic.

The crash happens because the next pid is -1, and alloc_pidmap() will
try to access to a nonexistent pidmap.

  map = &pid_ns->pidmap[pid/BITS_PER_PAGE];

Signed-off-by: Andrew Vagin <avagin@openvz.org>
Acked-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Oleg Nesterov <oleg@redhat.com>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-17 15:00:38 -07:00
Linus Torvalds
37407ea7f9 Revert "sched: Improve scalability via 'CPU buddies', which withstand random perturbations"
This reverts commit 970e178985.

Nikolay Ulyanitsky reported thatthe 3.6-rc5 kernel has a 15-20%
performance drop on PostgreSQL 9.2 on his machine (running "pgbench").

Borislav Petkov was able to reproduce this, and bisected it to this
commit 970e178985 ("sched: Improve scalability via 'CPU buddies' ...")
apparently because the new single-idle-buddy model simply doesn't find
idle CPU's to reschedule on aggressively enough.

Mike Galbraith suspects that it is likely due to the user-mode spinlocks
in PostgreSQL not reacting well to preemption, but we don't really know
the details - I'll just revert the commit for now.

There are hopefully other approaches to improve scheduler scalability
without it causing these kinds of downsides.

Reported-by: Nikolay Ulyanitsky <lystor@gmail.com>
Bisected-by: Borislav Petkov <bp@alien8.de>
Acked-by: Mike Galbraith <efault@gmx.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-09-16 12:29:43 -07:00
Sebastian Andrzej Siewior
9d77878226 uprobes: Introduce arch_uprobe_enable/disable_step()
As Oleg pointed out in [0] uprobe should not use the ptrace interface
for enabling/disabling single stepping.

[0] http://lkml.kernel.org/r/20120730141638.GA5306@redhat.com

Add the new "__weak arch" helpers which simply call user_*_single_step()
as a preparation. This is only needed to not break the powerpc port, we
will fold this logic into arch_uprobe_pre/post_xol() hooks later.

We should also change handle_singlestep(), _disable_step(&uprobe->arch)
should be called before put_uprobe().

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
2012-09-15 17:37:28 +02:00
Oleg Nesterov
499a4f3ec0 uprobes: Teach find_active_uprobe() to clear MMF_HAS_UPROBES
The wrong MMF_HAS_UPROBES doesn't really hurt, just it triggers
the "slow" and unnecessary handle_swbp() path if the task hits
the non-uprobe breakpoint.

So this patch changes find_active_uprobe() to check every valid
vma and clear MMF_HAS_UPROBES if no uprobes were found. This is
adds the slow O(n) path, but it is only called in unlikely case
when the task hits the normal breakpoint first time after
uprobe_unregister().

Note the "not strictly accurate" comment in mmf_recalc_uprobes().
We can fix this, we only need to teach vma_has_uprobes() to return
a bit more more info, but I am not sure this worth the trouble.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
2012-09-15 17:37:27 +02:00
Oleg Nesterov
9f68f672c4 uprobes: Introduce MMF_RECALC_UPROBES
Add the new MMF_RECALC_UPROBES flag, it means that MMF_HAS_UPROBES
can be false positive after remove_breakpoint() or uprobe_munmap().
It is also set by uprobe_dup_mmap(), this is not optimal but simple.
We could add the new hook, uprobe_dup_vma(), to set MMF_HAS_UPROBES
only if the new mm actually has uprobes, but I don't think this
makes sense.

The next patch will use this flag to clear MMF_HAS_UPROBES.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
2012-09-15 17:37:27 +02:00
Oleg Nesterov
6f47caa0e1 uprobes: uprobes_treelock should not disable irqs
Nobody plays with uprobes_tree/uprobes_treelock in interrupt context,
no need to disable irqs.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
2012-09-15 17:37:26 +02:00
Sebastian Andrzej Siewior
6d1d8dfa8b uprobes: Don't put NULL pointer in uprobe_register()
alloc_uprobe() might return a NULL pointer, put_uprobe() can't deal with
this.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Acked-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
2012-09-15 17:34:05 +02:00
Linus Torvalds
889cb3b9a4 Merge branch 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Ingo Molnar:
 "Smaller fixlets"

