The major drawback of commit 7e34f4e4aa ("drm/i915/gen8+: Add RC6 CTX
corruption WA") is that it disables RC6 while Skylake (and friends) is
active, and we do not consider the GPU idle until all outstanding
requests have been retired and the engine switched over to the kernel
context. If userspace is idle, this task falls onto our background idle
worker, which only runs roughly once a second, meaning that userspace has
to have been idle for a couple of seconds before we enable RC6 again.
Naturally, this causes us to consume considerably more energy than
before as powersaving is effectively disabled while a display server
(here's looking at you Xorg) is running.
As execlists will get a completion event as each context is completed,
we can use this interrupt to queue a retire worker bound to this engine
to cleanup idle timelines. We will then immediately notice the idle
engine (without userspace intervention or the aid of the background
retire worker) and start parking the GPU. Thus during light workloads,
we will do much more work to idle the GPU faster... Hopefully with
commensurate power saving!
v2: Watch context completions and only look at those local to the engine
when retiring to reduce the amount of excess work we perform.
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=112315
References: 7e34f4e4aa ("drm/i915/gen8+: Add RC6 CTX corruption WA")
References: 2248a28384 ("drm/i915/gen8+: Add RC6 CTX corruption WA")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191125105858.1718307-3-chris@chris-wilson.co.uk
(cherry picked from commit 4f88f8747f)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Inside print_request(), we query the context/timeline name. Nothing
immediately protects the context from being freed if the request is
complete -- we rely on serialisation by the caller to keep the name
valid until they finish using it. Inside intel_engine_dump(), we
generally only print the requests in the execution queue protected by the
engine->active.lock, but we also show the pending execlists ports which
are not protected and so require a rcu_read_lock to keep the pointer
valid.
[ 1695.700883] BUG: KASAN: use-after-free in i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.700981] Read of size 8 at addr ffff8887344f4d50 by task gem_ctx_persist/2968
[ 1695.701068]
[ 1695.701156] CPU: 1 PID: 2968 Comm: gem_ctx_persist Tainted: G U 5.4.0-rc6+ #331
[ 1695.701246] Hardware name: Intel Corporation NUC7i5BNK/NUC7i5BNB, BIOS BNKBL357.86A.0052.2017.0918.1346 09/18/2017
[ 1695.701334] Call Trace:
[ 1695.701424] dump_stack+0x5b/0x90
[ 1695.701870] ? i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.701964] print_address_description.constprop.7+0x36/0x50
[ 1695.702408] ? i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.702856] ? i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.702947] __kasan_report.cold.10+0x1a/0x3a
[ 1695.703390] ? i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.703836] i915_fence_get_timeline_name+0x53/0x90 [i915]
[ 1695.704241] print_request+0x82/0x2e0 [i915]
[ 1695.704638] ? fwtable_read32+0x133/0x360 [i915]
[ 1695.705042] ? write_timestamp+0x110/0x110 [i915]
[ 1695.705133] ? _raw_spin_lock_irqsave+0x79/0xc0
[ 1695.705221] ? refcount_inc_not_zero_checked+0x91/0x110
[ 1695.705306] ? refcount_dec_and_mutex_lock+0x50/0x50
[ 1695.705709] ? intel_engine_find_active_request+0x202/0x230 [i915]
[ 1695.706115] intel_engine_dump+0x2c9/0x900 [i915]
Fixes: c36eebd9ba ("drm/i915/gt: execlists->active is serialised by the tasklet")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191111114323.5833-1-chris@chris-wilson.co.uk
(cherry picked from commit fecffa4668)
Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Execlists uses a scheduling quantum (a timeslice) to alternate execution
between ready-to-run contexts of equal priority. This ensures that all
users (though only if they of equal importance) have the opportunity to
run and prevents livelocks where contexts may have implicit ordering due
to userspace semaphores. However, not all workloads necessarily benefit
from timeslicing and in the extreme some sysadmin may want to disable or
reduce the timeslicing granularity.
