1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

781 commits

Author SHA1 Message Date
Linus Torvalds
b4442cadca - Add support managing TDX host hardware
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmWfCRQACgkQaDWVMHDJ
 krDUqQ//VCvkpf0mAbYDJa1oTXFW8O5cVTusBtPi8k7cFbtjQpjno/9AqKol+sK8
 AKg+y5iHHl7QJmDmEcpS+O9OBbmFOpvDzm3QZhk8RkWS5pe0B108dnINYtS0eP9R
 MkzZwfrI2yC6NX4hvHGdD8WGHjrt+oxY0bojehX87JZsyRU+xqc/g1OO7a5bUPQe
 3Ip0kKiCeqFv0y+Q1pFMEd9RdZ8XxqzUHCJT3hfgZ6FajJ2eVy6jNrPOm6LozycB
 eOtYYNapSgw3k/WhJCOYWHX7kePXibLxBRONLpi6P3U6pMVk4n8wrgl7qPtdW1Qx
 nR2UHX5P6eFkxNCuU1BzvmPBROe37C51MFVw29eRnigvuX3j/vfCH1+17xQOVKVv
 5JyxYA0rJWqoOz6mX7YaNJHlmrxHzeKXudICyOFuu1j5c8CuGjh8NQsOSCq16XfZ
 hPzfYDUS8I7/kHYQPJlnB+kF9pmbyjTM70h74I8D6ZWvXESHJZt+TYPyWfkBXP/P
 L9Pwx1onAyoBApGxCWuvgGTLonzNredgYG4ABbqhUqxqncJS9M7Y/yJa+f+3SOkR
 T6LxoByuDVld5cIfbOzRwIaRezZDe/NL7rkHm/DWo98OaV3zILsr20Hx1lPZ1Vce
 ryZ9lCdZGGxm2jmpzr/VymPQz/E+ezahRHE1+F3su8jpCU41txg=
 =1EJI
 -----END PGP SIGNATURE-----

Merge tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 TDX updates from Dave Hansen:
 "This contains the initial support for host-side TDX support so that
  KVM can run TDX-protected guests. This does not include the actual
  KVM-side support which will come from the KVM folks. The TDX host
  interactions with kexec also needs to be ironed out before this is
  ready for prime time, so this code is currently Kconfig'd off when
  kexec is on.

  The majority of the code here is the kernel telling the TDX module
  which memory to protect and handing some additional memory over to it
  to use to store TDX module metadata. That sounds pretty simple, but
  the TDX architecture is rather flexible and it takes quite a bit of
  back-and-forth to say, "just protect all memory, please."

  There is also some code tacked on near the end of the series to handle
  a hardware erratum. The erratum can make software bugs such as a
  kernel write to TDX-protected memory cause a machine check and
  masquerade as a real hardware failure. The erratum handling watches
  out for these and tries to provide nicer user errors"

* tag 'x86_tdx_for_6.8' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
  x86/virt/tdx: Make TDX host depend on X86_MCE
  x86/virt/tdx: Disable TDX host support when kexec is enabled
  Documentation/x86: Add documentation for TDX host support
  x86/mce: Differentiate real hardware #MCs from TDX erratum ones
  x86/cpu: Detect TDX partial write machine check erratum
  x86/virt/tdx: Handle TDX interaction with sleep and hibernation
  x86/virt/tdx: Initialize all TDMRs
  x86/virt/tdx: Configure global KeyID on all packages
  x86/virt/tdx: Configure TDX module with the TDMRs and global KeyID
  x86/virt/tdx: Designate reserved areas for all TDMRs
  x86/virt/tdx: Allocate and set up PAMTs for TDMRs
  x86/virt/tdx: Fill out TDMRs to cover all TDX memory regions
  x86/virt/tdx: Add placeholder to construct TDMRs to cover all TDX memory regions
  x86/virt/tdx: Get module global metadata for module initialization
  x86/virt/tdx: Use all system memory when initializing TDX module as TDX memory
  x86/virt/tdx: Add skeleton to enable TDX on demand
  x86/virt/tdx: Add SEAMCALL error printing for module initialization
  x86/virt/tdx: Handle SEAMCALL no entropy error in common code
  x86/virt/tdx: Make INTEL_TDX_HOST depend on X86_X2APIC
  x86/virt/tdx: Define TDX supported page sizes as macros
  ...
2024-01-18 13:41:48 -08:00
Linus Torvalds
106b88d7a9 x86/asm changes for v6.8:
- Replace magic numbers in GDT descriptor definitions & handling:
 
    - Introduce symbolic names via macros for descriptor types/fields/flags,
      and then use these symbolic names.
 
    - Clean up definitions a bit, such as GDT_ENTRY_INIT()
 
    - Fix/clean up details that became visibly inconsistent after the
      symbol-based code was introduced:
 
       - Unify accessed flag handling
 
       - Set the D/B size flag consistently & according to the HW specification
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmWb1hQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1j7/xAAk2L36n4ZpWqm4oWxMyRDTd713qT+Jzg5
 txVr7i8el5RZ8D9WQejzOWemJ/XgirkWuRSFfY+UzZZ+7lmioXWDFLz6PFpyMOwM
 OG2yyAAZIQzFhe1LxhurN5G7F+q9Nl/CcDnRWv+FUKs829GOGlaqirKfKwgIFzgw
 GUT0eT5gPfIfEFnzMUrix9+KNIZU6s6Lgg5tVpavNw6bKEimg8Mtn4J45voFbg98
 l/PU0RaC28vePTMdoBLv/ZZUHS9K/UdGUq600guzk/Zh2plqxGtqjXtaM5/8giPO
 JbgQCTP0LaCC0oZf0SAbUW7+TiKD03CP6QzleYyLdhTjLz1CCOswgz0upPjfa/5j
 nhgsMCk/CEhr6nMwhJiRNhOrFFFJWX00bpcQ2tyyVO156Q+CfhJxuk1XafeQ5MSs
 K4l97IVc/vPQSEZy5Nh6GdGmWljYxP3Ku4eHRkyVGVYf8YyaD2l6CimaRcdPNqqL
 w9GLwczLfEzkomfdxsyppwu364O91Lpv6gi6AY4Tj7Hgo1ZMm9ucUO3AsTUz5EJJ
 aiqX6o7puIJJkU2O3hKviTzNwTojjjicD/Az66re3lHZBND+luP7LjVY2wIomH5i
 bFPVdSCDmCdTrsTkO3f87FHbCVrbNllKLGChvJ66vyC2nJeIM8UHJ/MxYJsGRhqk
 87vU1DWYPrQ=
 =Y0pg
 -----END PGP SIGNATURE-----

Merge tag 'x86-asm-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 asm updates from Ingo Molnar:
 "Replace magic numbers in GDT descriptor definitions & handling:

   - Introduce symbolic names via macros for descriptor
     types/fields/flags, and then use these symbolic names.

   - Clean up definitions a bit, such as GDT_ENTRY_INIT()

   - Fix/clean up details that became visibly inconsistent after the
     symbol-based code was introduced:

      - Unify accessed flag handling

      - Set the D/B size flag consistently & according to the HW
        specification"

* tag 'x86-asm-2024-01-08' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/asm: Add DB flag to 32-bit percpu GDT entry
  x86/asm: Always set A (accessed) flag in GDT descriptors
  x86/asm: Replace magic numbers in GDT descriptors, script-generated change
  x86/asm: Replace magic numbers in GDT descriptors, preparations
  x86/asm: Provide new infrastructure for GDT descriptors
2024-01-08 17:02:57 -08:00
Vegard Nossum
3b184b71df x86/asm: Always set A (accessed) flag in GDT descriptors
We have no known use for having the CPU track whether GDT descriptors
have been accessed or not.

Simplify the code by adding the flag to the common flags and removing
it everywhere else.

Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-5-vegard.nossum@oracle.com
2023-12-20 10:57:51 +01:00
Vegard Nossum
1445f6e15f x86/asm: Replace magic numbers in GDT descriptors, script-generated change
Actually replace the numeric values by the new symbolic values.

I used this to find all the existing users of the GDT_ENTRY*() macros:

  $ git grep -P 'GDT_ENTRY(_INIT)?\('

Some of the lines will exceed 80 characters, but some of them will be
shorter again in the next couple of patches.

Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-4-vegard.nossum@oracle.com
2023-12-20 10:57:38 +01:00
Vegard Nossum
41ef75c848 x86/asm: Replace magic numbers in GDT descriptors, preparations
We'd like to replace all the magic numbers in various GDT descriptors
with new, semantically meaningful, symbolic values.

In order to be able to verify that the change doesn't cause any actual
changes to the compiled binary code, I've split the change into two
patches:

 - Part 1 (this commit): everything _but_ actually replacing the numbers
 - Part 2 (the following commit): _only_ replacing the numbers

The reason we need this split for verification is that including new
headers causes some spurious changes to the object files, mostly line
number changes in the debug info but occasionally other subtle codegen
changes.