* 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  sched: Fix kernel-doc warnings in kernel/sched/fair.c
  sched: Unthrottle rt runqueues in __disable_runtime()
  sched: Add missing call to calc_load_exit_idle()
  sched: Fix load avg vs cpu-hotplug
2012-09-14 17:44:52 -07:00
Linus Torvalds
7ef6e97380 Merge branch 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf fixes from Ingo Molnar:
 "This tree includes various fixes"

Ingo really needs to improve on the whole "explain git pull" part.
"Various fixes" indeed.

* 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/hwpb: Invoke __perf_event_disable() if interrupts are already disabled
  perf/x86: Enable Intel Cedarview Atom suppport
  perf_event: Switch to internal refcount, fix race with close()
  oprofile, s390: Fix uninitialized memory access when writing to oprofilefs
  perf/x86: Fix microcode revision check for SNB-PEBS
2012-09-14 17:43:45 -07:00
Ingo Molnar
26f45274af Merge branch 'tip/perf/core' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace into perf/core
Pull tracing updates from Steve Rostedt.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-14 10:06:51 +02:00
Masami Hiramatsu
c6aaf4d0bb kprobes/x86: Fix to support jprobes on ftrace-based kprobe
Fix kprobes/x86 to support jprobes on ftrace-based kprobes.
Because of -mfentry support of ftrace, ftrace is now put
on the beginning of function where jprobes are put.

Originally ftrace-based kprobes doesn't support jprobe
because it will change regs->ip and ftrace doesn't support
changing IP and ftrace itself doesn't conflict jprobe.
However, ftrace -mfentry support moves mcount call on the
top of functions where jprobes are put. This means that
jprobe always conflicts with ftrace-based kprobe and fails.

This patch allows ftrace-based kprobes to support jprobes
by allowing to modify regs->ip and kprobes breakpoint
handler also allows to skip singlestepping because there
is a ftrace call (not an original instruction).

Link: http://lkml.kernel.org/r/20120905143125.10329.90836.stgit@localhost.localdomain

Reported-by: Fengguang Wu <fengguang.wu@intel.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Masami Hiramatsu <masami.hiramatsu.pt@hitachi.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-09-13 22:52:11 -04:00
Josh Triplett
ea632e9f12 trace: Stop compiling in trace_clock unconditionally
Commit 56449f437 "tracing: make the trace clocks available generally",
in April 2009, made trace_clock available unconditionally, since
CONFIG_X86_DS used it too.

Commit faa4602e47 "x86, perf, bts, mm: Delete the never used BTS-ptrace code",
in March 2010, removed CONFIG_X86_DS, and now only CONFIG_RING_BUFFER (split
out from CONFIG_TRACING for general use) has a dependency on trace_clock. So,
only compile in trace_clock with CONFIG_RING_BUFFER or CONFIG_TRACING
enabled.

Link: http://lkml.kernel.org/r/20120903024513.GA19583@leaf

Cc: Frederic Weisbecker <fweisbec@gmail.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: "Eric W. Biederman" <ebiederm@xmission.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-09-13 22:52:08 -04:00
Yuanhan Liu
76bab1b78a tracing: Skip printing "OK" if failed to disable event
No acutal case found. But logically, we should skip "OK" in case any
error met.

Link: http://lkml.kernel.org/r/1346051625-25231-1-git-send-email-yuanhan.liu@linux.intel.com

Signed-off-by: Yuanhan Liu <yuanhan.liu@linux.intel.com>
Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
2012-09-13 22:52:07 -04:00
Jan Beulich
4fe84fb8c6 locking: Adjust spin lock inlining Kconfig options
Break out the DEBUG_SPINLOCK dependency (requires moving up
UNINLINE_SPIN_UNLOCK, as this was the only one in that block not
depending on that option).

Avoid putting values not selected into the resulting .config -
they are not useful for anything, make the output less legible,
and just consume space: Use "depends on" rather than directly
setting the default from the combined dependency values.