The timeslicing mechanism can be compiled out^W^W disabled (but should
DCE!) with
./scripts/config --set-val DRM_I915_TIMESLICE_DURATION 0
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029091632.26281-1-chris@chris-wilson.co.uk
HWS placement restrictions can't just rely on HAS_LLC flag.
Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Signed-off-by: Matthew Auld <matthew.auld@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191029095856.25431-5-matthew.auld@intel.com
Replace sampling the engine state every so often with a periodic
heartbeat request to measure the health of an engine. This is coupled
with the forced-preemption to allow long running requests to survive so
long as they do not block other users.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Jon Bloomfield <jon.bloomfield@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023133108.21401-5-chris@chris-wilson.co.uk
If the preempted context takes too long to relinquish control, e.g. it
is stuck inside a shader with arbitration disabled, evict that context
with an engine reset. This ensures that preemptions are reasonably
responsive, providing a tighter QoS for the more important context at
the cost of flagging unresponsive contexts more frequently (i.e. instead
of using an ~10s hangcheck, we now evict at ~100ms). The challenge of
lies in picking a timeout that can be reasonably serviced by HW for
typical workloads, balancing the existing clients against the needs for
responsiveness.
Note that coupled with timeslicing, this will lead to rapid GPU "hang"
detection with multiple active contexts vying for GPU time.
The forced preemption mechanism can be compiled out with
./scripts/config --set-val DRM_I915_PREEMPT_TIMEOUT 0
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023133108.21401-2-chris@chris-wilson.co.uk
If we are doing a normal GPU reset triggered after detecting a long
period of stalled work, we can take our time and allow the engines to
quiesce. Since we've stopped submission to the engine, and if we wait
long enough an innocent context should complete, leaving the engine idle.
So by waiting a short amount of time, we should prevent clobbering other
users when resetting a stuck context.
Suggested-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Suggested-by: Jon Bloomfield <jon.bloomfield@intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191023133108.21401-1-chris@chris-wilson.co.uk
Where the function, or code segment, operates on intel_gt, we need to
start passing it instead of i915 to for_each_engine(_masked).
This is another partial step in migration of i915->engines[] to
gt->engines[].
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191017094500.21831-2-tvrtko.ursulin@linux.intel.com
Medium term goal is to eliminate the i915->engine[] array and to get there
we have recently introduced equivalent array in intel_gt. Now we need to
migrate the code further towards this state.
This next step is to eliminate usage of i915->engines[] from the
for_each_engine_masked iterator.
For this to work we also need to use engine->id as index when populating
the gt->engine[] array and adjust the default engine set indexing to use
engine->legacy_idx instead of assuming gt->engines[] indexing.
v2:
* Populate gt->engine[] earlier.
* Check that we don't duplicate engine->legacy_idx
v3:
* Work around the initialization order issue between default_engines()
and intel_engines_driver_register() which sets engine->legacy_idx for
now. It will be fixed properly later.
v4:
* Merge with forgotten v2.5.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20191017161852.8836-1-tvrtko.ursulin@linux.intel.com
We perform timeslicing immediately upon receipt of a request that may be
put into the second ELSP slot. The idea behind this was that since we
didn't install the timer if the second ELSP slot was empty, we would not
have any idea of how long ELSP[0] had been running and so giving the
newcomer a chance on the GPU was fair. However, this causes us extra
busy work that we may be able to avoid if we wait a jiffie for the first
timeslice as normal.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191016100851.4979-1-chris@chris-wilson.co.uk
The active/pending execlists is no longer protected by the
engine->active.lock, but is serialised by the tasklet instead. Update
the locking around the debug and stats to follow suit.
