Explicitly set sev->asid in sev_asid_new() when a new ASID is successfully
allocated, and return '0' to indicate success instead of overloading the
return value to multiplex the ASID with error codes. There is exactly one
caller of sev_asid_new(), and sev_asid_free() already consumes sev->asid,
i.e. returning the ASID isn't necessary for flexibility, nor does it
provide symmetry between related APIs.
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240131235609.4161407-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a common helper for *internal* PMC lookups, and delete the ops hook
and Intel's implementation. Keep AMD's implementation, but rename it to
amd_pmu_get_pmc() to make it somewhat more obvious that it's suited for
both KVM-internal and guest-initiated lookups.
Because KVM tracks all counters in a single bitmap, getting a counter
when iterating over a bitmap, e.g. of all valid PMCs, requires a small
amount of math, that while simple, isn't super obvious and doesn't use the
same semantics as PMC lookups from RDPMC! Although AMD doesn't support
fixed counters, the common PMU code still behaves as if there a split, the
high half of which just happens to always be empty.
Opportunstically add a comment to explain both what is going on, and why
KVM uses a single bitmap, e.g. the boilerplate for iterating over separate
bitmaps could be done via macros, so it's not (just) about deduplicating
code.
Link: https://lore.kernel.org/r/20231110022857.1273836-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Apply the pre-intercepts RDPMC validity check only to AMD, and rename all
relevant functions to make it as clear as possible that the check is not a
standard PMC index check. On Intel, the basic rule is that only invalid
opcodes and privilege/permission/mode checks have priority over VM-Exit,
i.e. RDPMC with an invalid index should VM-Exit, not #GP. While the SDM
doesn't explicitly call out RDPMC, it _does_ explicitly use RDMSR of a
non-existent MSR as an example where VM-Exit has priority over #GP, and
RDPMC is effectively just a variation of RDMSR.
Manually testing on various Intel CPUs confirms this behavior, and the
inverted priority was introduced for SVM compatibility, i.e. was not an
intentional change for Intel PMUs. On AMD, *all* exceptions on RDPMC have
priority over VM-Exit.
Check for a NULL kvm_pmu_ops.check_rdpmc_early instead of using a RET0
static call so as to provide a convenient location to document the
difference between Intel and AMD, and to again try to make it as obvious
as possible that the early check is a one-off thing, not a generic "is
this PMC valid?" helper.
Fixes: 8061252ee0 ("KVM: SVM: Add intercept checks for remaining twobyte instructions")
Cc: Jim Mattson <jmattson@google.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Stop stripping bits 31:30 prior to validating/consuming the RDPMC index on
AMD. Per the APM's documentation of RDPMC, *values* greater than 27 are
reserved. The behavior of upper bits being flags is firmly Intel-only.
Fixes: ca724305a2 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Remove KVM's bogus restriction that the guest can't program an event whose
encoding matches an unsupported architectural event. The enumeration of
an architectural event only says that if a CPU supports an architectural
event, then the event can be programmed using the architectural encoding.
The enumeration does NOT say anything about the encoding when the CPU
doesn't report support the architectural event.
Preventing the guest from counting events whose encoding happens to match
an architectural event breaks existing functionality whenever Intel adds
an architectural encoding that was *ever* used for a CPU that doesn't
enumerate support for the architectural event, even if the encoding is for
the exact same event!
E.g. the architectural encoding for Top-Down Slots is 0x01a4. Broadwell
CPUs, which do not support the Top-Down Slots architectural event, 0x01a4
is a valid, model-specific event. Denying guest usage of 0x01a4 if/when
KVM adds support for Top-Down slots would break any Broadwell-based guest.
Reported-by: Kan Liang <kan.liang@linux.intel.com>
Closes: https://lore.kernel.org/all/2004baa6-b494-462c-a11f-8104ea152c6a@linux.intel.com
Fixes: a21864486f ("KVM: x86/pmu: Fix available_event_types check for REF_CPU_CYCLES event")
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Kan Liang <kan.liang@linux.intel.com>
Tested-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20240109230250.424295-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Implement a workaround for an SNP erratum where the CPU will incorrectly
signal an RMP violation #PF if a hugepage (2MB or 1GB) collides with the
RMP entry of a VMCB, VMSA or AVIC backing page.
When SEV-SNP is globally enabled, the CPU marks the VMCB, VMSA, and AVIC
backing pages as "in-use" via a reserved bit in the corresponding RMP
entry after a successful VMRUN. This is done for _all_ VMs, not just
SNP-Active VMs.
If the hypervisor accesses an in-use page through a writable
translation, the CPU will throw an RMP violation #PF. On early SNP
hardware, if an in-use page is 2MB-aligned and software accesses any
part of the associated 2MB region with a hugepage, the CPU will
incorrectly treat the entire 2MB region as in-use and signal a an RMP
violation #PF.
To avoid this, the recommendation is to not use a 2MB-aligned page for
the VMCB, VMSA or AVIC pages. Add a generic allocator that will ensure
that the page returned is not 2MB-aligned and is safe to be used when
SEV-SNP is enabled. Also implement similar handling for the VMCB/VMSA
pages of nested guests.
[ mdr: Squash in nested guest handling from Ashish, commit msg fixups. ]
Reported-by: Alper Gun <alpergun@google.com> # for nested VMSA case
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Marc Orr <marcorr@google.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20240126041126.1927228-22-michael.roth@amd.com
Before SNP VMs can be launched, the platform must be appropriately
configured and initialized via the SNP_INIT command.
During the execution of SNP_INIT command, the firmware configures
and enables SNP security policy enforcement in many system components.
Some system components write to regions of memory reserved by early
x86 firmware (e.g. UEFI). Other system components write to regions
provided by the operation system, hypervisor, or x86 firmware.
Such system components can only write to HV-fixed pages or Default
pages. They will error when attempting to write to pages in other page
states after SNP_INIT enables their SNP enforcement.
Starting in SNP firmware v1.52, the SNP_INIT_EX command takes a list of
system physical address ranges to convert into the HV-fixed page states
during the RMP initialization. If INIT_RMP is 1, hypervisors should
provide all system physical address ranges that the hypervisor will
never assign to a guest until the next RMP re-initialization.
For instance, the memory that UEFI reserves should be included in the
range list. This allows system components that occasionally write to
memory (e.g. logging to UEFI reserved regions) to not fail due to
RMP initialization and SNP enablement.
Note that SNP_INIT(_EX) must not be executed while non-SEV guests are
executing, otherwise it is possible that the system could reset or hang.
The psp_init_on_probe module parameter was added for SEV/SEV-ES support
and the init_ex_path module parameter to allow for time for the
necessary file system to be mounted/available.
SNP_INIT(_EX) does not use the file associated with init_ex_path. So, to
avoid running into issues where SNP_INIT(_EX) is called while there are
other running guests, issue it during module probe regardless of the
psp_init_on_probe setting, but maintain the previous deferrable handling
for SEV/SEV-ES initialization.
[ mdr: Squash in psp_init_on_probe changes from Tom, reduce
proliferation of 'probe' function parameter where possible.
bp: Fix 32-bit allmodconfig build. ]
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Co-developed-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Co-developed-by: Jarkko Sakkinen <jarkko@profian.com>
Signed-off-by: Jarkko Sakkinen <jarkko@profian.com>
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240126041126.1927228-14-michael.roth@amd.com
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be resized.
guest_memfd files do however support PUNCH_HOLE, which can be used to
switch a memory area between guest_memfd and regular anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that guarantees
confidentiality (AMD PSP, Intel TDX module, or EL2 in the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new guest_memfd
and page attributes infrastructure. This is mostly useful for testing,
since there is no pKVM-like infrastructure to provide a meaningfully
reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages during
CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in non-leaf
TDP MMU SPTEs if a racing thread replaces a huge SPTE with a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually care
about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a stable TSC",
because some of them don't expect the "TSC stable" bit (added to the pvclock
ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- On AMD machines with vNMI, always rely on hardware instead of intercepting
IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB
base granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with
a prefix branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV
support to that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing flag
in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix the
various bugs that were lurking due to lack of said annotation.
There are two non-KVM patches buried in the middle of guest_memfd support:
fs: Rename anon_inode_getfile_secure() and anon_inode_getfd_secure()
mm: Add AS_UNMOVABLE to mark mapping as completely unmovable
The first is small and mostly suggested-by Christian Brauner; the second
a bit less so but it was written by an mm person (Vlastimil Babka).