Signed-off-by: Jan Beulich <jbeulich@suse.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/504DF2AC020000780009A2DF@nat28.tlf.novell.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:56:13 +02:00
John Stultz
ec145babe7 time: Fix timeekeping_get_ns overflow on 32bit systems
Daniel Lezcano reported seeing multi-second stalls from
keyboard input on his T61 laptop when NOHZ and CPU_IDLE
were enabled on a 32bit kernel.

He bisected the problem down to commit
1e75fa8be9 ("time: Condense timekeeper.xtime into xtime_sec").

After reproducing this issue, I narrowed the problem down
to the fact that timekeeping_get_ns() returns a 64bit
nsec value that hasn't been accumulated. In some cases
this value was being then stored in timespec.tv_nsec
(which is a long).

On 32bit systems, with idle times larger then 4 seconds
(or less, depending on the value of xtime_nsec), the
returned nsec value would overflow 32bits. This limited
kept time from increasing, causing timers to not expire.

The fix is to make sure we don't directly store the
result of timekeeping_get_ns() into a tv_nsec field,
instead using a 64bit nsec value which can then be
added into the timespec via timespec_add_ns().

Reported-and-bisected-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Tested-by: Daniel Lezcano <daniel.lezcano@linaro.org>
Signed-off-by: John Stultz <john.stultz@linaro.org>
Acked-by: Prarit Bhargava <prarit@redhat.com>
Cc: Richard Cochran <richardcochran@gmail.com>
Link: http://lkml.kernel.org/r/1347405963-35715-1-git-send-email-john.stultz@linaro.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:39:14 +02:00
Ingo Molnar
4553f0b90e Merge branch 'core/rcu' into perf/core
Steve Rostedt asked for the merge of a single commit, into both
the RCU and the perf/tracing tree:

 | Josh made a change to the tracing code that affects both the
 | work Paul McKenney and I are currently doing. At the last
 | Kernel Summit back in August, Linus said when such a case
 | exists, it is best to make a separate branch based off of his
 | tree and place the change there. This way, the repositories
 | that need to share the change can both pull them in and the
 | SHA1 will match for both. Whichever branch is pulled in first
 | by Linus will also pull in the necessary change for the other
 | branch as well.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:18:38 +02:00
Maarten Lankhorst
d094595078 lockdep: Check if nested lock is actually held
It is considered good form to lock the lock you claim to be nested in.

Signed-off-by: Maarten Lankhorst <maarten.lankhorst@canonical.com>

[ removed nest_lock arg to print_lock_nested_lock_not_held in favour
  of hlock->nest_lock, also renamed the lock arg to hlock since its
  a held_lock type ]
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/5051A9E7.5040501@canonical.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 17:00:44 +02:00
Oleg Nesterov
f784e8a798 task_work: Simplify the usage in ptrace_notify() and get_signal_to_deliver()
ptrace_notify() and get_signal_to_deliver() do unnecessary things
before task_work_run():

1. smp_mb__after_clear_bit() is not needed, test_and_clear_bit()
   implies mb().

2. And we do not need the barrier at all, in this case we only
   care about the "synchronous" works added by the task itself.

3. No need to clear TIF_NOTIFY_RESUME, and we should not assume
   task_works is the only user of this flag.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120826191217.GA4238@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 16:47:37 +02:00
Oleg Nesterov
9da33de624 task_work: task_work_add() should not succeed after exit_task_work()
ed3e694d "move exit_task_work() past exit_files() et.al" destroyed
the add/exit synchronization we had, the caller itself should ensure
task_work_add() can't race with the exiting task.

However, this is not convenient/simple, and the only user which tries
to do this is buggy (see the next patch). Unless the task is current,
there is simply no way to do this in general.

Change exit_task_work()->task_work_run() to use the dummy "work_exited"
entry to let task_work_add() know it should fail.

Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120826191211.GA4228@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 16:47:34 +02:00
Oleg Nesterov
ac3d0da8f3 task_work: Make task_work_add() lockless
Change task_work's to use llist-like code to avoid pi_lock
in task_work_add(), this makes it useable under rq->lock.

task_work_cancel() and task_work_run() still use pi_lock
to synchronize with each other.