Signed-off-by: Vegard Nossum <vegard.nossum@oracle.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/20231219151200.2878271-3-vegard.nossum@oracle.com
2023-12-20 10:57:20 +01:00
Kai Huang
765a0542fd x86/virt/tdx: Detect TDX during kernel boot
Intel Trust Domain Extensions (TDX) protects guest VMs from malicious
host and certain physical attacks.  A CPU-attested software module
called 'the TDX module' runs inside a new isolated memory range as a
trusted hypervisor to manage and run protected VMs.

Pre-TDX Intel hardware has support for a memory encryption architecture
called MKTME.  The memory encryption hardware underpinning MKTME is also
used for Intel TDX.  TDX ends up "stealing" some of the physical address
space from the MKTME architecture for crypto-protection to VMs.  The
BIOS is responsible for partitioning the "KeyID" space between legacy
MKTME and TDX.  The KeyIDs reserved for TDX are called 'TDX private
KeyIDs' or 'TDX KeyIDs' for short.

During machine boot, TDX microcode verifies that the BIOS programmed TDX
private KeyIDs consistently and correctly programmed across all CPU
packages.  The MSRs are locked in this state after verification.  This
is why MSR_IA32_MKTME_KEYID_PARTITIONING gets used for TDX enumeration:
it indicates not just that the hardware supports TDX, but that all the
boot-time security checks passed.

The TDX module is expected to be loaded by the BIOS when it enables TDX,
but the kernel needs to properly initialize it before it can be used to
create and run any TDX guests.  The TDX module will be initialized by
the KVM subsystem when KVM wants to use TDX.

Detect platform TDX support by detecting TDX private KeyIDs.

The TDX module itself requires one TDX KeyID as the 'TDX global KeyID'
to protect its metadata.  Each TDX guest also needs a TDX KeyID for its
own protection.  Just use the first TDX KeyID as the global KeyID and
leave the rest for TDX guests.  If no TDX KeyID is left for TDX guests,
disable TDX as initializing the TDX module alone is useless.

[ dhansen: add X86_FEATURE, replace helper function ]

Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Reviewed-by: David Hildenbrand <david@redhat.com>
Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Link: https://lore.kernel.org/all/20231208170740.53979-1-dave.hansen%40intel.com
2023-12-08 09:11:58 -08:00
Borislav Petkov (AMD)
04c3024560 x86/barrier: Do not serialize MSR accesses on AMD
AMD does not have the requirement for a synchronization barrier when
acccessing a certain group of MSRs. Do not incur that unnecessary
penalty there.

There will be a CPUID bit which explicitly states that a MFENCE is not
needed. Once that bit is added to the APM, this will be extended with
it.

While at it, move to processor.h to avoid include hell. Untangling that
file properly is a matter for another day.

Some notes on the performance aspect of why this is relevant, courtesy
of Kishon VijayAbraham <Kishon.VijayAbraham@amd.com>:

On a AMD Zen4 system with 96 cores, a modified ipi-bench[1] on a VM
shows x2AVIC IPI rate is 3% to 4% lower than AVIC IPI rate. The
ipi-bench is modified so that the IPIs are sent between two vCPUs in the
same CCX. This also requires to pin the vCPU to a physical core to
prevent any latencies. This simulates the use case of pinning vCPUs to
the thread of a single CCX to avoid interrupt IPI latency.

In order to avoid run-to-run variance (for both x2AVIC and AVIC), the
below configurations are done:

  1) Disable Power States in BIOS (to prevent the system from going to
     lower power state)

  2) Run the system at fixed frequency 2500MHz (to prevent the system
     from increasing the frequency when the load is more)

With the above configuration:

*) Performance measured using ipi-bench for AVIC:
  Average Latency:  1124.98ns [Time to send IPI from one vCPU to another vCPU]

  Cumulative throughput: 42.6759M/s [Total number of IPIs sent in a second from
  				     48 vCPUs simultaneously]

*) Performance measured using ipi-bench for x2AVIC:
  Average Latency:  1172.42ns [Time to send IPI from one vCPU to another vCPU]

  Cumulative throughput: 40.9432M/s [Total number of IPIs sent in a second from
  				     48 vCPUs simultaneously]

From above, x2AVIC latency is ~4% more than AVIC. However, the expectation is
x2AVIC performance to be better or equivalent to AVIC. Upon analyzing
the perf captures, it is observed significant time is spent in
weak_wrmsr_fence() invoked by x2apic_send_IPI().

With the fix to skip weak_wrmsr_fence()

*) Performance measured using ipi-bench for x2AVIC:
  Average Latency:  1117.44ns [Time to send IPI from one vCPU to another vCPU]

  Cumulative throughput: 42.9608M/s [Total number of IPIs sent in a second from
  				     48 vCPUs simultaneously]

Comparing the performance of x2AVIC with and without the fix, it can be seen
the performance improves by ~4%.

Performance captured using an unmodified ipi-bench using the 'mesh-ipi' option
with and without weak_wrmsr_fence() on a Zen4 system also showed significant
performance improvement without weak_wrmsr_fence(). The 'mesh-ipi' option ignores
CCX or CCD and just picks random vCPU.

  Average throughput (10 iterations) with weak_wrmsr_fence(),
        Cumulative throughput: 4933374 IPI/s

  Average throughput (10 iterations) without weak_wrmsr_fence(),
        Cumulative throughput: 6355156 IPI/s

[1] https://github.com/bytedance/kvm-utils/tree/master/microbenchmark/ipi-bench

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230622095212.20940-1-bp@alien8.de
2023-11-13 10:09:45 +01:00
Linus Torvalds
0a23fb262d Major microcode loader restructuring, cleanup and improvements by Thomas
Gleixner:
 
 - Restructure the code needed for it and add a temporary initrd mapping
   on 32-bit so that the loader can access the microcode blobs. This in
   itself is a preparation for the next major improvement:
 
 - Do not load microcode on 32-bit before paging has been enabled.
   Handling this has caused an endless stream of headaches, issues, ugly
   code and unnecessary hacks in the past. And there really wasn't any
   sensible reason to do that in the first place. So switch the 32-bit
   loading to happen after paging has been enabled and turn the loader
   code "real purrty" again
 
 - Drop mixed microcode steppings loading on Intel - there, a single patch
   loaded on the whole system is sufficient
 
 - Rework late loading to track which CPUs have updated microcode
   successfully and which haven't, act accordingly
 
 - Move late microcode loading on Intel in NMI context in order to
   guarantee concurrent loading on all threads
 
 - Make the late loading CPU-hotplug-safe and have the offlined threads
   be woken up for the purpose of the update
 
 - Add support for a minimum revision which determines whether late
   microcode loading is safe on a machine and the microcode does not
   change software visible features which the machine cannot use anyway
   since feature detection has happened already. Roughly, the minimum
   revision is the smallest revision number which must be loaded
   currently on the system so that late updates can be allowed
 
 - Other nice leanups, fixess, etc all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmVE0xkACgkQEsHwGGHe
 VUrCuBAAhOqqwkYPiGXPWd2hvdn1zGtD5fvEdXn3Orzd+Lwc6YaQTsCxCjIO/0ws
 8inpPFuOeGz4TZcplzipi3G5oatPVc7ORDuW+/BvQQQljZOsSKfhiaC29t6dvS6z
 UG3sbCXKVwlJ5Kwv3Qe4eWur4Ex6GeFDZkIvBCmbaAdGPFlfu1i2uO1yBooNP1Rs
 GiUkp+dP1/KREWwR/dOIsHYL2QjWIWfHQEWit/9Bj46rxE9ERx/TWt3AeKPfKriO
 Wp0JKp6QY78jg6a0a2/JVmbT1BKz69Z9aPp6hl4P2MfbBYOnqijRhdezFW0NyqV2
 pn6nsuiLIiXbnSOEw0+Wdnw5Q0qhICs5B5eaBfQrwgfZ8pxPHv2Ir777GvUTV01E
 Dv0ZpYsHa+mHe17nlK8V3+4eajt0PetExcXAYNiIE+pCb7pLjjKkl8e+lcEvEsO0
 QSL3zG5i5RWUMPYUvaFRgepWy3k/GPIoDQjRcUD3P+1T0GmnogNN10MMNhmOzfWU
 pyafe4tJUOVsq0HJ7V/bxIHk2p+Q+5JLKh5xBm9janE4BpabmSQnvFWNblVfK4ig
 M9ohjI/yMtgXROC4xkNXgi8wE5jfDKBghT6FjTqKWSV45vknF1mNEjvuaY+aRZ3H
 MB4P3HCj+PKWJimWHRYnDshcytkgcgVcYDiim8va/4UDrw8O2ks=
 =JOZu
 -----END PGP SIGNATURE-----

Merge tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 microcode loading updates from Borislac Petkov:
 "Major microcode loader restructuring, cleanup and improvements by
  Thomas Gleixner:

   - Restructure the code needed for it and add a temporary initrd
     mapping on 32-bit so that the loader can access the microcode
     blobs. This in itself is a preparation for the next major
     improvement:

   - Do not load microcode on 32-bit before paging has been enabled.