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmWcMWkUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroO15gf/WLmmg3SET6Uzw9iEq2xo28831ZA+
6kpILfIDGKozV5safDmMvcInlc/PTnqOFrsKyyN4kDZ+rIJiafJdg/loE0kPXBML
wdR+2ix5kYI1FucCDaGTahskBDz8Lb/xTpwGg9BFLYFNmuUeHc74o6GoNvr1uliE
4kLZL2K6w0cSMPybUD+HqGaET80ZqPwecv+s1JL+Ia0kYZJONJifoHnvOUJ7DpEi
rgudVdgzt3EPjG0y1z6MjvDBXTCOLDjXajErlYuZD3Ej8N8s59Dh2TxOiDNTLdP4
a4zjRvDmgyr6H6sz+upvwc7f4M4p+DBvf+TkWF54mbeObHUYliStqURIoA==
=66Ws
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"Generic:
- Use memdup_array_user() to harden against overflow.
- Unconditionally advertise KVM_CAP_DEVICE_CTRL for all
architectures.
- Clean up Kconfigs that all KVM architectures were selecting
- New functionality around "guest_memfd", a new userspace API that
creates an anonymous file and returns a file descriptor that refers
to it. guest_memfd files are bound to their owning virtual machine,
cannot be mapped, read, or written by userspace, and cannot be
resized. guest_memfd files do however support PUNCH_HOLE, which can
be used to switch a memory area between guest_memfd and regular
anonymous memory.
- New ioctl KVM_SET_MEMORY_ATTRIBUTES allowing userspace to specify
per-page attributes for a given page of guest memory; right now the
only attribute is whether the guest expects to access memory via
guest_memfd or not, which in Confidential SVMs backed by SEV-SNP,
TDX or ARM64 pKVM is checked by firmware or hypervisor that
guarantees confidentiality (AMD PSP, Intel TDX module, or EL2 in
the case of pKVM).
x86:
- Support for "software-protected VMs" that can use the new
guest_memfd and page attributes infrastructure. This is mostly
useful for testing, since there is no pKVM-like infrastructure to
provide a meaningfully reduced TCB.
- Fix a relatively benign off-by-one error when splitting huge pages
during CLEAR_DIRTY_LOG.
- Fix a bug where KVM could incorrectly test-and-clear dirty bits in
non-leaf TDP MMU SPTEs if a racing thread replaces a huge SPTE with
a non-huge SPTE.
- Use more generic lockdep assertions in paths that don't actually
care about whether the caller is a reader or a writer.
- let Xen guests opt out of having PV clock reported as "based on a
stable TSC", because some of them don't expect the "TSC stable" bit
(added to the pvclock ABI by KVM, but never set by Xen) to be set.
- Revert a bogus, made-up nested SVM consistency check for
TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM
always flushes on nested transitions, i.e. always satisfies flush
requests. This allows running bleeding edge versions of VMware
Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV
support.
- On AMD machines with vNMI, always rely on hardware instead of
intercepting IRET in some cases to detect unmasking of NMIs
- Support for virtualizing Linear Address Masking (LAM)
- Fix a variety of vPMU bugs where KVM fail to stop/reset counters
and other state prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events
using a dedicated field instead of snapshotting the "previous"
counter. If the hardware PMC count triggers overflow that is
recognized in the same VM-Exit that KVM manually bumps an event
count, KVM would pend PMIs for both the hardware-triggered overflow
and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be
problematic for subsystems that require no regressions for W=1
builds.
- Advertise all of the host-supported CPUID bits that enumerate
IA32_SPEC_CTRL "features".
- Don't force a masterclock update when a vCPU synchronizes to the
current TSC generation, as updating the masterclock can cause
kvmclock's time to "jump" unexpectedly, e.g. when userspace
hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter
fault paths, partly as a super minor optimization, but mostly to
make KVM play nice with position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the
code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV
"emulation" at build time.
ARM64:
- LPA2 support, adding 52bit IPA/PA capability for 4kB and 16kB base
granule sizes. Branch shared with the arm64 tree.
- Large Fine-Grained Trap rework, bringing some sanity to the
feature, although there is more to come. This comes with a prefix
branch shared with the arm64 tree.
- Some additional Nested Virtualization groundwork, mostly
introducing the NV2 VNCR support and retargetting the NV support to
that version of the architecture.
- A small set of vgic fixes and associated cleanups.
Loongarch:
- Optimization for memslot hugepage checking
- Cleanup and fix some HW/SW timer issues
- Add LSX/LASX (128bit/256bit SIMD) support
RISC-V:
- KVM_GET_REG_LIST improvement for vector registers
- Generate ISA extension reg_list using macros in get-reg-list
selftest
- Support for reporting steal time along with selftest
s390:
- Bugfixes
Selftests:
- Fix an annoying goof where the NX hugepage test prints out garbage
instead of the magic token needed to run the test.
- Fix build errors when a header is delete/moved due to a missing
flag in the Makefile.
- Detect if KVM bugged/killed a selftest's VM and print out a helpful
message instead of complaining that a random ioctl() failed.
- Annotate the guest printf/assert helpers with __printf(), and fix
the various bugs that were lurking due to lack of said annotation"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (185 commits)
x86/kvm: Do not try to disable kvmclock if it was not enabled
KVM: x86: add missing "depends on KVM"
KVM: fix direction of dependency on MMU notifiers
KVM: introduce CONFIG_KVM_COMMON
KVM: arm64: Add missing memory barriers when switching to pKVM's hyp pgd
KVM: arm64: vgic-its: Avoid potential UAF in LPI translation cache
RISC-V: KVM: selftests: Add get-reg-list test for STA registers
RISC-V: KVM: selftests: Add steal_time test support
RISC-V: KVM: selftests: Add guest_sbi_probe_extension
RISC-V: KVM: selftests: Move sbi_ecall to processor.c
RISC-V: KVM: Implement SBI STA extension
RISC-V: KVM: Add support for SBI STA registers
RISC-V: KVM: Add support for SBI extension registers
RISC-V: KVM: Add SBI STA info to vcpu_arch
RISC-V: KVM: Add steal-update vcpu request
RISC-V: KVM: Add SBI STA extension skeleton
RISC-V: paravirt: Implement steal-time support
RISC-V: Add SBI STA extension definitions
RISC-V: paravirt: Add skeleton for pv-time support
RISC-V: KVM: Fix indentation in kvm_riscv_vcpu_set_reg_csr()
...
Step 5/10 of the namespace unification of CPU mitigations related Kconfig options.
[ mingo: Converted a few more uses in comments/messages as well. ]
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Breno Leitao <leitao@debian.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Ariel Miculas <amiculas@cisco.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231121160740.1249350-6-leitao@debian.org
- A micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb2i8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1iFIQ//RjqKWmEBfv0UVCNgtRgkUKOvYVkfhC1R
FykHWbSE+/oDODS7B+gbWqzl9Fq2Oxx9re4KZuMfnojE96KZ6H1flQn7z3UVRUrf
pfMx13E+uyf7qbVZktqH38lUS4s/AHdX2PKCiXlU/0hIkiBdjbAl3ylyqMv7ytIL
Fi2N9iYJN+eLlMkc3A5IK83xNiU8rb0gO6Uywn3nUbqadY/YX2gDpND5kfzRIneR
lTKy4rX3+E65qYB2Ly1wDr7e0Q0rgaTzPctx6twFrxQXK+MsHiartJhM5juND/tU
DEjSW9ISOHlitKEJI/zbdrvJlr5AKDNy2zHYmQQuqY6+YHRamCKqwIjLIPkKj52g
lAbosNwvp/o8W3zUHgUfVZR5hVxN863zV2qa/ehoQ3b/9kNjQC8actILjYEgIVu9
av1sd+nETbjCUABIF9H9uAoRbgc+wQs2nupJZrjvginFz8+WVhgaBdJDMYCNAmjc
fNMjGtRS7YXiIMj09ZAXFThVW302FdbTgggDh/qlQlDOXFu5HRbyuWR+USr4/jkP
qs2G6m/BHDs9HxDRo/no+ccSrUBV5phfhZbO7qwjTf2NJJvPHW+cxGpT00zU2v8A
lgfVI7SDkxwbyi1gacJ054GqEhsWuEdi40ikqxjhL8Oq4xwwsey/PiaIxjkDQx92
Gj3XUSDnGEs=
=kUav
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
- Change global variables to local
- Add missing kernel-doc function parameter descriptions
- Remove unused parameter from a macro
- Remove obsolete Kconfig entry
- Fix comments
- Fix typos, mostly scripted, manually reviewed
and a micro-optimization got misplaced as a cleanup:
- Micro-optimize the asm code in secondary_startup_64_no_verify()
* tag 'x86-cleanups-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
arch/x86: Fix typos
x86/head_64: Use TESTB instead of TESTL in secondary_startup_64_no_verify()
x86/docs: Remove reference to syscall trampoline in PTI
x86/Kconfig: Remove obsolete config X86_32_SMP
x86/io: Remove the unused 'bw' parameter from the BUILDIO() macro
x86/mtrr: Document missing function parameters in kernel-doc
x86/setup: Make relocated_ramdisk a local variable of relocate_initrd()
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- Fix a benign NMI virtualization bug where KVM would unnecessarily intercept
IRET when manually injecting an NMI, e.g. when KVM pends an NMI and injects
a second, "simultaneous" NMI.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW/9ESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL50PcP/Rbdf/68/g1m4JQYl8rf2h7BD4PGE5yw
ZpeXSkeZmzyRYPiJjJaZLcvvezyusIPoGRfmsKgj2nI7LCSVyHDmaHVp2h854Xz8
kSWmK5znBYDx+vUqhIKEN2nwFNYSUaSqcRZWvoXi0BzalWlwCgK2yu8xeRDUhn4B
+gDKlqZuJMYY1J3V8e64ZkvdxRHsw0WyvD0Ns4EgCe/2v5V9gc08a7vuSq80EtaE
yf0cZmubDwuV96LfZnDkZnZpm4C1GNeLxAN1wlj7J6fAvrCAggetDtkJtWCd8yd0
0ZtfjBOMVsCDWQsYXbwGGKdeynzATxc354k6yHBIO863z+M5MtEMKlFNCclrakMO
RHfofZHhL+hn3ACESJPcse3ei0VbV28cL2NFdstUEukvZQoacIH9fz7+1GuWqBpv
Vb9UJDde029HHsGf+n8LtfQsqV7/8aLV+/4bpiPOHQU+tzAJVxni/H9nJ+7V0lxd
NfhWME1lEsQWxpBpcXcVB7D7+ri1Wd9eB4IR9xc/VqgLE1Nj4kIZqtOJF9lbY3wk
+H/Ze/MNNg6E9yIErSIv7sWdrvoOPYWZdGCT8Fhm4OILAsDEO96z7WoVF0eWCdJ1
xDIFGXNFuyIpVOqk/JZE/Lv5U1C4xhyFQCmk6gXDgepnTn4d8gx3S79iUfXD32gE
GqAjV9Wwmz+o
=mXEf
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.8:
- Revert a bogus, made-up nested SVM consistency check for TLB_CONTROL.