(This is in preparation for a deadlock fix.)

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20120826191209.GA4221@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-13 16:47:33 +02:00
Linus Torvalds
0bd1189e23 Merge branch 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq
Pull workqueue fixes from Tejun Heo:
 "It's later than I'd like but well the timing just didn't work out this
  time.

  There are three bug fixes.  One from before 3.6-rc1 and two from the
  new CPU hotplug code.  Kudos to Lai for discovering all of them and
  providing fixes.

   * Atomicity bug when clearing a flag and setting another.  The two
     operation should have been atomic but wasn't.  This bug has existed
     for a long time but is unlikely to have actually happened.  Fix is
     safe.  Marked for -stable.

   * If CPU hotplug cycles happen back-to-back before workers finish the
     previous cycle, the states could get out of sync and it could get
     stuck.  Fixed by waiting for workers to complete before finishing
     hotplug cycle.

   * While CPU hotplug is in progress, idle workers could be depleted
     which can then lead to deadlock.  I think both happening together
     is highly unlikely but still better to fix it and the fix isn't too
     scary.

  There's another workqueue related regression which reported a few days
  ago:

    https://bugzilla.kernel.org/show_bug.cgi?id=47301

  It's a bit of head scratcher but there is a semi-reliable reproduce
  case, so I'm hoping to resolve it soonish."

* 'for-3.6-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/wq:
  workqueue: fix possible idle worker depletion across CPU hotplug
  workqueue: restore POOL_MANAGING_WORKERS
  workqueue: fix possible deadlock in idle worker rebinding
  workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function
  workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic
2012-09-12 07:16:54 +08:00
Lai Jiangshan
ee378aa49b workqueue: fix possible idle worker depletion across CPU hotplug
To simplify both normal and CPU hotplug paths, worker management is
prevented while CPU hoplug is in progress.  This is achieved by CPU
hotplug holding the same exclusion mechanism used by workers to ensure
there's only one manager per pool.

If someone else seems to be performing the manager role, workers
proceed to execute work items.  CPU hotplug using the same mechanism
can lead to idle worker depletion because all workers could proceed to
execute work items while CPU hotplug is in progress and CPU hotplug
itself wouldn't actually perform the worker management duty - it
doesn't guarantee that there's an idle worker left when it releases
management.

This idle worker depletion, under extreme circumstances, can break
forward-progress guarantee and thus lead to deadlock.

This patch fixes the bug by using separate mechanisms for manager
exclusion among workers and hotplug exclusion.  For manager exclusion,
POOL_MANAGING_WORKERS which was restored by the previous patch is
used.  pool->manager_mutex is now only used for exclusion between the
elected manager and CPU hotplug.  The elected manager won't proceed
without holding pool->manager_mutex.

This ensures that the worker which won the manager position can't skip
managing while CPU hotplug is in progress.  It will block on
manager_mutex and perform management after CPU hotplug is complete.

Note that hotplug may happen while waiting for manager_mutex.  A
manager isn't either on idle or busy list and thus the hoplug code
can't unbind/rebind it.  Make the manager handle its own un/rebinding.

tj: Updated comment and description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-09-10 10:05:54 -07:00
Lai Jiangshan
552a37e936 workqueue: restore POOL_MANAGING_WORKERS
This patch restores POOL_MANAGING_WORKERS which was replaced by
pool->manager_mutex by 6037315269 "workqueue: use mutex for global_cwq
manager exclusion".

There's a subtle idle worker depletion bug across CPU hotplug events
and we need to distinguish an actual manager and CPU hotplug
preventing management.  POOL_MANAGING_WORKERS will be used for the
former and manager_mutex the later.

This patch just lays POOL_MANAGING_WORKERS on top of the existing
manager_mutex and doesn't introduce any synchronization changes.  The
next patch will update it.