     Handling this has caused an endless stream of headaches, issues,
     ugly code and unnecessary hacks in the past. And there really
     wasn't any sensible reason to do that in the first place. So switch
     the 32-bit loading to happen after paging has been enabled and turn
     the loader code "real purrty" again

   - Drop mixed microcode steppings loading on Intel - there, a single
     patch loaded on the whole system is sufficient

   - Rework late loading to track which CPUs have updated microcode
     successfully and which haven't, act accordingly

   - Move late microcode loading on Intel in NMI context in order to
     guarantee concurrent loading on all threads

   - Make the late loading CPU-hotplug-safe and have the offlined
     threads be woken up for the purpose of the update

   - Add support for a minimum revision which determines whether late
     microcode loading is safe on a machine and the microcode does not
     change software visible features which the machine cannot use
     anyway since feature detection has happened already. Roughly, the
     minimum revision is the smallest revision number which must be
     loaded currently on the system so that late updates can be allowed

   - Other nice leanups, fixess, etc all over the place"

* tag 'x86_microcode_for_v6.7_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (40 commits)
  x86/microcode/intel: Add a minimum required revision for late loading
  x86/microcode: Prepare for minimal revision check
  x86/microcode: Handle "offline" CPUs correctly
  x86/apic: Provide apic_force_nmi_on_cpu()
  x86/microcode: Protect against instrumentation
  x86/microcode: Rendezvous and load in NMI
  x86/microcode: Replace the all-in-one rendevous handler
  x86/microcode: Provide new control functions
  x86/microcode: Add per CPU control field
  x86/microcode: Add per CPU result state
  x86/microcode: Sanitize __wait_for_cpus()
  x86/microcode: Clarify the late load logic
  x86/microcode: Handle "nosmt" correctly
  x86/microcode: Clean up mc_cpu_down_prep()
  x86/microcode: Get rid of the schedule work indirection
  x86/microcode: Mop up early loading leftovers
  x86/microcode/amd: Use cached microcode for AP load
  x86/microcode/amd: Cache builtin/initrd microcode early
  x86/microcode/amd: Cache builtin microcode too
  x86/microcode/amd: Use correct per CPU ucode_cpu_info
  ...
2023-11-04 08:46:37 -10:00
Linus Torvalds
eb55307e67 X86 core code updates:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a
     model ID less than 4. The newer models have the topology CPUID leaf 0xB
     correctly implemented and are not affected.
 
   - Make SMT control more robust against enumeration failures
 
     SMT control was added to allow controlling SMT at boottime or
     runtime. The primary purpose was to provide a simple mechanism to
     disable SMT in the light of speculation attack vectors.
 
     It turned out that the code is sensible to enumeration failures and
     worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
     which means the primary thread mask is not set up correctly. By chance
     a XEN/PV boot ends up with smp_num_siblings == 2, which makes the
     hotplug control stay at its default value "enabled". So the mask is
     never evaluated.
 
     The ongoing rework of the topology evaluation caused XEN/PV to end up
     with smp_num_siblings == 1, which sets the SMT control to "not
     supported" and the empty primary thread mask causes the hotplug core to
     deny the bringup of the APS.
 
     Make the decision logic more robust and take 'not supported' and 'not
     implemented' into account for the decision whether a CPU should be
     booted or not.
 
   - Fake primary thread mask for XEN/PV
 
     Pretend that all XEN/PV vCPUs are primary threads, which makes the
     usage of the primary thread mask valid on XEN/PV. That is consistent
     with because all of the topology information on XEN/PV is fake or even
     non-existent.
 
   - Encapsulate topology information in cpuinfo_x86
 
     Move the randomly scattered topology data into a separate data
     structure for readability and as a preparatory step for the topology
     evaluation overhaul.
 
   - Consolidate APIC ID data type to u32
 
     It's fixed width hardware data and not randomly u16, int, unsigned long
     or whatever developers decided to use.
 
   - Cure the abuse of cpuinfo for persisting logical IDs.
 
     Per CPU cpuinfo is used to persist the logical package and die
     IDs. That's really not the right place simply because cpuinfo is
     subject to be reinitialized when a CPU goes through an offline/online
     cycle.
 
     Use separate per CPU data for the persisting to enable the further
     topology management rework. It will be removed once the new topology
     management is in place.
 
   - Provide a debug interface for inspecting topology information
 
     Useful in general and extremly helpful for validating the topology
     management rework in terms of correctness or "bug" compatibility.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF
 cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid
 6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso
 Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7
 zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT
 SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u
 y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au
 zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD
 K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv
 vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn
 1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk
 eHhYsnniqsYB5g==
 =xrz8
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Thomas Gleixner:

 - Limit the hardcoded topology quirk for Hygon CPUs to those which have
   a model ID less than 4.

   The newer models have the topology CPUID leaf 0xB correctly
   implemented and are not affected.

 - Make SMT control more robust against enumeration failures

   SMT control was added to allow controlling SMT at boottime or
   runtime. The primary purpose was to provide a simple mechanism to
   disable SMT in the light of speculation attack vectors.

   It turned out that the code is sensible to enumeration failures and
   worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
   which means the primary thread mask is not set up correctly. By
   chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
   the hotplug control stay at its default value "enabled". So the mask
   is never evaluated.

   The ongoing rework of the topology evaluation caused XEN/PV to end up
   with smp_num_siblings == 1, which sets the SMT control to "not
   supported" and the empty primary thread mask causes the hotplug core
   to deny the bringup of the APS.

   Make the decision logic more robust and take 'not supported' and 'not
   implemented' into account for the decision whether a CPU should be
   booted or not.

 - Fake primary thread mask for XEN/PV

   Pretend that all XEN/PV vCPUs are primary threads, which makes the
   usage of the primary thread mask valid on XEN/PV. That is consistent
   with because all of the topology information on XEN/PV is fake or
   even non-existent.

 - Encapsulate topology information in cpuinfo_x86

   Move the randomly scattered topology data into a separate data
   structure for readability and as a preparatory step for the topology
   evaluation overhaul.

 - Consolidate APIC ID data type to u32

   It's fixed width hardware data and not randomly u16, int, unsigned
   long or whatever developers decided to use.

 - Cure the abuse of cpuinfo for persisting logical IDs.

   Per CPU cpuinfo is used to persist the logical package and die IDs.
   That's really not the right place simply because cpuinfo is subject
   to be reinitialized when a CPU goes through an offline/online cycle.

   Use separate per CPU data for the persisting to enable the further
   topology management rework. It will be removed once the new topology
   management is in place.

 - Provide a debug interface for inspecting topology information

   Useful in general and extremly helpful for validating the topology
   management rework in terms of correctness or "bug" compatibility.

* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
  x86/cpu: Provide debug interface
  x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
  x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
  x86/apic: Use u32 for [gs]et_apic_id()
  x86/apic: Use u32 for phys_pkg_id()
  x86/apic: Use u32 for cpu_present_to_apicid()
  x86/apic: Use u32 for check_apicid_used()
  x86/apic: Use u32 for APIC IDs in global data
  x86/apic: Use BAD_APICID consistently
  x86/cpu: Move cpu_l[l2]c_id into topology info
  x86/cpu: Move logical package and die IDs into topology info
  x86/cpu: Remove pointless evaluation of x86_coreid_bits
  x86/cpu: Move cu_id into topology info
  x86/cpu: Move cpu_core_id into topology info
  hwmon: (fam15h_power) Use topology_core_id()
  scsi: lpfc: Use topology_core_id()
  x86/cpu: Move cpu_die_id into topology info
  x86/cpu: Move phys_proc_id into topology info
  x86/cpu: Encapsulate topology information in cpuinfo_x86
  ...
2023-10-30 17:37:47 -10:00
Linus Torvalds
f0d25b5d0f x86 MM handling code changes for v6.7:
- Add new NX-stack self-test
  - Improve NUMA partial-CFMWS handling
  - Fix #VC handler bugs resulting in SEV-SNP boot failures
  - Drop the 4MB memory size restriction on minimal NUMA nodes
  - Reorganize headers a bit, in preparation to header dependency reduction efforts
  - Misc cleanups & fixes
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmU9Ek4RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1gIJQ/+Mg6mzMaThyNXqhJszeZJBmDaBv2sqjAB
 5tcferg1nJBdNBzX8bJ95UFt9fIqeYAcgH00qlQCYSmyzbC1TQTk9U2Pre1zbOw4
 042ONK8sygKSje1zdYleHoBeqwnxD2VNM0NwBElhGjumwHRng/tbLiI9wx6qiz+C
 VsFXavkBszHGA1pjy9wZLGixYIH5jCygMpH134Wp+CIhpS+C4nftcGdIL1D5Oil1
 6Tm2XeI6uyfiQhm9IOwDjfoYeC7gUjx1rp8rHseGUMJxyO/BX9q5j1ixbsVriqfW
 97ucYuRL9mza7ic516C9v7OlAA3AGH2xWV+SYOGK88i9Co4kYzP4WnamxXqOsD8+
 popxG55oa6QelhaouTBZvgERpZ4fWupSDs/UccsDaE9leMCerNEbGHEzt/Mm/2sw
 xopjMQ0y5Kn6/fS0dLv8U+XHu4ANkvXJkFd6Ny0h/WfgGefuQOOTG9ruYgfeqqB8
 dViQ4R7CO8ySjD45KawAZl/EqL86x1M/CI1nlt0YY4vNwUuOJbebL7Jn8w3Fjxm5
 FVfUlDmcPdhZfL9Vnrsi6MIou1cU1yJPw4D6sXJ4sg4s7A4ebBcRRrjayVQ4msjv
 Q7cvBOMnWEHhOV11pvP50FmQuj74XW3bUqiuWrnK1SypvnhHavF6kc1XYpBLs1xZ
 y8nueJW2qPw=
 =tT5F
 -----END PGP SIGNATURE-----