- Advertise flush-by-ASID support for nSVM unconditionally, as KVM always
flushes on nested transitions, i.e. always satisfies flush requests. This
allows running bleeding edge versions of VMware Workstation on top of KVM.
- Sanity check that the CPU supports flush-by-ASID when enabling SEV support.
- Fix a benign NMI virtualization bug where KVM would unnecessarily intercept
IRET when manually injecting an NMI, e.g. when KVM pends an NMI and injects
a second, "simultaneous" NMI.
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+k4SHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5KygQAKTSEmfdox6MSYzGVzAVHBD/8oSTZAGf
4l96Np3sZiX0ujWP7aW1GaIdGL27Yf1bQrKIrODR4xepaosVPpoZZbnLFQ4Jm16D
OuwEQL06LV91Lv5XuPkNdq3nMVi1X3wjiKLvP451oCGv8JdxsjXSlFr8ZmDoCfmS
NCjkPyitdK+/xOMY5WcrkHD/6VMMiM+5A+CrG7DkaTaqBJQSUXG1NvTKhhxey6Rq
OZv0GPv7QVMhHv1NX0Y3LyoiGyWXAoFRnbk/N3yVBOnXcpJ+HBwWiNLRpxmZOQj/
CTo0VvUH/ZkN6zGvAb75/9puFHNliA/QCW1hp+ShXnNdn1eNdS7nhhPrzVqtCTy2
QeNWM/z5v9Wa1norPqDxzqWlh2bWW8JU0soX7Q+quN0d7YjVvmmUluL3Lw/V2zmb
gFM2ZY43QHlmLVic4sSraK1LEcYFzjexzpTLhee2gNp+l2y0D0c1/hXukCk6YNUM
gad9DH8P9d7By7Eyr0ZaPHSJbuBW1PqZhot5gCg9nCn4pnT2/y7wXsLj6VAw8gdr
dWNu2MZWDuH0/d4aKfw2veAECbHUK2daok4ufPDj5nYLVVWCs4HU0U7HlYL2CX7/
TdWOCwtpFtKoN1NHz8mpET7xldxLPnFkByL+SxypTZurAZXoSnEG71IbO5pJ2iIf
wHQkXgM+XimA
=qUZ2
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-lam-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 support for virtualizing Linear Address Masking (LAM)
Add KVM support for Linear Address Masking (LAM). LAM tweaks the canonicality
checks for most virtual address usage in 64-bit mode, such that only the most
significant bit of the untranslated address bits must match the polarity of the
last translated address bit. This allows software to use ignored, untranslated
address bits for metadata, e.g. to efficiently tag pointers for address
sanitization.
LAM can be enabled separately for user pointers and supervisor pointers, and
for userspace LAM can be select between 48-bit and 57-bit masking
- 48-bit LAM: metadata bits 62:48, i.e. LAM width of 15.
- 57-bit LAM: metadata bits 62:57, i.e. LAM width of 6.
For user pointers, LAM enabling utilizes two previously-reserved high bits from
CR3 (similar to how PCID_NOFLUSH uses bit 63): LAM_U48 and LAM_U57, bits 62 and
61 respectively. Note, if LAM_57 is set, LAM_U48 is ignored, i.e.:
- CR3.LAM_U48=0 && CR3.LAM_U57=0 == LAM disabled for user pointers
- CR3.LAM_U48=1 && CR3.LAM_U57=0 == LAM-48 enabled for user pointers
- CR3.LAM_U48=x && CR3.LAM_U57=1 == LAM-57 enabled for user pointers
For supervisor pointers, LAM is controlled by a single bit, CR4.LAM_SUP, with
the 48-bit versus 57-bit LAM behavior following the current paging mode, i.e.:
- CR4.LAM_SUP=0 && CR4.LA57=x == LAM disabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=0 == LAM-48 enabled for supervisor pointers
- CR4.LAM_SUP=1 && CR4.LA57=1 == LAM-57 enabled for supervisor pointers
The modified LAM canonicality checks:
- LAM_S48 : [ 1 ][ metadata ][ 1 ]
63 47
- LAM_U48 : [ 0 ][ metadata ][ 0 ]
63 47
- LAM_S57 : [ 1 ][ metadata ][ 1 ]
63 56
- LAM_U57 + 5-lvl paging : [ 0 ][ metadata ][ 0 ]
63 56
- LAM_U57 + 4-lvl paging : [ 0 ][ metadata ][ 0...0 ]
63 56..47
The bulk of KVM support for LAM is to emulate LAM's modified canonicality
checks. The approach taken by KVM is to "fill" the metadata bits using the
highest bit of the translated address, e.g. for LAM-48, bit 47 is sign-extended
to bits 62:48. The most significant bit, 63, is *not* modified, i.e. its value
from the raw, untagged virtual address is kept for the canonicality check. This
untagging allows
Aside from emulating LAM's canonical checks behavior, LAM has the usual KVM
touchpoints for selectable features: enumeration (CPUID.7.1:EAX.LAM[bit 26],
enabling via CR3 and CR4 bits, etc.
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW/rsSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5Q8gQAJc4y9NOd09kYXpI+DhkTVe6v07dmYds
NzBI2uViqxXFwA5pTs5VTVVYAl1FEmK6NvIVnJdc3epSYRSqyaeN/Z2NoulNxekj
/jLA/aA4+dTeJf2lfMFeH65IIuSJhuhyGeZV31RfW3NzEmlglcsb74QkHnJB8rLQ
RFJXZcOxSSap72AWxKmxk0alRaI6ONZ9NyqOWFWjZdQuAE7id9Ae5OixKUrlJkmR
6CbY8ra51MFIXQEsomVlcl5b1DNiv0drPPf5YaC9T4CERtt5yZxpvZeTPhq70evm
OutoZpzfi69cF1fFCxqN5cWZSt1C/Bu3xp8+ILI1+bZkMCV/ty85DU6hfMZQZzcV
JeJkRg/AAgOrG4dtHskwg9LDMs867kgbaqZ8l8K7Dt8rGmcLc5/rZ1ZdjTStFj6V
ukmVKMAVgkmh88u62wQ5HjrN1IE1oE6nmDp3zivfPuohEr49A8mAT02A2x9AVxAr
HvmwfDMA92xOGSRAN9Gt0mbOA+G0WZe4A36XgPEXloYeskYZgHzgW2hT6VWTd86O
ydU9s4L8g+Fy4jcObAiKsT8YwFgAMfVXZKTXvuTME4m/WUNBCrYCwqEOp/NM5qrk
qYWVXxOMMjZo71tQfvSPu1TWCtW/4ckvmqMrdQosgwLFy5pSqgXEwTruDvbJ1KWU
KhIWVbUfmgFA
=+Emh
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 PMU changes for 6.8:
- Fix a variety of bugs where KVM fail to stop/reset counters and other state
prior to refreshing the vPMU model.