Note that this patch fixes a non-critical anomaly where
too_many_workers() may return %true spuriously while CPU hotplug is in
progress.  While the issue could schedule idle timer spuriously, it
didn't trigger any actual misbehavior.

tj: Rewrote patch description.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2012-09-10 10:04:54 -07:00
Tejun Heo
ec58815ab0 workqueue: fix possible deadlock in idle worker rebinding
Currently, rebind_workers() and idle_worker_rebind() are two-way
interlocked.  rebind_workers() waits for idle workers to finish
rebinding and rebound idle workers wait for rebind_workers() to finish
rebinding busy workers before proceeding.

Unfortunately, this isn't enough.  The second wait from idle workers
is implemented as follows.

	wait_event(gcwq->rebind_hold, !(worker->flags & WORKER_REBIND));

rebind_workers() clears WORKER_REBIND, wakes up the idle workers and
then returns.  If CPU hotplug cycle happens again before one of the
idle workers finishes the above wait_event(), rebind_workers() will
repeat the first part of the handshake - set WORKER_REBIND again and
wait for the idle worker to finish rebinding - and this leads to
deadlock because the idle worker would be waiting for WORKER_REBIND to
clear.

This is fixed by adding another interlocking step at the end -
rebind_workers() now waits for all the idle workers to finish the
above WORKER_REBIND wait before returning.  This ensures that all
rebinding steps are complete on all idle workers before the next
hotplug cycle can happen.

This problem was diagnosed by Lai Jiangshan who also posted a patch to
fix the issue, upon which this patch is based.

This is the minimal fix and further patches are scheduled for the next
merge window to simplify the CPU hotplug path.

Signed-off-by: Tejun Heo <tj@kernel.org>
Original-patch-by: Lai Jiangshan <laijs@cn.fujitsu.com>
LKML-Reference: <1346516916-1991-3-git-send-email-laijs@cn.fujitsu.com>
2012-09-05 16:10:15 -07:00
Tejun Heo
90beca5de5 workqueue: move WORKER_REBIND clearing in rebind_workers() to the end of the function
This doesn't make any functional difference and is purely to help the
next patch to be simpler.

Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: Lai Jiangshan <laijs@cn.fujitsu.com>
2012-09-05 16:10:14 -07:00
Lai Jiangshan
96e65306b8 workqueue: UNBOUND -> REBIND morphing in rebind_workers() should be atomic
The compiler may compile the following code into TWO write/modify
instructions.

	worker->flags &= ~WORKER_UNBOUND;
	worker->flags |= WORKER_REBIND;

so the other CPU may temporarily see worker->flags which doesn't have
either WORKER_UNBOUND or WORKER_REBIND set and perform local wakeup
prematurely.

Fix it by using single explicit assignment via ACCESS_ONCE().

Because idle workers have another WORKER_NOT_RUNNING flag, this bug
doesn't exist for them; however, update it to use the same pattern for
consistency.

tj: Applied the change to idle workers too and updated comments and
    patch description a bit.

Signed-off-by: Lai Jiangshan <laijs@cn.fujitsu.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
Cc: stable@vger.kernel.org
2012-09-04 17:04:45 -07:00
K.Prasad
500ad2d8b0 perf/hwpb: Invoke __perf_event_disable() if interrupts are already disabled
While debugging a warning message on PowerPC while using hardware
breakpoints, it was discovered that when perf_event_disable is invoked
through hw_breakpoint_handler function with interrupts disabled, a
subsequent IPI in the code path would trigger a WARN_ON_ONCE message in
smp_call_function_single function.

This patch calls __perf_event_disable() when interrupts are already
disabled, instead of perf_event_disable().

Reported-by: Edjunior Barbosa Machado <emachado@linux.vnet.ibm.com>
Signed-off-by: K.Prasad <Prasad.Krishnan@gmail.com>
[naveen.n.rao@linux.vnet.ibm.com: v3: Check to make sure we target current task]
Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com>
Acked-by: Frederic Weisbecker <fweisbec@gmail.com>
Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl>
Link: http://lkml.kernel.org/r/20120802081635.5811.17737.stgit@localhost.localdomain
[ Fixed build error on MIPS. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-09-04 17:29:53 +02:00