v2: local_bh_disable() to prevent recursing into the tasklet in case we
trigger a softirq (Tvrtko)
Fixes: df40306902 ("drm/i915/execlists: Lift process_csb() out of the irq-off spinlock")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191009160906.16195-1-chris@chris-wilson.co.uk
Assign a separate lockclass to the perma-pinned timelines of the
kernel_context, such that we can use them from within the user timelines
should we ever need to inject GPU operations to fixup faults during
request construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Matthew Auld <matthew.william.auld@gmail.com>
Reviewed-by: Matthew Auld <matthew.william.auld@gmail.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191008185941.15228-1-chris@chris-wilson.co.uk
A common bane of ours is arbitrary delays in ksoftirqd processing our
submission tasklet. Give the submission tasklet a kick before we wait to
avoid those delays eating into a tight timeout.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Stuart Summers <stuart.summers@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191008105655.13256-1-chris@chris-wilson.co.uk
Avoid going to the base i915 device when we already have a path from gt
to the runtime powermanagement interface. The benefit is that it looks a
bit more self-consistent to always be acquiring the gt->uncore->rpm for
use with the gt->uncore.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20191007154531.1750-1-chris@chris-wilson.co.uk
The request->timeline is only valid until the request is retired (i.e.
before it is completed). Upon retiring the request, the context may be
unpinned and freed, and along with it the timeline may be freed. We
therefore need to be very careful when chasing rq->timeline that the
pointer does not disappear beneath us. The vast majority of users are in
a protected context, either during request construction or retirement,
where the timeline->mutex is held and the timeline cannot disappear. It
is those few off the beaten path (where we access a second timeline) that
need extra scrutiny -- to be added in the next patch after first adding
the warnings about dangerous access.
One complication, where we cannot use the timeline->mutex itself, is
during request submission onto hardware (under spinlocks). Here, we want
to check on the timeline to finalize the breadcrumb, and so we need to
impose a second rule to ensure that the request->timeline is indeed
valid. As we are submitting the request, it's context and timeline must
be pinned, as it will be used by the hardware. Since it is pinned, we
know the request->timeline must still be valid, and we cannot submit the
idle barrier until after we release the engine->active.lock, ergo while
submitting and holding that spinlock, a second thread cannot release the
timeline.
v2: Don't be lazy inside selftests; hold the timeline->mutex for as long
as we need it, and tidy up acquiring the timeline with a bit of
refactoring (i915_active_add_request)
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190919111912.21631-1-chris@chris-wilson.co.uk
Include the active context register state when dumping the engine.
Suggested-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Stuart Summers <stuart.summers@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190915203701.29163-1-chris@chris-wilson.co.uk
We've been ignoring similar coherency issues in IGT for Broadwater, and
specifically Broadwater (original gen4) and not, for example, Crestline
(same generation as Broadwater, but the mobile variant). Without any
means to reproduce locally (I have a 965GM but alas no 965G), fixing will
be slow, so tell CI to ignore any failure until we are ready with a fix.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Acked-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190826133837.6784-1-chris@chris-wilson.co.uk
Re-use Gen11 context size for now.
[ Lucas: this is a temporary enabling patch that needs to be confirmed:
we need to check BSpec 46255 and recompute ]
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Signed-off-by: Lucas De Marchi <lucas.demarchi@intel.com>
Acked-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190817093902.2171-27-lucas.demarchi@intel.com
If we only call process_csb() from the tasklet, though we lose the
ability to bypass ksoftirqd interrupt processing on direct submission
paths, we can push it out of the irq-off spinlock.
The penalty is that we then allow schedule_out to be called concurrently
with schedule_in requiring us to handle the usage count (baked into the
pointer itself) atomically.
As we do kick the tasklets (via local_bh_enable()) after our submission,
there is a possibility there to see if we can pull the local softirq
processing back from the ksoftirqd.
v2: Store the 'switch_priority_hint' on submission, so that we can
safely check during process_csb().
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190816171608.11760-1-chris@chris-wilson.co.uk
Forgo the struct_mutex requirement for request retirement as we have
been transitioning over to only using the timeline->mutex for
controlling the lifetime of a request on that timeline.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190815205709.24285-4-chris@chris-wilson.co.uk
Move the timeline from being inside the intel_ring to intel_context
itself. This saves much pointer dancing and makes the relations of the
context to its timeline much clearer.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190809182518.20486-4-chris@chris-wilson.co.uk
As we need to acquire a mutex to serialise the final
intel_wakeref_put, we need to ensure that we are in process context at
that time. However, we want to allow operation on the intel_wakeref from
inside timer and other hardirq context, which means that need to defer
that final put to a workqueue.