Merge tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 mm handling updates from Ingo Molnar:

 - Add new NX-stack self-test

 - Improve NUMA partial-CFMWS handling

 - Fix #VC handler bugs resulting in SEV-SNP boot failures

 - Drop the 4MB memory size restriction on minimal NUMA nodes

 - Reorganize headers a bit, in preparation to header dependency
   reduction efforts

 - Misc cleanups & fixes

* tag 'x86-mm-2023-10-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/mm: Drop the 4 MB restriction on minimal NUMA node memory size
  selftests/x86/lam: Zero out buffer for readlink()
  x86/sev: Drop unneeded #include
  x86/sev: Move sev_setup_arch() to mem_encrypt.c
  x86/tdx: Replace deprecated strncpy() with strtomem_pad()
  selftests/x86/mm: Add new test that userspace stack is in fact NX
  x86/sev: Make boot_ghcb_page[] static
  x86/boot: Move x86_cache_alignment initialization to correct spot
  x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach
  x86/sev-es: Allow copy_from_kernel_nofault() in earlier boot
  x86_64: Show CR4.PSE on auxiliaries like on BSP
  x86/iommu/docs: Update AMD IOMMU specification document URL
  x86/sev/docs: Update document URL in amd-memory-encryption.rst
  x86/mm: Move arch_memory_failure() and arch_is_platform_page() definitions from <asm/processor.h> to <asm/pgtable.h>
  ACPI/NUMA: Apply SRAT proximity domain to entire CFMWS window
  x86/numa: Introduce numa_fill_memblks()
2023-10-30 15:40:57 -10:00
Thomas Gleixner
0b62f6cb07 x86/microcode/32: Move early loading after paging enable
32-bit loads microcode before paging is enabled. The commit which
introduced that has zero justification in the changelog. The cover
letter has slightly more content, but it does not give any technical
justification either:

  "The problem in current microcode loading method is that we load a
   microcode way, way too late; ideally we should load it before turning
   paging on.  This may only be practical on 32 bits since we can't get
   to 64-bit mode without paging on, but we should still do it as early
   as at all possible."

Handwaving word salad with zero technical content.

Someone claimed in an offlist conversation that this is required for
curing the ATOM erratum AAE44/AAF40/AAG38/AAH41. That erratum requires
an microcode update in order to make the usage of PSE safe. But during
early boot, PSE is completely irrelevant and it is evaluated way later.

Neither is it relevant for the AP on single core HT enabled CPUs as the
microcode loading on the AP is not doing anything.

On dual core CPUs there is a theoretical problem if a split of an
executable large page between enabling paging including PSE and loading
the microcode happens. But that's only theoretical, it's practically
irrelevant because the affected dual core CPUs are 64bit enabled and
therefore have paging and PSE enabled before loading the microcode on
the second core. So why would it work on 64-bit but not on 32-bit?

The erratum:

  "AAG38 Code Fetch May Occur to Incorrect Address After a Large Page is
   Split Into 4-Kbyte Pages

   Problem: If software clears the PS (page size) bit in a present PDE
   (page directory entry), that will cause linear addresses mapped through
   this PDE to use 4-KByte pages instead of using a large page after old
   TLB entries are invalidated. Due to this erratum, if a code fetch uses
   this PDE before the TLB entry for the large page is invalidated then it
   may fetch from a different physical address than specified by either the
   old large page translation or the new 4-KByte page translation. This
   erratum may also cause speculative code fetches from incorrect addresses."

The practical relevance for this is exactly zero because there is no
splitting of large text pages during early boot-time, i.e. between paging
enable and microcode loading, and neither during CPU hotplug.

IOW, this load microcode before paging enable is yet another voodoo
programming solution in search of a problem. What's worse is that it causes
at least two serious problems:

 1) When stackprotector is enabled, the microcode loader code has the
    stackprotector mechanics enabled. The read from the per CPU variable
    __stack_chk_guard is always accessing the virtual address either
    directly on UP or via %fs on SMP. In physical address mode this
    results in an access to memory above 3GB. So this works by chance as
    the hardware returns the same value when there is no RAM at this
    physical address. When there is RAM populated above 3G then the read
    is by chance the same as nothing changes that memory during the very
    early boot stage. That's not necessarily true during runtime CPU
    hotplug.

 2) When function tracing is enabled, the relevant microcode loader
    functions and the functions invoked from there will call into the
    tracing code and evaluate global and per CPU variables in physical
    address mode. What could potentially go wrong?

Cure this and move the microcode loading after the early paging enable, use
the new temporary initrd mapping and remove the gunk in the microcode
loader which is required to handle physical address mode.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20231017211722.348298216@linutronix.de
2023-10-18 22:15:01 +02:00
Thomas Gleixner
8aa2a4178d x86/apic: Use u32 for cpu_present_to_apicid()
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width and fixup a few related usage sites for consistency sake.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085113.054064391@linutronix.de
2023-10-10 14:38:19 +02:00
Thomas Gleixner
6e29032340 x86/cpu: Move cpu_l[l2]c_id into topology info
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.

Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.

This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
22dc963162 x86/cpu: Move logical package and die IDs into topology info
Yet another topology related data pair. Rename logical_proc_id to
logical_pkg_id so it fits the common naming conventions.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.745139505@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
e3c0c5d52a x86/cpu: Move cu_id into topology info
No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.628405546@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
e95256335d x86/cpu: Move cpu_core_id into topology info
Rename it to core_id and stick it to the other ID fields.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.566519388@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
8a169ed40f x86/cpu: Move cpu_die_id into topology info
Move the next member.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.388185134@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
02fb601d27 x86/cpu: Move phys_proc_id into topology info
Rename it to pkg_id which is the terminology used in the kernel.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.329006989@linutronix.de
2023-10-10 14:38:17 +02:00
Thomas Gleixner
b9655e702d x86/cpu: Encapsulate topology information in cpuinfo_x86
The topology related information is randomly scattered across cpuinfo_x86.

Create a new structure cpuinfo_topo and move in a first step initial_apicid
and apicid into it.

Aside of being better readable this is in preparation for replacing the
horribly fragile CPU topology evaluation code further down the road.

Consolidate APIC ID fields to u32 as that represents the hardware type.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.269787744@linutronix.de
2023-10-10 14:38:17 +02:00
Ingo Molnar
3fc18b06b8 Linux 6.6-rc4
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmUZ4WEeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGnIYH/07zef2U1nlqI+ro
 HRL2GlWGIs9yE70Oax+A3eYUYsjJIPu0yiDhFHUgOV3VyAALo44ZX/WNwKCGsI3e
 zhuOeItyyVcLGZXVC/jxSu0uveyfEiEYIWRYGyQ6Sna8Ksdk/qwhNgQNotdWdQG5
 7xt8z32couglu0uOkxcGqjTxmbjO6WSM5qi7Ts+xLsgrcS5cRuNhAg/vezp9bfeL
 1IUieCih4RJFgar/6LPOiB8uoVXEBonVbtlTRRqYdnqcsSIC+ACR9ZFk/+X88b5z
 S+Ta5VTcOAPu+2M/lSGe+PlUECvoBNK0SIYnaVCP2paPmDxfDXOFvSy/qJE87/7L
 9BeonFw=
 =8FTr
 -----END PGP SIGNATURE-----

Merge tag 'v6.6-rc4' into x86/entry, to pick up fixes

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2023-10-05 10:05:51 +02:00
Dave Hansen
3e32552652 x86/boot: Move x86_cache_alignment initialization to correct spot
c->x86_cache_alignment is initialized from c->x86_clflush_size.
However, commit fbf6449f84 moved c->x86_clflush_size initialization
to later in boot without moving the c->x86_cache_alignment assignment:

  fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")

This presumably left c->x86_cache_alignment set to zero for longer
than it should be.

The result was an oops on 32-bit kernels while accessing a pointer
at 0x20.  The 0x20 came from accessing a structure member at offset
0x10 (buffer->cpumask) from a ZERO_SIZE_PTR=0x10.  kmalloc() can
evidently return ZERO_SIZE_PTR when it's given 0 as its alignment
requirement.