- Fix a double-overflow PMU bug by tracking emulated counter events using a
dedicated field instead of snapshotting the "previous" counter. If the
hardware PMC count triggers overflow that is recognized in the same VM-Exit
that KVM manually bumps an event count, KVM would pend PMIs for both the
hardware-triggered overflow and for KVM-triggered overflow.
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW+7sSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5/pwQAL8jIapIWP54VWxWlcTZFtCptGSobGlv
cBS4L091/bYuMB/jO0pPtD+apzsYt3WmJ+tRsNA7Yctzh9BDE3XxbV7pKVIUpz9P
TLCtYU2hPzp3vC6WCryjtU0OHxEnYMGHE1RCB7/bRblz+q6td7+MLZHcEUdwv83l
3pVM5+tNyQBog40frEVf+z7wrXzz2FgnauJn70X1UUs40VuiTzi6FqfLn6QK95xQ
8QPpjGFep7wQ6RgC4cPKiWSaP5PypCCpr4lMSKrKAf4iaKJdO1CYxEPeu0LcyFhR
DUM3zb+AZ/FVrisRWUnjke4Epb87ikoMQBlflrI9+o4cNJQaxEHAzTMGO+u4oucy
KwnXtNYM3lKGvDEvoUSBDphNayzcchn+0qk8YKB+XvClYSOtGi+NsWUB4x+M6crM
960cidF/CzYZL/IDj9GW2Tb+IiPJarmazdbqDmMpQiAKz0KE3tezGiysB6d6VJs1
V+KWOaSzAT9GsBKvGnPDHQaZ20vK+YsGB/TMWvpg3rFLTyV5QFM17UNdXyJlX0g8
G0v+gf7j3MKm156H2yYW0XhIAfhstc1Xb8fTDQjJ3pZn6us2NAtFgnrIpbL31Z7E
yaSgZuxetswbNwVSECUGlH4/zAtQudBfAt837Nu4eSCjMrJE4SPrrwpbTqp0SPXd
1VZbGc70QFf7
=O4hV
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.8:
- Turn off KVM_WERROR by default for all configs so that it's not
inadvertantly enabled by non-KVM developers, which can be problematic for
subsystems that require no regressions for W=1 builds.
- Advertise all of the host-supported CPUID bits that enumerate IA32_SPEC_CTRL
"features".
- Don't force a masterclock update when a vCPU synchronizes to the current TSC
generation, as updating the masterclock can cause kvmclock's time to "jump"
unexpectedly, e.g. when userspace hotplugs a pre-created vCPU.
- Use RIP-relative address to read kvm_rebooting in the VM-Enter fault paths,
partly as a super minor optimization, but mostly to make KVM play nice with
position independent executable builds.
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmWW8gYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5sGUP/iadHMz7Up1X29IDGtq58LRORNVXp2Ln
2dqoj8IKZeSr+mPMw2GvZyuiLqVPMs4Et21WJfCO7HgKd/NPMDORwRndhJYweFRY
yk+5NJLvXYuo8UR3b2QYy8XUghEqP+j5eYyon6UdCiPACcBGTpgoj4pU7SLM7l4T
EOge42ya5YxD/1oWr5vyifNrOJCPNTBYcC0as5//+RdnmQYqYZ26Z73b0B8Pdct4
XMWwgoKlmLTmei0YntXtGaDGimCvTYP8EPM4tOWgiBSWMhQXWbAh/0biDfd3eZVO
Hoe4HvstdjUNbpO3h3Zo78Ob7ehk4kx/6r0nlQnz5JxzGnuDjYCDIVUlYn0mw5Yi
nu4ztr8M3VRksDbpmAjSO9XFEKIYxlYQfzZ1UuTy8ehdBYTDl/3lPAbh2ApUYE72
Tt2PXmFGz2j1sjG38Gh94s48Za5OxHoVlfq8iGhU4v7UjuxnMNHfExOWd66SwZgx
5tZkr4rj/pWt21wr7jaVqFGzuftIC5G4ZEBhh7JcW89oamFrykgQUu5z4dhBMO75
G7DAVh9eSH2SKkmJH1ClXriveazTK7fqMx8sZzzRnusMz09qH7SIdjSzmp7H5utw
pWBfatft0n0FTI1r+hxGueiJt7dFlrIz0Q4hHyBN4saoVH121bZioc0pq1ob6MIk
Y2Ou4xJBt14F
=bjfs
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-hyperv-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM x86 Hyper-V changes for 6.8:
- Guard KVM-on-HyperV's range-based TLB flush hooks with an #ifdef on
CONFIG_HYPERV as a minor optimization, and to self-document the code.
- Add CONFIG_KVM_HYPERV to allow disabling KVM support for HyperV "emulation"
at build time.
When intercepts are enabled for MSR_IA32_XSS, the host will swap in/out
the guest-defined values while context-switching to/from guest mode.
However, in the case of SEV-ES, vcpu->arch.guest_state_protected is set,
so the guest-defined value is effectively ignored when switching to
guest mode with the understanding that the VMSA will handle swapping
in/out this register state.
However, SVM is still configured to intercept these accesses for SEV-ES
guests, so the values in the initial MSR_IA32_XSS are effectively
read-only, and a guest will experience undefined behavior if it actually
tries to write to this MSR. Fortunately, only CET/shadowstack makes use
of this register on SEV-ES-capable systems currently, which isn't yet
widely used, but this may become more of an issue in the future.
Additionally, enabling intercepts of MSR_IA32_XSS results in #VC
exceptions in the guest in certain paths that can lead to unexpected #VC
nesting levels. One example is SEV-SNP guests when handling #VC
exceptions for CPUID instructions involving leaf 0xD, subleaf 0x1, since
they will access MSR_IA32_XSS as part of servicing the CPUID #VC, then
generate another #VC when accessing MSR_IA32_XSS, which can lead to
guest crashes if an NMI occurs at that point in time. Running perf on a
guest while it is issuing such a sequence is one example where these can
be problematic.
Address this by disabling intercepts of MSR_IA32_XSS for SEV-ES guests
if the host/guest configuration allows it. If the host/guest
configuration doesn't allow for MSR_IA32_XSS, leave it intercepted so
that it can be caught by the existing checks in
kvm_{set,get}_msr_common() if the guest still attempts to access it.
Fixes: 376c6d2850 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Cc: Alexey Kardashevskiy <aik@amd.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-Id: <20231016132819.1002933-4-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In general, activating long mode involves setting the EFER_LME bit in
the EFER register and then enabling the X86_CR0_PG bit in the CR0
register. At this point, the EFER_LMA bit will be set automatically by
hardware.
In the case of SVM/SEV guests where writes to CR0 are intercepted, it's
necessary for the host to set EFER_LMA on behalf of the guest since
hardware does not see the actual CR0 write.
In the case of SEV-ES guests where writes to CR0 are trapped instead of
intercepted, the hardware *does* see/record the write to CR0 before
exiting and passing the value on to the host, so as part of enabling
SEV-ES support commit f1c6366e30 ("KVM: SVM: Add required changes to
support intercepts under SEV-ES") dropped special handling of the
EFER_LMA bit with the understanding that it would be set automatically.
However, since the guest never explicitly sets the EFER_LMA bit, the
host never becomes aware that it has been set. This becomes problematic
when userspace tries to get/set the EFER values via
KVM_GET_SREGS/KVM_SET_SREGS, since the EFER contents tracked by the host
will be missing the EFER_LMA bit, and when userspace attempts to pass
the EFER value back via KVM_SET_SREGS it will fail a sanity check that
asserts that EFER_LMA should always be set when X86_CR0_PG and EFER_LME
are set.
Fix this by always inferring the value of EFER_LMA based on X86_CR0_PG
and EFER_LME, regardless of whether or not SEV-ES is enabled.
Fixes: f1c6366e30 ("KVM: SVM: Add required changes to support intercepts under SEV-ES")
Reported-by: Peter Gonda <pgonda@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210507165947.2502412-2-seanjc@google.com>
[A two year old patch that was revived after we noticed the failure in
KVM_SET_SREGS and a similar patch was posted by Michael Roth. This is
Sean's patch, but with Michael's more complete commit message. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
'struct hv_vmcb_enlightenments' in VMCB only make sense when either
CONFIG_KVM_HYPERV or CONFIG_HYPERV is enabled.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-17-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V emulation in KVM is a fairly big chunk and in some cases it may be
desirable to not compile it in to reduce module sizes as well as the attack
surface. Introduce CONFIG_KVM_HYPERV option to make it possible.
Note, there's room for further nVMX/nSVM code optimizations when
!CONFIG_KVM_HYPERV, this will be done in follow-up patches.