Inside the final wakeref puts, we are safe to operate in any context, as
we are simply marking up the HW and state tracking for the potential
sleep. It's only the serialisation with the potential sleeping getting
that requires careful wait avoidance. This allows us to retain the
immediate processing as before (we only need to sleep over the same
races as the current mutex_lock).
v2: Add a selftest to ensure we exercise the code while lockdep watches.
v3: That test was extremely loud and complained about many things!
v4: Not a whale!
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111295
References: https://bugs.freedesktop.org/show_bug.cgi?id=111245
References: https://bugs.freedesktop.org/show_bug.cgi?id=111256
Fixes: 18398904ca ("drm/i915: Only recover active engines")
Fixes: 51fbd8de87 ("drm/i915/pmu: Atomically acquire the gt_pm wakeref")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190808202758.10453-1-chris@chris-wilson.co.uk
Ignore the central i915->kernel_context for allocating an engine, as
that GEM context is being phased out. For internal clients, we just need
the per-engine logical state, so allocate it at the point of use.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190808110612.23539-1-chris@chris-wilson.co.uk
During engine setup, we may find that some engines are fused off causing
a misalignment between internal names and the instances seen by users,
e.g. (I915_ENGINE_CLASS_VIDEO_DECODE, 1) may be vcs2 in hardware.
Normally this is invisible to the user, but a few debug interfaces (and
our own internal tracing) use the original HW name not the name the user
would expect as formed from their class:instance tuple. Replace our
internal name with the uabi name for consistency with, for example, error
states.
v2: Keep the pretty printing of class name in the selftest
Bugzilla: https://bugs.freedesktop.org/show_bug.cgi?id=111311
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190807110431.8130-1-chris@chris-wilson.co.uk
To maintain a fast lookup from a GT centric irq handler, we want the
engine lookup tables on the intel_gt. To avoid having multiple copies of
the same multi-dimension lookup table, move the generic user engine
lookup into an rbtree (for fast and flexible indexing).
v2: Split uabi_instance cf uabi_class
v3: Set uabi_class/uabi_instance after collating all engines to provide a
stable uabi across parallel unordered construction.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> #v2
Link: https://patchwork.freedesktop.org/patch/msgid/20190806124300.24945-2-chris@chris-wilson.co.uk
Switch to tracking activity via i915_active on individual nodes, only
keeping a list of retired objects in the cache, and reaping the cache
when the engine itself idles.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Matthew Auld <matthew.auld@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190804124826.30272-2-chris@chris-wilson.co.uk
With i915 added to i915_inject_probe_failure we can use dedicated
printk when injecting artificial load failure.
Also make this function look like other i915 functions that return
error code and make it more flexible to return any provided error
code instead of previously assumed -ENODEV.
Signed-off-by: Michal Wajdeczko <michal.wajdeczko@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190802184055.31988-2-michal.wajdeczko@intel.com
A couple issues were present in this code:
1.
fls() usage was incorrect causing off by one in subslice mask lookup,
which in other words means subslice mask of all zeroes is always used
(subslice mask of a slice which is not present, or even out of bounds
array access), rendering the checks in wa_init_mcr either futile or
random.
2.
Condition in WARN_ON was not correct. It is doing a bitwise and operation
between a positive (present subslices) and negative mask (disabled L3
banks).
This means that with corrected fls() usage the assert would always
incorrectly fail.
We could fix this by inverting the fuse bits in the check, but instead do
one better and improve the code so it not only asserts, but finds the
first common index between the two masks and only warns if no such index
can be found.
v2:
* Simplify check for logic and redability.
* Improve commentary explaining what is really happening ie. what the
assert is really trying to check and why.
v3:
* Find first common index instead of just asserting.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Fixes: fe864b76c2 ("drm/i915: Implement WaProgramMgsrForL3BankSpecificMmioReads")
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk> # v1
Cc: Michał Winiarski <michal.winiarski@intel.com>
Cc: Stuart Summers <stuart.summers@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190717180624.20354-4-tvrtko.ursulin@linux.intel.com
Instead of re-calculating the MCR selector in read_subslice_reg do the
rwm on its existing value and restore it when done.