Move the c->x86_cache_alignment initialization to be after
c->x86_clflush_size has an actual value.

Fixes: fbf6449f84 ("x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lore.kernel.org/r/20231002220045.1014760-1-dave.hansen@linux.intel.com
2023-10-03 09:27:12 +02:00
Adam Dunlap
fbf6449f84 x86/sev-es: Set x86_virt_bits to the correct value straight away, instead of a two-phase approach
Instead of setting x86_virt_bits to a possibly-correct value and then
correcting it later, do all the necessary checks before setting it.

At this point, the #VC handler references boot_cpu_data.x86_virt_bits,
and in the previous version, it would be triggered by the CPUIDs between
the point at which it is set to 48 and when it is set to the correct
value.

Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Adam Dunlap <acdunlap@google.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Jacob Xu <jacobhxu@google.com>
Link: https://lore.kernel.org/r/20230912002703.3924521-3-acdunlap@google.com
2023-09-28 22:49:35 +02:00
Pu Wen
a5ef7d68ce x86/srso: Add SRSO mitigation for Hygon processors
Add mitigation for the speculative return stack overflow vulnerability
which exists on Hygon processors too.

Signed-off-by: Pu Wen <puwen@hygon.cn>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/tencent_4A14812842F104E93AA722EC939483CEFF05@qq.com
2023-09-28 09:57:07 +02:00
Nikolay Borisov
61382281e9 x86/entry: Make IA32 syscalls' availability depend on ia32_enabled()
Another major aspect of supporting running of 32bit processes is the
ability to access 32bit syscalls. Such syscalls can be invoked by
using the legacy int 0x80 handler and  sysenter/syscall instructions.

If IA32 emulation is disabled ensure that each of those 3 distinct
mechanisms are also disabled. For int 0x80 a #GP exception would be
generated since the respective descriptor is not going to be loaded at
all. Invoking sysenter will also result in a #GP since IA32_SYSENTER_CS
contains an invalid segment. Finally, syscall instruction cannot really
be disabled so it's configured to execute a minimal handler.

Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-6-nik.borisov@suse.com
2023-09-14 13:19:53 +02:00
Nikolay Borisov
f71e1d2ff8 x86/entry: Rename ignore_sysret()
The SYSCALL instruction cannot really be disabled in compatibility mode.
The best that can be done is to configure the CSTAR msr to point to a
minimal handler. Currently this handler has a rather misleading name -
ignore_sysret() as it's not really doing anything with sysret.

Give it a more descriptive name.

Signed-off-by: Nikolay Borisov <nik.borisov@suse.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230623111409.3047467-3-nik.borisov@suse.com
2023-09-14 13:19:53 +02:00
Linus Torvalds
2fcbb03847 * Mark all Skylake CPUs as vulnerable to GDS
* Fix PKRU covert channel
  * Fix -Wmissing-variable-declarations warning for ia32_xyz_class
  * Fix kernel-doc annotation warning
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTyK2sACgkQaDWVMHDJ
 krCPyA//WbT65hhGZt5UHayoW3Cv8NmS4kRf6FTVMmt1yIvbOtVmWVZeOGMypprC
 jYBPOdTf1SdoUxeD1cTTd/rtbYknczaBLC5VGilGb2/663yQl9ThT3ePc6OgUpPW
 28ItLslfHGchHbrOgCgUK8Aiv8xRdfNUJoByMTOoce6eGUQsgYaNOq74z1YaLsZ4
 afbitcd/vWO9eJfW5DNl26rIP+ksOgA/Iue8uRiEczoPltnbUxGGLCtuuR9B2Xxi
 FqfttvcnUy9yFJBnELx4721VtTcmK4Dq5O/ZoJnmVQqRPY9aXpkbwZnH9co8r/uh
 GueQj30l6VhEO6XnwPvjsOghXI2vOMrxlL3zGMw5y6pjfUWa4W6f33EV6mByYfml
 dfPTXIz9K1QxznHtk6xVhn1X8CFw7L1L7CC/2CPQPETiuqyjWrHqvFBXcsWpKq4N
 1GjnpoveNZmWcE7UY9qEHAXGh7ndI+EIux/0WfJJHOE/fzCr06GphQdxNwPGdi5O
 T3JkZf6R4GBvfi6e0F6Qn2B02sDl18remmAMi9bAn/M31g+mvAoHqKLlI9EzAGGz
 91PzJdHecdvalU6zsCKqi0ETzq11WG7zCfSXs+jeHBe1jsUITpcZCkpVi2pGA2aq
 X7qLjJyW+Sx0hdE2IWFhCOfiwGFpXxfegCl1uax3HrZg6rrORbw=
 =prt2
 -----END PGP SIGNATURE-----

Merge tag 'x86-urgent-2023-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fixes from Dave Hansen:
 "The most important fix here adds a missing CPU model to the recent
  Gather Data Sampling (GDS) mitigation list to ensure that mitigations
  are available on that CPU.

  There are also a pair of warning fixes, and closure of a covert
  channel that pops up when protection keys are disabled.

  Summary:
   - Mark all Skylake CPUs as vulnerable to GDS
   - Fix PKRU covert channel
   - Fix -Wmissing-variable-declarations warning for ia32_xyz_class
   - Fix kernel-doc annotation warning"

* tag 'x86-urgent-2023-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/fpu/xstate: Fix PKRU covert channel
  x86/irq/i8259: Fix kernel-doc annotation warning
  x86/speculation: Mark all Skylake CPUs as vulnerable to GDS
  x86/audit: Fix -Wmissing-variable-declarations warning for ia32_xyz_class
2023-09-01 16:40:19 -07:00
Linus Torvalds
df57721f9a Add x86 shadow stack support
Convert IBT selftest to asm to fix objtool warning
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTv1QQACgkQaDWVMHDJ
 krAUwhAAn6TOwHJK8BSkHeiQhON1nrlP3c5cv0AyZ2NP8RYDrZrSZvhpYBJ6wgKC
 Cx5CGq5nn9twYsYS3KsktLKDfR3lRdsQ7K9qtyFtYiaeaVKo+7gEKl/K+klwai8/
 gninQWHk0zmSCja8Vi77q52WOMkQKapT8+vaON9EVDO8dVEi+CvhAIfPwMafuiwO
 Rk4X86SzoZu9FP79LcCg9XyGC/XbM2OG9eNUTSCKT40qTTKm5y4gix687NvAlaHR
 ko5MTsdl0Wfp6Qk0ohT74LnoA2c1g/FluvZIM33ci/2rFpkf9Hw7ip3lUXqn6CPx
 rKiZ+pVRc0xikVWkraMfIGMJfUd2rhelp8OyoozD7DB7UZw40Q4RW4N5tgq9Fhe9
 MQs3p1v9N8xHdRKl365UcOczUxNAmv4u0nV5gY/4FMC6VjldCl2V9fmqYXyzFS4/
 Ogg4FSd7c2JyGFKPs+5uXyi+RY2qOX4+nzHOoKD7SY616IYqtgKoz5usxETLwZ6s
 VtJOmJL0h//z0A7tBliB0zd+SQ5UQQBDC2XouQH2fNX2isJMn0UDmWJGjaHgK6Hh
 8jVp6LNqf+CEQS387UxckOyj7fu438hDky1Ggaw4YqowEOhQeqLVO4++x+HITrbp
 AupXfbJw9h9cMN63Yc0gVxXQ9IMZ+M7UxLtZ3Cd8/PVztNy/clA=
 =3UUm
 -----END PGP SIGNATURE-----

Merge tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 shadow stack support from Dave Hansen:
 "This is the long awaited x86 shadow stack support, part of Intel's
  Control-flow Enforcement Technology (CET).

  CET consists of two related security features: shadow stacks and
  indirect branch tracking. This series implements just the shadow stack
  part of this feature, and just for userspace.

  The main use case for shadow stack is providing protection against
  return oriented programming attacks. It works by maintaining a
  secondary (shadow) stack using a special memory type that has
  protections against modification. When executing a CALL instruction,
  the processor pushes the return address to both the normal stack and
  to the special permission shadow stack. Upon RET, the processor pops
  the shadow stack copy and compares it to the normal stack copy.