Reorganize Makefile a bit so all CONFIG_HYPERV and CONFIG_KVM_HYPERV files
are grouped together.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-13-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
As a preparation to making Hyper-V emulation optional, introduce a helper
to handle pending KVM_REQ_HV_TLB_FLUSH requests.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-8-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Hyper-V partition assist page is used when KVM runs on top of Hyper-V and
is not used for Windows/Hyper-V guests on KVM, this means that 'hv_pa_pg'
placement in 'struct kvm_hv' is unfortunate. As a preparation to making
Hyper-V emulation optional, move 'hv_pa_pg' to 'struct kvm_arch' and put it
under CONFIG_HYPERV.
While on it, introduce hv_get_partition_assist_page() helper to allocate
partition assist page. Move the comment explaining why we use a single page
for all vCPUs from VMX and expand it a bit.
No functional change intended.
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20231205103630.1391318-3-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Update a PMC's sample period in pmc_write_counter() to deduplicate code
across all callers of pmc_write_counter(). Opportunistically move
pmc_write_counter() into pmc.c now that it's doing more work. WRMSR isn't
such a hot path that an extra CALL+RET pair will be problematic, and the
order of function definitions needs to be changed anyways, i.e. now is a
convenient time to eat the churn.
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the common (or at least "ignored") aspects of resetting the vPMU to
common x86 code, along with the stop/release helpers that are no used only
by the common pmu.c.
There is no need to manually handle fixed counters as all_valid_pmc_idx
tracks both fixed and general purpose counters, and resetting the vPMU is
far from a hot path, i.e. the extra bit of overhead to the PMC from the
index is a non-issue.
Zero fixed_ctr_ctrl in common code even though it's Intel specific.
Ensuring it's zero doesn't harm AMD/SVM in any way, and stopping the fixed
counters via all_valid_pmc_idx, but not clearing the associated control
bits, would be odd/confusing.
Make the .reset() hook optional as SVM no longer needs vendor specific
handling.
Cc: stable@vger.kernel.org
Reviewed-by: Dapeng Mi <dapeng1.mi@linux.intel.com>
Link: https://lore.kernel.org/r/20231103230541.352265-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Instruction with %rip-relative address operand is one byte shorter than
its absolute address counterpart and is also compatible with position
independent executable (-fpie) build.
No functional changes intended.
Cc: Sean Christopherson <seanjc@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Link: https://lore.kernel.org/r/20231031075312.47525-1-ubizjak@gmail.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When vNMI is enabled, rely entirely on hardware to correctly handle NMI
blocking, i.e. don't intercept IRET to detect when NMIs are no longer
blocked. KVM already correctly ignores svm->nmi_masked when vNMI is
enabled, so the effect of the bug is essentially an unnecessary VM-Exit.
KVM intercepts IRET for two reasons:
- To track NMI masking to be able to know at any point of time if NMI
is masked.
- To track NMI windows (to inject another NMI after the guest executes
IRET, i.e. unblocks NMIs)
When vNMI is enabled, both cases are handled by hardware:
- NMI masking state resides in int_ctl.V_NMI_BLOCKING and can be read by
KVM at will.
- Hardware automatically "injects" pending virtual NMIs when virtual NMIs
become unblocked.
However, even though pending a virtual NMI for hardware to handle is the
most common way to synthesize a guest NMI, KVM may still directly inject
an NMI via when KVM is handling two "simultaneous" NMIs (see comments in
process_nmi() for details on KVM's simultaneous NMI handling). Per AMD's
APM, hardware sets the BLOCKING flag when software directly injects an NMI
as well, i.e. KVM doesn't need to manually mark vNMIs as blocked:
If Event Injection is used to inject an NMI when NMI Virtualization is
enabled, VMRUN sets V_NMI_MASK in the guest state.
Note, it's still possible that KVM could trigger a spurious IRET VM-Exit.
When running a nested guest, KVM disables vNMI for L2 and thus will enable
IRET interception (in both vmcb01 and vmcb02) while running L2 reason. If
a nested VM-Exit happens before L2 executes IRET, KVM can end up running
L1 with vNMI enable and IRET intercepted. This is also a benign bug, and
even less likely to happen, i.e. can be safely punted to a future fix.
Fixes: fa4c027a79 ("KVM: x86: Add support for SVM's Virtual NMI")
Link: https://lore.kernel.org/all/ZOdnuDZUd4mevCqe@google.como
Cc: Santosh Shukla <santosh.shukla@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Tested-by: Santosh Shukla <santosh.shukla@amd.com>
Link: https://lore.kernel.org/r/20231018192021.1893261-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add a sanity check that FLUSHBYASID is available if SEV is supported in
hardware, as SEV (and beyond) guests are bound to a single ASID, i.e. KVM
can't "flush" by assigning a new, fresh ASID to the guest. If FLUSHBYASID
isn't supported for some bizarre reason, KVM would completely fail to do
TLB flushes for SEV+ guests (see pre_svm_run() and pre_sev_run()).
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20231018193617.1895752-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Advertise support for FLUSHBYASID when nested SVM is enabled, as KVM can
always emulate flushing TLB entries for a vmcb12 ASID, e.g. by running L2
with a new, fresh ASID in vmcb02. Some modern hypervisors, e.g. VMWare
Workstation 17, require FLUSHBYASID support and will refuse to run if it's
not present.
Punt on proper support, as "Honor L1's request to flush an ASID on nested
VMRUN" is one of the TODO items in the (incomplete) list of issues that
need to be addressed in order for KVM to NOT do a full TLB flush on every
nested SVM transition (see nested_svm_transition_tlb_flush()).
Reported-by: Stefan Sterz <s.sterz@proxmox.com>
Closes: https://lkml.kernel.org/r/b9915c9c-4cf6-051a-2d91-44cc6380f455%40proxmox.com
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231018194104.1896415-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Revert KVM's made-up consistency check on SVM's TLB control. The APM says
that unsupported encodings are reserved, but the APM doesn't state that
VMRUN checks for a supported encoding. Unless something is called out
in "Canonicalization and Consistency Checks" or listed as MBZ (Must Be
Zero), AMD behavior is typically to let software shoot itself in the foot.
This reverts commit 174a921b69.
Fixes: 174a921b69 ("nSVM: Check for reserved encodings of TLB_CONTROL in nested VMCB")
Reported-by: Stefan Sterz <s.sterz@proxmox.com>
Closes: https://lkml.kernel.org/r/b9915c9c-4cf6-051a-2d91-44cc6380f455%40proxmox.com
Cc: stable@vger.kernel.org
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20231018194104.1896415-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Add and use kvm_vcpu_is_legal_cr3() to check CR3's legality to provide
a clear distinction between CR3 and GPA checks. This will allow exempting
bits from kvm_vcpu_is_legal_cr3() without affecting general GPA checks,
e.g. for upcoming features that will use high bits in CR3 for feature
enabling.
No functional change intended.
Signed-off-by: Binbin Wu <binbin.wu@linux.intel.com>
Tested-by: Xuelian Guo <xuelian.guo@intel.com>
Link: https://lore.kernel.org/r/20230913124227.12574-7-binbin.wu@linux.intel.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
* Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its guest
* Optimization for vSGI injection, opportunistically compressing MPIDR
to vCPU mapping into a table
* Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
* Guest support for memory operation instructions (FEAT_MOPS)
* Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
* Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
* Load the stage-2 MMU context at vcpu_load() for VHE systems, reducing
the overhead of errata mitigations
* Miscellaneous kernel and selftest fixes
LoongArch:
* New architecture. The hardware uses the same model as x86, s390
and RISC-V, where guest/host mode is orthogonal to supervisor/user
mode. The virtualization extensions are very similar to MIPS,
therefore the code also has some similarities but it's been cleaned
up to avoid some of the historical bogosities that are found in
arch/mips. The kernel emulates MMU, timer and CSR accesses, while
interrupt controllers are only emulated in userspace, at least for
now.
RISC-V:
* Support for the Smstateen and Zicond extensions
* Support for virtualizing senvcfg
* Support for virtualized SBI debug console (DBCN)
S390:
* Nested page table management can be monitored through tracepoints
and statistics
x86:
* Fix incorrect handling of VMX posted interrupt descriptor in KVM_SET_LAPIC,
which could result in a dropped timer IRQ
* Avoid WARN on systems with Intel IPI virtualization
* Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
* Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
* Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
* Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
* "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to appease Windows Server
2022.
* Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
* Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
* Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
* Harden the fast page fault path to guard against encountering an invalid
root when walking SPTEs.
* Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
* Use the fast path directly from the timer callback when delivering Xen
timer events, instead of waiting for the next iteration of the run loop.
This was not done so far because previously proposed code had races,
but now care is taken to stop the hrtimer at critical points such as
restarting the timer or saving the timer information for userspace.
* Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future flag.
* Optimize injection of PMU interrupts that are simultaneous with NMIs.
* Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
* Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
* Zap EPT entries when non-coherent DMA assignment stops/start to prevent
using stale entries with the wrong memtype.
* Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y.