This consolidates MCR programming to one place for cnl+, and avoids
re-calculating its default value on older platforms during hangcheck.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190717180624.20354-3-tvrtko.ursulin@linux.intel.com
fls returns bit positions starting from one for the lsb and the MCR
register expects zero based (sub)slice addressing.
Incorrent MCR programming can have the effect of directing MMIO reads of
registers in the 0xb100-0xb3ff range to invalid subslice returning zeroes
instead of actual content.
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Fixes: 1e40d4aea5 ("drm/i915/cnl: Implement WaProgramMgsrForCorrectSliceSpecificMmioReads")
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190717180624.20354-2-tvrtko.ursulin@linux.intel.com
Preempt-to-busy uses a GPU semaphore to enforce an idle-barrier across
preemption, but mediated gvt does not fully support semaphores.
v2: Fiddle around with the flags and settle on using has-semaphores for
the core bits so that we retain the ability to preempt our own
semaphores.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Zhenyu Wang <zhenyuw@linux.intel.com>
Cc: Xiaolin Zhang <xiaolin.zhang@intel.com>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Mika Kuoppala <mika.kuoppala@linux.intel.com>
Acked-by: Zhenyu Wang <zhenyuw@linux.intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190709091233.8573-1-chris@chris-wilson.co.uk
We cannot let the request be retired and freed while we are trying to
dump it during error capture. It is not sufficient just to grab a
reference to the request, as during retirement we may free the ring
which we are also dumping. So take the engine lock to prevent retiring
and freeing of the request.
Reported-by: Alex Shumsky <alexthreed@gmail.com>
Fixes: 83c317832e ("drm/i915: Dump the ringbuffer of the active request for debugging")
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Cc: Alex Shumsky <alexthreed@gmail.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190715080946.15593-6-chris@chris-wilson.co.uk
Having taken the first step in encapsulating the functionality by moving
the related files under gt/, the next step is to start encapsulating by
passing around the relevant structs rather than the global
drm_i915_private. In this step, we pass intel_gt to intel_reset.c
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190712192953.9187-1-chris@chris-wilson.co.uk
Use the "_probe" nomenclature not only in i915_driver_probe() helper
name but also in other related function / variable names for
consistency. Only the userspace exposed name of a related module
parameter is left untouched.
Signed-off-by: Janusz Krzysztofik <janusz.krzysztofik@linux.intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Reviewed-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20190712112429.740-4-janusz.krzysztofik@linux.intel.com
Preemption via GuC submission is not being supported with its current
legacy incarnation. The current FW does support a similar pre-emption
flow via H2G, but it is class-based instead of being instance-based,
which doesn't fit well with the i915 tracking. To fix this, the
firmware is being updated to better support our needs with a new flow,
so we can safely remove the old code.
v2 (Daniele): resurrect & rebase, reword commit message, remove
preempt_context as well
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Signed-off-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com>
Cc: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Michal Wajdeczko <michal.wajdeczko@intel.com>
Cc: Matthew Brost <matthew.brost@intel.com>
Cc: John Harrison <John.C.Harrison@Intel.com>
Acked-by: Matthew Brost <matthew.brost@intel.com>
Reviewed-by: Michał Winiarski <michal.winiarski@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190710005437.3496-2-daniele.ceraolospurio@intel.com
We now track features correctly instead of probing i915->engine[RCS0]
which is much more flexible and avoids any nasty surprises.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190705124325.14270-2-chris@chris-wilson.co.uk
We need to setup the workarounds on all engines, with the knowledge
about which platforms each workaround applies to kept together in the
workaround list. As such, we can pull the w/a initialisation into the
common setup and try to avoid duplicating knowledge about when to setup
the workarounds.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190703135805.7310-2-chris@chris-wilson.co.uk
Expose whether or not we support the PMU software tracking in our
scheduler capabilities, so userspace can query at runtime.
v2: Use I915_SCHEDULER_CAP_ENGINE_BUSY_STATS for a less ambiguous
capability name.
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
Cc: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Reviewed-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20190703143702.11339-1-chris@chris-wilson.co.uk