  For more information, refer to the links below for the earlier
  versions of this patch set"

Link: https://lore.kernel.org/lkml/20220130211838.8382-1-rick.p.edgecombe@intel.com/
Link: https://lore.kernel.org/lkml/20230613001108.3040476-1-rick.p.edgecombe@intel.com/

* tag 'x86_shstk_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (47 commits)
  x86/shstk: Change order of __user in type
  x86/ibt: Convert IBT selftest to asm
  x86/shstk: Don't retry vm_munmap() on -EINTR
  x86/kbuild: Fix Documentation/ reference
  x86/shstk: Move arch detail comment out of core mm
  x86/shstk: Add ARCH_SHSTK_STATUS
  x86/shstk: Add ARCH_SHSTK_UNLOCK
  x86: Add PTRACE interface for shadow stack
  selftests/x86: Add shadow stack test
  x86/cpufeatures: Enable CET CR4 bit for shadow stack
  x86/shstk: Wire in shadow stack interface
  x86: Expose thread features in /proc/$PID/status
  x86/shstk: Support WRSS for userspace
  x86/shstk: Introduce map_shadow_stack syscall
  x86/shstk: Check that signal frame is shadow stack mem
  x86/shstk: Check that SSP is aligned on sigreturn
  x86/shstk: Handle signals for shadow stack
  x86/shstk: Introduce routines modifying shstk
  x86/shstk: Handle thread shadow stack
  x86/shstk: Add user-mode shadow stack support
  ...
2023-08-31 12:20:12 -07:00
Dave Hansen
c9f4c45c8e x86/speculation: Mark all Skylake CPUs as vulnerable to GDS
The Gather Data Sampling (GDS) vulnerability is common to all Skylake
processors.  However, the "client" Skylakes* are now in this list:

	https://www.intel.com/content/www/us/en/support/articles/000022396/processors.html

which means they are no longer included for new vulnerabilities here:

	https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html

or in other GDS documentation.  Thus, they were not included in the
original GDS mitigation patches.

Mark SKYLAKE and SKYLAKE_L as vulnerable to GDS to match all the
other Skylake CPUs (which include Kaby Lake).  Also group the CPUs
so that the ones that share the exact same vulnerabilities are next
to each other.

Last, move SRBDS to the end of each line.  This makes it clear at a
glance that SKYLAKE_X is unique.  Of the five Skylakes, it is the
only "server" CPU and has a different implementation from the
clients of the "special register" hardware, making it immune to SRBDS.

This makes the diff much harder to read, but the resulting table is
worth it.

I very much appreciate the report from Michael Zhivich about this
issue.  Despite what level of support a hardware vendor is providing,
the kernel very much needs an accurate and up-to-date list of
vulnerable CPUs.  More reports like this are very welcome.

* Client Skylakes are CPUID 406E3/506E3 which is family 6, models
  0x4E and 0x5E, aka INTEL_FAM6_SKYLAKE and INTEL_FAM6_SKYLAKE_L.

Reported-by: Michael Zhivich <mzhivich@akamai.com>
Fixes: 8974eb5882 ("x86/speculation: Add Gather Data Sampling mitigation")
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
2023-08-31 20:20:31 +02:00
Linus Torvalds
1687d8aca5 * Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
  * Use static_calls() instead of indirect calls for apic->foo()
  * Tons of cleanups an crap removal along the way
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTvfO8ACgkQaDWVMHDJ
 krAP2A//ccii/LuvtTnNEIMMR5w2rwTdHv91ancgFkC8pOeNk37Z8sSLq8tKuLFA
 vgjBIysVIqunuRcNCJ+eqwIIxYfU+UGCWHppzLwO+DY3Q7o9EoTL0BgytdAqxpQQ
 ntEVarqWq25QYXKFoAqbUTJ1UXa42/8HfiXAX/jvP+ACXfilkGPZre6ASxlXeOhm
 XbgPuNQPmXi2WYQH9GCQEsz2Nh80hKap8upK2WbQzzJ3lXsm+xA//4klab0HCYwl
 Uc302uVZozyXRMKbAlwmgasTFOLiV8KKriJ0oHoktBpWgkpdR9uv/RDeSaFR3DAl
 aFmecD4k/Hqezg4yVl+4YpEn2KjxiwARCm4PMW5AV7lpWBPBHAOOai65yJlAi9U6
 bP8pM0+aIx9xg7oWfsTnQ7RkIJ+GZ0w+KZ9LXFM59iu3eV1pAJE3UVyUehe/J1q9
 n8OcH0UeHRlAb8HckqVm1AC7IPvfHw4OAPtUq7z3NFDwbq6i651Tu7f+i2bj31cX
 77Ames+fx6WjxUjyFbJwaK44E7Qez3waztdBfn91qw+m0b+gnKE3ieDNpJTqmm5b
 mKulV7KJwwS6cdqY3+Kr+pIlN+uuGAv7wGzVLcaEAXucDsVn/YAMJHY2+v97xv+n
 J9N+yeaYtmSXVlDsJ6dndMrTQMmcasK1CVXKxs+VYq5Lgf+A68w=
 =eoKm
 -----END PGP SIGNATURE-----

Merge tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 apic updates from Dave Hansen:
 "This includes a very thorough rework of the 'struct apic' handlers.
  Quite a variety of them popped up over the years, especially in the
  32-bit days when odd apics were much more in vogue.

  The end result speaks for itself, which is a removal of a ton of code
  and static calls to replace indirect calls.

  If there's any breakage here, it's likely to be around the 32-bit
  museum pieces that get light to no testing these days.

  Summary:

   - Rework apic callbacks, getting rid of unnecessary ones and
     coalescing lots of silly duplicates.

   - Use static_calls() instead of indirect calls for apic->foo()

   - Tons of cleanups an crap removal along the way"

* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  x86/apic: Turn on static calls
  x86/apic: Provide static call infrastructure for APIC callbacks
  x86/apic: Wrap IPI calls into helper functions
  x86/apic: Mark all hotpath APIC callback wrappers __always_inline
  x86/xen/apic: Mark apic __ro_after_init
  x86/apic: Convert other overrides to apic_update_callback()
  x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
  x86/apic: Provide apic_update_callback()
  x86/xen/apic: Use standard apic driver mechanism for Xen PV
  x86/apic: Provide common init infrastructure
  x86/apic: Wrap apic->native_eoi() into a helper
  x86/apic: Nuke ack_APIC_irq()
  x86/apic: Remove pointless arguments from [native_]eoi_write()
  x86/apic/noop: Tidy up the code
  x86/apic: Remove pointless NULL initializations
  x86/apic: Sanitize APIC ID range validation
  x86/apic: Prepare x2APIC for using apic::max_apic_id
  x86/apic: Simplify X2APIC ID validation
  x86/apic: Add max_apic_id member
  x86/apic: Wrap APIC ID validation into an inline
  ...
2023-08-30 10:44:46 -07:00
Linus Torvalds
42a7f6e3ff - The first, cleanup part of the microcode loader reorg tglx has been
working on. This part makes the loader core code as it is practically
   enabled on pretty much every baremetal machine so there's no need to
   have the Kconfig items. In addition, there are cleanups which prepare
   for future feature enablement.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTskfcACgkQEsHwGGHe
 VUo/hBAAiqVqdc0WASHgVYoO9mD1M2T3oHFz8ceX2pGKf/raZ5UJyit7ybWEZEWG
 rWXFORRlqOKoKImQm6JhyJsu29Xmi9sTb1WNwEyT8YMdhx8v57hOch3alX7sm2BF
 9eOl/77hxt7Pt8keN6gY5w5cydEgBvi8bVe8sfU3hJMwieAMH0q5syRx7fDizcVd
 qoTicHRjfj5Q8BL5NXtdPEMENYPyV89DVjnUM1HVPpCkoHxmOujewgjs4gY7PsGp
 qAGB1+IG3aqOWHM9SDIJp5U9tNX2huhqRTcZsNEe8qHTXCv8F8zRzK0J8giM1wed
 5aAGC4AfMh/gjryXeMj1nnwoAf5TQw4dK+y+BYXIykdQDV1up+HdDtjrBmJ5Kslf
 n/8uGLdLLqMQVEE2hT3r1Ft1RqVf3UwWOxzc+KASjKCj0F5djt+F2JDNGoN0sMD9
 JDj3Dtvo2e1+aZlcvXWSmMCVMT0By1mbFqirEXT3i1sYwHDx23s+KwY71CdT8gx8
 nbEWsaADPRynNbTAI5Z5TFq0Cohs9AUNuotRHYCc0Et5NBlzoN8yAKNW39twUDEt
 a/Knq1Vnybrp18pE/rDphm+p/K261OuEXfFFVTASSlvgMnVM0UAZZZka7A0DmN+g
 mvZ2A9hByFk6sELm3QeNrOdex8djeichyY7+EQ13K25wMd/YsX0=
 =QXDh
 -----END PGP SIGNATURE-----

Merge tag 'x86_microcode_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 microcode loading updates from Borislav Petkov:
 "The first, cleanup part of the microcode loader reorg tglx has been
  working on. The other part wasn't fully ready in time so it will
  follow on later.

  This part makes the loader core code as it is practically enabled on
  pretty much every baremetal machine so there's no need to have the
  Kconfig items.

  In addition, there are cleanups which prepare for future feature
  enablement"

* tag 'x86_microcode_for_v6.6_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/microcode: Remove remaining references to CONFIG_MICROCODE_AMD
  x86/microcode/intel: Remove pointless mutex
  x86/microcode/intel: Remove debug code
  x86/microcode: Move core specific defines to local header
  x86/microcode/intel: Rename get_datasize() since its used externally
  x86/microcode: Make reload_early_microcode() static
  x86/microcode: Include vendor headers into microcode.h
  x86/microcode/intel: Move microcode functions out of cpu/intel.c
  x86/microcode: Hide the config knob
  x86/mm: Remove unused microcode.h include
  x86/microcode: Remove microcode_mutex
  x86/microcode/AMD: Rip out static buffers
2023-08-28 15:55:20 -07:00
Linus Torvalds
6f49693a6c Updates for the CPU hotplug core:
- Support partial SMT enablement.
 