This was done as a workaround for virtual machine BIOSes that did not
bother to clear CR0.CD (because ancient KVM/QEMU did not bother to
set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
* Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
* Clean up the recognition of emulation failures on SEV guests, when KVM would
like to "skip" the instruction but it had already been partially emulated.
This makes it possible to drop a hack that second guessed the (insufficient)
information provided by the emulator, and just do the right thing.
Documentation:
* Various updates and fixes, mostly for x86
* MTRR and PAT fixes and optimizations:
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmVBZc0UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroP1LQf+NgsmZ1lkGQlKdSdijoQ856w+k0or
l2SV1wUwiEdFPSGK+RTUlHV5Y1ni1dn/CqCVIJZKEI3ZtZ1m9/4HKIRXvbMwFHIH
hx+E4Lnf8YUjsGjKTLd531UKcpphztZavQ6pXLEwazkSkDEra+JIKtooI8uU+9/p
bd/eF1V+13a8CHQf1iNztFJVxqBJbVlnPx4cZDRQQvewskIDGnVDtwbrwCUKGtzD
eNSzhY7si6O2kdQNkuA8xPhg29dYX9XLaCK2K1l8xOUm8WipLdtF86GAKJ5BVuOL
6ek/2QCYjZ7a+coAZNfgSEUi8JmFHEqCo7cnKmWzPJp+2zyXsdudqAhT1g==
=UIxm
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its
guest
- Optimization for vSGI injection, opportunistically compressing
MPIDR to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems,
reducing the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
LoongArch:
- New architecture for kvm.
The hardware uses the same model as x86, s390 and RISC-V, where
guest/host mode is orthogonal to supervisor/user mode. The
virtualization extensions are very similar to MIPS, therefore the
code also has some similarities but it's been cleaned up to avoid
some of the historical bogosities that are found in arch/mips. The
kernel emulates MMU, timer and CSR accesses, while interrupt
controllers are only emulated in userspace, at least for now.
RISC-V:
- Support for the Smstateen and Zicond extensions
- Support for virtualizing senvcfg
- Support for virtualized SBI debug console (DBCN)
S390:
- Nested page table management can be monitored through tracepoints
and statistics
x86:
- Fix incorrect handling of VMX posted interrupt descriptor in
KVM_SET_LAPIC, which could result in a dropped timer IRQ
- Avoid WARN on systems with Intel IPI virtualization
- Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs
without forcing more common use cases to eat the extra memory
overhead.
- Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
- Fix a bug where restoring a vCPU snapshot that was taken within 1
second of creating the original vCPU would cause KVM to try to
synchronize the vCPU's TSC and thus clobber the correct TSC being
set by userspace.
- Compute guest wall clock using a single TSC read to avoid
generating an inaccurate time, e.g. if the vCPU is preempted
between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which
complain about a "Firmware Bug" if the bit isn't set for select
F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to
appease Windows Server 2022.
- Don't apply side effects to Hyper-V's synthetic timer on writes
from userspace to fix an issue where the auto-enable behavior can
trigger spurious interrupts, i.e. do auto-enabling only for guest
writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the
dirty log without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as
appropriate.
- Harden the fast page fault path to guard against encountering an
invalid root when walking SPTEs.
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering
Xen timer events, instead of waiting for the next iteration of the
run loop. This was not done so far because previously proposed code
had races, but now care is taken to stop the hrtimer at critical
points such as restarting the timer or saving the timer information
for userspace.
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future
flag.
- Optimize injection of PMU interrupts that are simultaneous with
NMIs.
- Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to
prevent using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y
This was done as a workaround for virtual machine BIOSes that did
not bother to clear CR0.CD (because ancient KVM/QEMU did not bother
to set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts
SHUTDOWN while running an SEV-ES guest.
- Clean up the recognition of emulation failures on SEV guests, when
KVM would like to "skip" the instruction but it had already been
partially emulated. This makes it possible to drop a hack that
second guessed the (insufficient) information provided by the
emulator, and just do the right thing.
Documentation:
- Various updates and fixes, mostly for x86
- MTRR and PAT fixes and optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits)
KVM: selftests: Avoid using forced target for generating arm64 headers
tools headers arm64: Fix references to top srcdir in Makefile
KVM: arm64: Add tracepoint for MMIO accesses where ISV==0
KVM: arm64: selftest: Perform ISB before reading PAR_EL1
KVM: arm64: selftest: Add the missing .guest_prepare()
KVM: arm64: Always invalidate TLB for stage-2 permission faults
KVM: x86: Service NMI requests after PMI requests in VM-Enter path
KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI
KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs
KVM: arm64: Refine _EL2 system register list that require trap reinjection
arm64: Add missing _EL2 encodings
arm64: Add missing _EL12 encodings
KVM: selftests: aarch64: vPMU test for validating user accesses
KVM: selftests: aarch64: vPMU register test for unimplemented counters
KVM: selftests: aarch64: vPMU register test for implemented counters
KVM: selftests: aarch64: Introduce vpmu_counter_access test
tools: Import arm_pmuv3.h
KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest
KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run
KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
...
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8GHYSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hwkQAIR8l1gWz/caz29biBzmRnDS+aZOXcYM
8V8WBJqJgMKE9egibF4sADAlhInXzg19Xr7bQs6VfuvmdXrCn0UJ/nLorX+H85A2
pph6iNlWO6tyQAjvk/AieaeUyZOqpCFmKOgxfN2Fr/Lrn7u3AdjXC20qPeFJSLXr
YOTCQ704yvjjJp4yVA8JlclAQu38hanKiO5SZdlLzbuhUgWwQk4DVP2ZsYnhX+RO
F6exxORvMnYF/LJe/kR2/DMLf2JWvyUmjRrGWoeRoksOw5BlXMc5HyTPHSJ2jDac
lJaNtmZkTY1bDVWZk7N03ze5aFJa4DaqJdIFLtgujrFW8thog0P48aH6vmKi4UAA
bXme9GFYbmJTkemaGRnrzidFV12uPNvvanS+1PDOw4sn4HpscoMSpZw5PeH2kBwV
6uKNCJCwLtk8oe50yroKD7rJ/ASB7CeoqzbIL9s2TA0HSAskIf65T4eZp01uniyd
Q98yCdrG2mudsg5aU5yMfe0LwZby5BB5kUCqIe4hyRC68GJR8wkAzhaFRgCn4aJE
yaTyjnT2V3PGMEEJOPFdSF3VQGztljzQiXlEvBVj3zvMGQNTo2NhmS3ka4W+wW5G
avRYv8dITlGRs6J2gV1vp8Eb5LzDrwRpRURSmzeP5rR58saKdljTZgNfOzfLeFr1
WhLzonLz52IS
=U0fq
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM SVM changes for 6.7:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts SHUTDOWN while
running an SEV-ES guest.
- Clean up handling "failures" when KVM detects it can't emulate the "skip"
action for an instruction that has already been partially emulated. Drop a
hack in the SVM code that was fudging around the emulator code not giving
SVM enough information to do the right thing.
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmU8EugSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5xS0P+gPTDO81CUZO70LrO2W4E7toRBf/F9x1
/v5D/76p9hG32Z6+BJs/xxDxJFagw75MtoR5oKivtXiip3TxbfOyDOlaQkIRo85E
/d95il/LRidL3Mv3TXRj1lykXnxSSz9tigAGEZti1Y9Fn9fXEIwurJH7dU5cBI1E
fin5bsDaTNRjG4jjTiEUbnKPRTlD/S7CQJn4CaYvZhMv/eJkYDLyBBVy4VLoLzvD
ctL6VJQLGPVxbxr9mEmulaqMrSuDIQQLkRVQJAViKyerBInTEc5d/GPCHuE8O3zi
0r/QSJbMS9titWLz07NhJ1UH4VJNyaEhRlyJPSFhBW4h6dzUb3EXdUe0Hwa+JH/S
H2cVqsANItTCIhvDtuEGIRDahu0eD+63h90InJ0gEVL1kSJS+UWZHB71PkUEQgAV
2OsuT1D26fuxrv+0b9ioBZURycqKw++zGsrwyVhe77eBgqBJ12tbL4TAD+QNjaQ5
HZTCe6YV83gZoOMeVkoTGSf96s9lGORgxsaAIXmFuLB9RVCVXhVh0ph2HZsnV8Hw
ZXEXpBEFo7GUhb0NIvsk2W73QL87A3fLv15yITWc8KuC7/dXP9z6KpSKjFySS69X
uWD1MVx6shhvbg97UzoJlXc3/z0aVzmdZJudE5d0gcFvAjIItqp6ICPOoKxfj8pT
tqRZu3kVHd61
=sfp8
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.7' of https://github.com/kvm-x86/linux into HEAD
KVM x86 misc changes for 6.7:
- Add CONFIG_KVM_MAX_NR_VCPUS to allow supporting up to 4096 vCPUs without
forcing more common use cases to eat the extra memory overhead.
- Add IBPB and SBPB virtualization support.
- Fix a bug where restoring a vCPU snapshot that was taken within 1 second of
creating the original vCPU would cause KVM to try to synchronize the vCPU's
TSC and thus clobber the correct TSC being set by userspace.
- Compute guest wall clock using a single TSC read to avoid generating an
inaccurate time, e.g. if the vCPU is preempted between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which complain
about a "Firmware Bug" if the bit isn't set for select F/M/S combos.
- Don't apply side effects to Hyper-V's synthetic timer on writes from
userspace to fix an issue where the auto-enable behavior can trigger
spurious interrupts, i.e. do auto-enabling only for guest writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the dirty log
without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as appropriate.
- Use octal notation for file permissions through KVM x86.
- Fix a handful of typo fixes and warts.
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmU77KoACgkQEsHwGGHe
VUrophAAtfsB+WhRydin0V6kjQeH+RbiWyx/jOw6eNqvzOzaOPxVXn0cAHRSgAO4
+S8tKIqaWpXNNNKpOIKBVaDkh9qr50/p36/jfVkXi8GOLYrK633F0BMjcG4+/vYQ
A9b5iNiJhZ7xWE6+qRrqdg+o+a6UyPUGz34HNp3KwJVTdaHU2OnXXwuWeiUkgRrJ
uQSfLc4+UIeefIzNy8Tqg083iaENBYMya7U90rzewD64NF0bsA15AEPut/6tnUVq
ej3UU3cqO7nKXyhuZX+zpt856MZFa1rNYVXUAfoAO4xhqdN0Q5LFWO506sqajNx/
hqbT+hKDoC03zuLmbZO21s/uWQdtVFo63FU0h9QBRp1m6Ug5P3rQQCK8ydJc5xwr
Yd7je6UPK9jIKBo9VP1qmsyzGwADNevNf1qGExHI2T6Wml7HgDmPysAHnGiKqRGI
1o9+Yqa+VBt8Wml9M8Ny+dLyr5F/2uq8sMrQedQlXdFMSzVm2JYecukJ5BvUWE/r
Qyll8mTpIdgGXjBt56lMrgH7ibMC5ct/4MvTHOHuA997g/PwuwtWj7QyKXpUq2Rf
o/c3zKKWIFxevjzwU86haCBaz+5xAQlB6dJw61ExxsmUuT/kZzkN15w6aqGZtpns
PsARwnvuwZJ7vfqFLIa0ZkPN4OgnkRX7HlNqrVyKpONDTocZd9E=
=i9On
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpuid updates from Borislav Petkov:
- Make sure the "svm" feature flag is cleared from /proc/cpuinfo when
virtualization support is disabled in the BIOS on AMD and Hygon
platforms
- A minor cleanup
* tag 'x86_cpu_for_6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Remove redundant 'break' statement
x86/cpu: Clear SVM feature if disabled by BIOS
Convert all module params to octal permissions to improve code readability
and to make checkpatch happy:
WARNING: Symbolic permissions 'S_IRUGO' are not preferred. Consider using
octal permissions '0444'.
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Link: https://lore.kernel.org/r/20231013113020.77523-1-flyingpeng@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmUp1FESHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5IRsQAIsk+UwTP+q+ZzkpkSOJ+ocmKU97/GbW
snB+F5FwNXnWEPzHIV+Ldv+WUpmHilTrylk2t5jLyew783TPxTnLmNAa+D3iSSBP
jSGzCIqR2uRHOxhuJgkKvdOkfuS7vob1KcKrfOwKCSss78VhKGkMGIi66/81RTxo
zxpzva+F2YtbCwKWXewOvR4CsWhjVqOGRTCmjF6t8PpFDGqwZdu0ornBHC2gvkUI
iDHWVBg5Rz/akqxjEVL94SP5qdFSaVG+F3Z8xpnn+tfPncEK/xPFdGHGKwOy5Jvt
4dQLc6TGmS2+NGPU3eAJOr+GZKryQth1CI+5RDlnoKQXjQ3laJwjmgyCRbUYLoZh
/R7f5YJrhGheUvCCmagY1g2x41qp/CTG1RnX1SVTIGH9h+5LSVcCukCL9Tx2/B4v
eU8nrzhUuijSqG6TiyAV5hvFqMQf3LWWcjSSW58kIWmXLpqdb/Xp6wiFHjOM7wZM
c1br+6AwKZwKNdqn3/cnlBnLc+1jq/PWFnuF9svjKn5JTOyg8kddmyWUkDqiLOeZ
/jqqwRJQUZppy4DxFHdkuQxnTsrztNzs/vhQtF6MIgFRULrs4FaiTUxuAs72skqm
Fv/IIuyHWjST9HY8dgTx8PLqUevEc7zekmhN1Cj5KwhlHxKYWSZfew80CO7h2qhJ
IvAC70QC+BsW
=g8g3
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-pmu-6.6-fixes' of https://github.com/kvm-x86/linux into HEAD
KVM x86/pmu fixes for 6.6:
- Truncate writes to PMU counters to the counter's width to avoid spurious
overflows when emulating counter events in software.
- Set the LVTPC entry mask bit when handling a PMI (to match Intel-defined
architectural behavior).
- Treat KVM_REQ_PMI as a wake event instead of queueing host IRQ work to
kick the guest out of emulated halt.
Commit 916e3e5f26 ("KVM: SVM: Do not use user return MSR support for
virtualized TSC_AUX") introduced a local variable used for the rdmsr()
function for the high 32-bits of the MSR value. This variable is not used
after being set and triggers a warning or error, when treating warnings
as errors, when the unused-but-set-variable flag is set. Mark this
variable as __maybe_unused to fix this.
Fixes: 916e3e5f26 ("KVM: SVM: Do not use user return MSR support for virtualized TSC_AUX")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <0da9874b6e9fcbaaa5edeb345d7e2a7c859fc818.1696271334.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm_leave_nested() similar to a nested VM exit, get the vCPU out of nested
mode and thus should end the local inhibition of AVIC on this vCPU.
Failure to do so, can lead to hangs on guest reboot.
Raise the KVM_REQ_APICV_UPDATE request to refresh the AVIC state of the
current vCPU in this case.
Fixes: f44509f849 ("KVM: x86: SVM: allow AVIC to co-exist with a nested guest running")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928173354.217464-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
In later revisions of AMD's APM, there is a new 'incomplete IPI' exit code:
"Invalid IPI Vector - The vector for the specified IPI was set to an
illegal value (VEC < 16)"
Note that tests on Zen2 machine show that this VM exit doesn't happen and
instead AVIC just does nothing.
Add support for this exit code by doing nothing, instead of filling
the kernel log with errors.
Also replace an unthrottled 'pr_err()' if another unknown incomplete
IPI exit happens with vcpu_unimpl()
(e.g in case AMD adds yet another 'Invalid IPI' exit reason)
Cc: <stable@vger.kernel.org>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928173354.217464-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The following problem exists since x2avic was enabled in the KVM:
svm_set_x2apic_msr_interception is called to enable the interception of
the x2apic msrs.
In particular it is called at the moment the guest resets its apic.
Assuming that the guest's apic was in x2apic mode, the reset will bring
it back to the xapic mode.
The svm_set_x2apic_msr_interception however has an erroneous check for
'!apic_x2apic_mode()' which prevents it from doing anything in this case.
As a result of this, all x2apic msrs are left unintercepted, and that
exposes the bare metal x2apic (if enabled) to the guest.
Oops.
Remove the erroneous '!apic_x2apic_mode()' check to fix that.
This fixes CVE-2023-5090
Fixes: 4d1d7942e3 ("KVM: SVM: Introduce logic to (de)activate x2AVIC mode")
Cc: stable@vger.kernel.org
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Tested-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20230928173354.217464-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Treat EMULTYPE_SKIP failures on SEV guests as unhandleable emulation
instead of simply resuming the guest, and drop the hack-a-fix which
effects that behavior for the INT3/INTO injection path. If KVM can't
skip an instruction for which KVM has already done partial emulation,
resuming the guest is undesirable as doing so may corrupt guest state.
Link: https://lore.kernel.org/r/20230825013621.2845700-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Refactor and rename can_emulate_instruction() to allow vendor code to
return more than true/false, e.g. to explicitly differentiate between
"retry", "fault", and "unhandleable". For now, just do the plumbing, a
future patch will expand SVM's implementation to signal outright failure
if KVM attempts EMULTYPE_SKIP on an SEV guest.
No functional change intended (or rather, none that are visible to the
guest or userspace).
Link: https://lore.kernel.org/r/20230825013621.2845700-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Currently if an SEV-ES VM shuts down userspace sees KVM_RUN struct with
only errno=EINVAL. This is a very limited amount of information to debug
the situation. Instead return KVM_EXIT_SHUTDOWN to alert userspace the VM
is shutting down and is not usable any further.
Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: x86@kernel.org
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20230907162449.1739785-1-pgonda@google.com
[sean: tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Performance counters are defined to have width less than 64 bits. The
vPMU code maintains the counters in u64 variables but assumes the value
to fit within the defined width. However, for Intel non-full-width
counters (MSR_IA32_PERFCTRx) the value receieved from the guest is
truncated to 32 bits and then sign-extended to full 64 bits. If a
negative value is set, it's sign-extended to 64 bits, but then in
kvm_pmu_incr_counter() it's incremented, truncated, and compared to the
previous value for overflow detection.
That previous value is not truncated, so it always evaluates bigger than
the truncated new one, and a PMI is injected. If the PMI handler writes
a negative counter value itself, the vCPU never quits the PMI loop.
Turns out that Linux PMI handler actually does write the counter with
the value just read with RDPMC, so when no full-width support is exposed
via MSR_IA32_PERF_CAPABILITIES, and the guest initializes the counter to
a negative value, it locks up.
This has been observed in the field, for example, when the guest configures
atop to use perfevents and runs two instances of it simultaneously.
To address the problem, maintain the invariant that the counter value
always fits in the defined bit width, by truncating the received value
in the respective set_msr methods. For better readability, factor the
out into a helper function, pmc_write_counter(), shared by vmx and svm
parts.
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Roman Kagan <rkagan@amazon.de>
Link: https://lore.kernel.org/all/20230504120042.785651-1-rkagan@amazon.de
Tested-by: Like Xu <likexu@tencent.com>
[sean: tweak changelog, s/set/write in the helper]
Signed-off-by: Sean Christopherson <seanjc@google.com>
When the TSC_AUX MSR is virtualized, the TSC_AUX value is swap type "B"
within the VMSA. This means that the guest value is loaded on VMRUN and
the host value is restored from the host save area on #VMEXIT.
Since the value is restored on #VMEXIT, the KVM user return MSR support
for TSC_AUX can be replaced by populating the host save area with the
current host value of TSC_AUX. And, since TSC_AUX is not changed by Linux
post-boot, the host save area can be set once in svm_hardware_enable().
This eliminates the two WRMSR instructions associated with the user return
MSR support.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <d381de38eb0ab6c9c93dda8503b72b72546053d7.1694811272.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The checks for virtualizing TSC_AUX occur during the vCPU reset processing
path. However, at the time of initial vCPU reset processing, when the vCPU
is first created, not all of the guest CPUID information has been set. In
this case the RDTSCP and RDPID feature support for the guest is not in
place and so TSC_AUX virtualization is not established.
This continues for each vCPU created for the guest. On the first boot of
an AP, vCPU reset processing is executed as a result of an APIC INIT
event, this time with all of the guest CPUID information set, resulting
in TSC_AUX virtualization being enabled, but only for the APs. The BSP
always sees a TSC_AUX value of 0 which probably went unnoticed because,
at least for Linux, the BSP TSC_AUX value is 0.
Move the TSC_AUX virtualization enablement out of the init_vmcb() path and
into the vcpu_after_set_cpuid() path to allow for proper initialization of
the support after the guest CPUID information has been set.
With the TSC_AUX virtualization support now in the vcpu_set_after_cpuid()
path, the intercepts must be either cleared or set based on the guest
CPUID input.
Fixes: 296d5a17e7 ("KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX intercepts")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <4137fbcb9008951ab5f0befa74a0399d2cce809a.1694811272.git.thomas.lendacky@amd.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
svm_recalc_instruction_intercepts() is always called at least once
before the vCPU is started, so the setting or clearing of the RDTSCP
intercept can be dropped from the TSC_AUX virtualization support.
Extracted from a patch by Tom Lendacky.
Cc: stable@vger.kernel.org
Fixes: 296d5a17e7 ("KVM: SEV-ES: Use V_TSC_AUX if available instead of RDTSC/MSR_TSC_AUX intercepts")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
When SVM is disabled by BIOS, one cannot use KVM but the
SVM feature is still shown in the output of /proc/cpuinfo.
On Intel machines, VMX is cleared by init_ia32_feat_ctl(),
so do the same on AMD and Hygon processors.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230921114940.957141-1-pbonzini@redhat.com
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTueMwSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5hp4P/i/UmIJEJupryUrD/ZXcSjqmupCtv4JS
Z2o1KIAPbM5GUX4iyF1cnZrI4Ac5zMtULN8Tp3ATOp3AqKy72AqB1Z82e+v6SKis
KfSXlDFCPFisrwv3Ys7JEu9vIS8oqITHmSBk8OAmElwujdQ5jYLZjwGbCXbM9qas
yCFGLqD4fjX8XqkZLmXggjT99MPSgiTPoKL592Wq4JR8mY4hyQqJzBepDjb94sT7
wrsAv1B+BchGDguk0+nOdmHM4emGrZU7fVqi3OFPofSlwAAdkqZObleb422KB058
5bcpNow+9VH5pzgq8XSAU7DLNgH9aXH0PcVU8ASU6P0D9fceKoOFuL47nnFbwz0t
vKafcXNWFs8xHE4iyzvAAsZK/X8GR0ngNByPnamATMsjt2tTmsa5BOyAPkIN+GpT
DzZCIk27SbdGC3lGYlSV+5ob/+sOr6m384DkvSZnU6JiiFLlZiTxURj1/9Zvfka8
2co2wnf8cJxnKFUThFfuxs9XpKgvhkOE8LauwCSo4MAQM95Pen+NAK960RBWj0xl
wof5kIGmKbwmMXyg2Sr+EKqe5KRPba22Yi3x24tURAXafKK/AW7T8dgEEXOll7dp
pKmTPAevwUk9wYIGultjhEBXKYgMOeD2BVoTa5je5h1Da28onrSJ7aLQUixHHs0J
gLdtzs8M9K9t
=yGM1
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-misc-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM x86 changes for 6.6:
- Misc cleanups
- Retry APIC optimized recalculation if a vCPU is added/enabled
- Overhaul emergency reboot code to bring SVM up to par with VMX, tie the
"emergency disabling" behavior to KVM actually being loaded, and move all of
the logic within KVM
- Fix user triggerable WARNs in SVM where KVM incorrectly assumes the TSC
ratio MSR can diverge from the default iff TSC scaling is enabled, and clean
up related code
- Add a framework to allow "caching" feature flags so that KVM can check if
the guest can use a feature without needing to search guest CPUID
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug
registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmTue8YSHHNlYW5qY0Bn
b29nbGUuY29tAAoJEGCRIgFNDBL5aqUP/jF7DyMXyQGYMKoQhFxWyGRhfqV8Ov8i
7sUpEKSx5WTxOsFHBgdGeNU+m9eBJHWVmrJM9imI4OCUvJmxasRRsnyhvEUvBIUE
amQT45aVm2xqjRNRUkOCUUHiDKtUdwpSRlOSyhnDTKmlMbNoH+fO3SLJ1oB/fsae
wnmyiF98j2vT/5mD6F/F87hlNMq4CqG/OZWJ9Kk8GfvfJpUcC8r/H0NsMgSMF2/L
Q+Hn+r/XDfMSrBiyEzevWyPbJi7nL+WF9EQDJASf+aAkmFMHK6AU4XNITwVw3XcZ
FGtSP/NzvnePhd5gqtbiW9hRQkWcKjqnydtyI3ZDVVBpEbJ6OJn3+UFoLZ8NoSE+
D3EDs1PA7Qjty6kYx9/NZpXz5BAMd9mikkTL7PTrlrAZAEimToqoHx7mBjmLp4E+
diKrpG2w1OTtO/Pafi0z0zZN6Yc9MJOyZVK78DpIiLey3rNip9SawWGh+wV14WNC
nbn7Wpf8EGE1E8n00mwrGMRCuRm7LQhLbcVXITiGKrbpxUzam6sqDIgt73Q7xma2
NWcPizeFNy47uurNOA2V9xHkbEAYjWaM12uyzmGzILvvmvNnpU0NuZ78cgV5ZWMk
4US53CAQbG4+qUCJWhIDoriluaLXjL9tLiZgJW0T6cus3nL5NWYqvlq6TWYyK00J
zjiK7vky77Pq
=WC5V
-----END PGP SIGNATURE-----
Merge tag 'kvm-x86-svm-6.6' of https://github.com/kvm-x86/linux into HEAD
KVM: x86: SVM changes for 6.6:
- Add support for SEV-ES DebugSwap, i.e. allow SEV-ES guests to use debug
registers and generate/handle #DBs
- Clean up LBR virtualization code
- Fix a bug where KVM fails to set the target pCPU during an IRTE update
- Fix fatal bugs in SEV-ES intrahost migration
- Fix a bug where the recent (architecturally correct) change to reinject
#BP and skip INT3 broke SEV guests (can't decode INT3 to skip it)