     So far the sysfs SMT control only allows to toggle between SMT on and
     off. That's sufficient for x86 which usually has at max two threads
     except for the Xeon PHI platform which has four threads per core.
 
     Though PowerPC has up to 16 threads per core and so far it's only
     possible to control the number of enabled threads per core via a
     command line option. There is some way to control this at runtime, but
     that lacks enforcement and the usability is awkward.
 
     This update expands the sysfs interface and the core infrastructure to
     accept numerical values so PowerPC can build SMT runtime control for
     partial SMT enablement on top.
 
     The core support has also been provided to the PowerPC maintainers who
     added the PowerPC related changes on top.
 
   - Minor cleanups and documentation updates.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmTsj4wTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoaszEADKMd/6m7/Bq7RU2OJ+IXw8yfMEF9nS
 6HPrFu71a4cDufb/G8UckQOvkwdTFWD7bZ0snJe2sBDFTOtzK/inYkgPZTxlm7si
 JcJmFnHKUM7OTwNZb7Tv1bd9Csz4JhggAYUw6P8CqsCmhQ+p6ECemx3bHDlYiywm
 5eW2yzI9EM4dbsHPwUOvjI0WazGvAf0esSDAS8JTnhBXbd8FAckbMV+xuRPcCUK+
 dBqbqr+3Nf4/wcXTro/gZIc7sEATAHH6m7zHlLVBSyVPnBxre8NLz6KciW4SezyJ
 GWFnDV03mmG2KxQ2ugwI8n6M3zDJQtfEJFwW/x4t2M5RK+ka2a6G6GtCLHYOXLWR
 akIuBXtTAC57BgpqzBihGej9eiC1BJ1QMa9ZK+6WDXSZtMTFOLlbwdY2/qyfxpfw
 LfepWb+UMtFy5YyW84S1O5/AqpOtKD2kPTqfDjvDxWIAigispU+qwAKxcMzMjtwz
 aAlf2Z/iX0R9DkRzGD2gaFG5AUsRich8RtVO7u+WDwYSsi8ywrvryiPlZrDDBkSQ
 sRzdoHeXNGVY/FgkbZmEyBj4udrypymkR6ivqn6C2OrysgznSiv5NC983uS6TfJX
 cVqdUv6CNYYNiNu0x0Qf0MluYT2s5c1Fa4bjCBJL+KwORwjM3+TCN9RA1KtFrW2T
 G3Ta1KqI6wRonA==
 =JQRJ
 -----END PGP SIGNATURE-----

Merge tag 'smp-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull CPU hotplug updates from Thomas Gleixner:
 "Updates for the CPU hotplug core:

   - Support partial SMT enablement.

     So far the sysfs SMT control only allows to toggle between SMT on
     and off. That's sufficient for x86 which usually has at max two
     threads except for the Xeon PHI platform which has four threads per
     core

     Though PowerPC has up to 16 threads per core and so far it's only
     possible to control the number of enabled threads per core via a
     command line option. There is some way to control this at runtime,
     but that lacks enforcement and the usability is awkward

     This update expands the sysfs interface and the core infrastructure
     to accept numerical values so PowerPC can build SMT runtime control
     for partial SMT enablement on top

     The core support has also been provided to the PowerPC maintainers
     who added the PowerPC related changes on top

   - Minor cleanups and documentation updates"

* tag 'smp-core-2023-08-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation: core-api/cpuhotplug: Fix state names
  cpu/hotplug: Remove unused function declaration cpu_set_state_online()
  cpu/SMT: Fix cpu_smt_possible() comment
  cpu/SMT: Allow enabling partial SMT states via sysfs
  cpu/SMT: Create topology_smt_thread_allowed()
  cpu/SMT: Remove topology_smt_supported()
  cpu/SMT: Store the current/max number of threads
  cpu/SMT: Move smt/control simple exit cases earlier
  cpu/SMT: Move SMT prototypes into cpu_smt.h
  cpu/hotplug: Remove dependancy against cpu_primary_thread_mask
2023-08-28 15:04:43 -07:00
Josh Poimboeuf
c6cfcbd8ca x86/ibt: Convert IBT selftest to asm
The following warning is reported when frame pointers and kernel IBT are
enabled:

  vmlinux.o: warning: objtool: ibt_selftest+0x11: sibling call from callable instruction with modified stack frame

The problem is that objtool interprets the indirect branch in
ibt_selftest() as a sibling call, and GCC inserts a (partial) frame
pointer prologue before it:

  0000 000000000003f550 <ibt_selftest>:
  0000    3f550:	f3 0f 1e fa          	endbr64
  0004    3f554:	e8 00 00 00 00       	call   3f559 <ibt_selftest+0x9>	3f555: R_X86_64_PLT32	__fentry__-0x4
  0009    3f559:	55                   	push   %rbp
  000a    3f55a:	48 8d 05 02 00 00 00 	lea    0x2(%rip),%rax        # 3f563 <ibt_selftest_ip>
  0011    3f561:	ff e0                	jmp    *%rax

Note the inline asm is missing ASM_CALL_CONSTRAINT, so the 'push %rbp'
happens before the indirect branch and the 'mov %rsp, %rbp' happens
afterwards.

Simplify the generated code and make it easier to understand for both
tools and humans by moving the selftest to proper asm.

Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/99a7e16b97bda97bf0a04aa141d6241cd8a839a2.1680912949.git.jpoimboe@kernel.org
2023-08-17 17:07:09 +02:00
Ashok Raj
82ad097b02 x86/microcode: Include vendor headers into microcode.h
Currently vendor specific headers are included explicitly when used in
common code. Instead, include the vendor specific headers in
microcode.h, and include that in all usages.

No functional change.

Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.776541545@linutronix.de
2023-08-13 18:42:55 +02:00
Thomas Gleixner
3ba3fdfe2c x86/cpu: Make identify_boot_cpu() static
It's not longer used outside the source file.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:15 -07:00
Sebastian Andrzej Siewior
80347cd515 x86/microcode: Remove microcode_mutex
microcode_mutex is only used by reload_store(). It has a comment saying
"to synchronize with each other". Other user of this mutex have been
removed in the commits

  181b6f40e9 ("x86/microcode: Rip out the OLD_INTERFACE").
  b6f86689d5 ("x86/microcode: Rip out the subsys interface gunk")

The sysfs interface does not need additional synchronisation vs itself
because it is provided as kernfs_ops::mutex which is acquired in
kernfs_fop_write_iter().

Remove the superfluous microcode_mutex.

Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230804075853.JF_n6GXC@linutronix.de
2023-08-08 19:06:29 +02:00
Linus Torvalds
64094e7e31 Mitigate Gather Data Sampling issue
* Add Base GDS mitigation
  * Support GDS_NO under KVM
  * Fix a documentation typo
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTJh5YACgkQaDWVMHDJ
 krAzAw/8DzjhAYEa7a1AodCBMNg8uNOPnLNoRPPNhaN5Iw6W3zXYDBDKT9PyjAIx
 RoIM0aHx/oY9nCpK441o25oCWAAyzk6E5/+q9hMa7B4aHUGKqiDUC6L9dC8UiiSN
 yvoBv4g7F81QnmyazwYI64S6vnbr4Cqe7K/mvVqQ/vbJiugD25zY8mflRV9YAuMk
 Oe7Ff/mCA+I/kqyKhJE3cf3qNhZ61FsFI886fOSvIE7g4THKqo5eGPpIQxR4mXiU
 Ri2JWffTaeHr2m0sAfFeLH4VTZxfAgBkNQUEWeG6f2kDGTEKibXFRsU4+zxjn3gl
 xug+9jfnKN1ceKyNlVeJJZKAfr2TiyUtrlSE5d+subIRKKBaAGgnCQDasaFAluzd
 aZkOYz30PCebhN+KTrR84FySHCaxnev04jqdtVGAQEDbTvyNagFUdZFGhWijJShV
 l2l4A0gFSYJmPfPVuuAwOJnnZtA1sRH9oz/Sny3+z9BKloZh+Nc/+Cu9zC8SLjaU
 BF3Qv2gU9HKTJ+MSy2JrGS52cONfpO5ngFHoOMilZ1KBHrfSb1eiy32PDT+vK60Y
 PFEmI8SWl7bmrO1snVUCfGaHBsHJSu5KMqwBGmM4xSRzJpyvRe493xC7+nFvqNLY
 vFOFc4jGeusOXgiLPpfGduppkTGcM7sy75UMLwTSLcQbDK99mus=
 =ZAPY
 -----END PGP SIGNATURE-----

Merge tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86/gds fixes from Dave Hansen:
 "Mitigate Gather Data Sampling issue:

   - Add Base GDS mitigation

   - Support GDS_NO under KVM

   - Fix a documentation typo"

* tag 'gds-for-linus-2023-08-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  Documentation/x86: Fix backwards on/off logic about YMM support
  KVM: Add GDS_NO support to KVM
  x86/speculation: Add Kconfig option for GDS
  x86/speculation: Add force option to GDS mitigation
  x86/speculation: Add Gather Data Sampling mitigation
2023-08-07 17:03:54 -07:00
Linus Torvalds
138bcddb86 Add a mitigation for the speculative RAS (Return Address Stack) overflow
vulnerability on AMD processors. In short, this is yet another issue
 where userspace poisons a microarchitectural structure which can then be
 used to leak privileged information through a side channel.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTQs1gACgkQEsHwGGHe
 VUo1UA/8C34PwJveZDcerdkaxSF+WKx7AjOI/L2ws1qn9YVFA3ItFMgVuFTrlY6c
 1eYKYB3FS9fVN3KzGOXGyhho6seHqfY0+8cyYupR+PVLn9rSy7GqHaIMr37FdQ2z
 yb9xu26v+gsvuPEApazS6MxijYS98u71rHhmg97qsHCnUiMJ01+TaGucntukNJv8
 FfwjZJvgeUiBPQ/6IeA/O0413tPPJ9weawPyW+sV1w7NlXjaUVkNXwiq/Xxbt9uI
 sWwMBjFHpSnhBRaDK8W5Blee/ZfsS6qhJ4jyEKUlGtsElMnZLPHbnrbpxxqA9gyE
 K+3ZhoHf/W1hhvcZcALNoUHLx0CvVekn0o41urAhPfUutLIiwLQWVbApmuW80fgC
 DhPedEFu7Wp6Okj5+Bqi/XOsOOWN2WRDSzdAq10o1C+e+fzmkr6y4E6gskfz1zXU
 ssD9S4+uAJ5bccS5lck4zLffsaA03nAYTlvl1KRP4pOz5G9ln6eyO20ar1WwfGAV
 o5ZsTJVGQMyVA49QFkksj+kOI3chkmDswPYyGn2y8OfqYXU4Ip4eN+VkjorIAo10
 zIec3Z0bCGZ9UUMylUmdtH3KAm8q0wVNoFrUkMEmO8j6nn7ew2BhwLMn4uu+nOnw
 lX2AG6PNhRLVDVaNgDsWMwejaDsitQPoWRuCIAZ0kQhbeYuwfpM=
 =73JY
 -----END PGP SIGNATURE-----

Merge tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86/srso fixes from Borislav Petkov:
 "Add a mitigation for the speculative RAS (Return Address Stack)
  overflow vulnerability on AMD processors.

  In short, this is yet another issue where userspace poisons a
  microarchitectural structure which can then be used to leak privileged
  information through a side channel"

* tag 'x86_bugs_srso' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/srso: Tie SBPB bit setting to microcode patch detection
  x86/srso: Add a forgotten NOENDBR annotation
  x86/srso: Fix return thunks in generated code
  x86/srso: Add IBPB on VMEXIT
  x86/srso: Add IBPB
  x86/srso: Add SRSO_NO support
  x86/srso: Add IBPB_BRTYPE support
  x86/srso: Add a Speculative RAS Overflow mitigation
  x86/bugs: Increase the x86 bugs vector size to two u32s
2023-08-07 16:35:44 -07:00
Rick Edgecombe
0dc2a76092 x86/cpufeatures: Enable CET CR4 bit for shadow stack
Setting CR4.CET is a prerequisite for utilizing any CET features, most of
which also require setting MSRs.

Kernel IBT already enables the CET CR4 bit when it detects IBT HW support
and is configured with kernel IBT. However, future patches that enable
userspace shadow stack support will need the bit set as well. So change
the logic to enable it in either case.

Clear MSR_IA32_U_CET in cet_disable() so that it can't live to see
userspace in a new kexec-ed kernel that has CR4.CET set from kernel IBT.

Co-developed-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Yu-cheng Yu <yu-cheng.yu@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-39-rick.p.edgecombe%40intel.com
2023-08-02 15:01:51 -07:00
Michael Ellerman
447ae4ac41 cpu/SMT: Store the current/max number of threads
Some architectures allow partial SMT states at boot time, ie. when not all
SMT threads are brought online.

To support that the SMT code needs to know the maximum number of SMT
threads, and also the currently configured number.

The architecture code knows the max number of threads, so have the
architecture code pass that value to cpu_smt_set_num_threads(). Note that
although topology_max_smt_threads() exists, it is not configured early
enough to be used here. As architecture, like PowerPC, allows the threads
number to be set through the kernel command line, also pass that value.

[ ldufour: Slightly reword the commit message ]
[ ldufour: Rename cpu_smt_check_topology and add a num_threads argument ]

Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Signed-off-by: Laurent Dufour <ldufour@linux.ibm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Link: https://lore.kernel.org/r/20230705145143.40545-5-ldufour@linux.ibm.com
2023-07-28 09:53:37 +02:00
Borislav Petkov (AMD)
1b5277c0ea x86/srso: Add SRSO_NO support
Add support for the CPUID flag which denotes that the CPU is not
affected by SRSO.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27 11:07:19 +02:00
Borislav Petkov (AMD)
fb3bd914b3 x86/srso: Add a Speculative RAS Overflow mitigation
Add a mitigation for the speculative return address stack overflow
vulnerability found on AMD processors.

The mitigation works by ensuring all RET instructions speculate to
a controlled location, similar to how speculation is controlled in the
retpoline sequence.  To accomplish this, the __x86_return_thunk forces
the CPU to mispredict every function return using a 'safe return'
sequence.

To ensure the safety of this mitigation, the kernel must ensure that the
safe return sequence is itself free from attacker interference.  In Zen3
and Zen4, this is accomplished by creating a BTB alias between the
untraining function srso_untrain_ret_alias() and the safe return
function srso_safe_ret_alias() which results in evicting a potentially
poisoned BTB entry and using that safe one for all function returns.

In older Zen1 and Zen2, this is accomplished using a reinterpretation
technique similar to Retbleed one: srso_untrain_ret() and
srso_safe_ret().

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-27 11:07:14 +02:00
Daniel Sneddon
8974eb5882 x86/speculation: Add Gather Data Sampling mitigation
Gather Data Sampling (GDS) is a hardware vulnerability which allows
unprivileged speculative access to data which was previously stored in
vector registers.

Intel processors that support AVX2 and AVX512 have gather instructions
that fetch non-contiguous data elements from memory. On vulnerable
hardware, when a gather instruction is transiently executed and
encounters a fault, stale data from architectural or internal vector
registers may get transiently stored to the destination vector
register allowing an attacker to infer the stale data using typical
side channel techniques like cache timing attacks.

This mitigation is different from many earlier ones for two reasons.
First, it is enabled by default and a bit must be set to *DISABLE* it.
This is the opposite of normal mitigation polarity. This means GDS can
be mitigated simply by updating microcode and leaving the new control
bit alone.

Second, GDS has a "lock" bit. This lock bit is there because the
mitigation affects the hardware security features KeyLocker and SGX.
It needs to be enabled and *STAY* enabled for these features to be
mitigated against GDS.

The mitigation is enabled in the microcode by default. Disable it by
setting gather_data_sampling=off or by disabling all mitigations with
mitigations=off. The mitigation status can be checked by reading:

    /sys/devices/system/cpu/vulnerabilities/gather_data_sampling

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-07-19 16:45:37 -07:00
Borislav Petkov (AMD)
522b1d6921 x86/cpu/amd: Add a Zenbleed fix
Add a fix for the Zen2 VZEROUPPER data corruption bug where under
certain circumstances executing VZEROUPPER can cause register
corruption or leak data.

The optimal fix is through microcode but in the case the proper
microcode revision has not been applied, enable a fallback fix using
a chicken bit.

Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
2023-07-17 15:48:10 +02:00
Linus Torvalds
941d77c773 - Compute the purposeful misalignment of zen_untrain_ret automatically
and assert __x86_return_thunk's alignment so that future changes to
   the symbol macros do not accidentally break them.
 
 - Remove CONFIG_X86_FEATURE_NAMES Kconfig option as its existence is
   pointless
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmSZ1wgACgkQEsHwGGHe
 VUrXlRAAhIonFM1suIHo6w085jY5YA1XnsziJr/bT3e16FdHrF1i3RBEX4ml0m3O
 ADwa9dMsC9UJIa+/TKRNFfQvfRcLE/rsUKlS1Rluf/IRIxuSt/Oa4bFQHGXFRwnV
 eSlnWTNiaWrRs/vJEYAnMOe98oRyElHWa9kZ7K5FC+Ksfn/WO1U1RQ2NWg2A2wkN
 8MHJiS41w2piOrLU/nfUoI7+esHgHNlib222LoptDGHuaY8V2kBugFooxAEnTwS3
 PCzWUqCTgahs393vbx6JimoIqgJDa7bVdUMB0kOUHxtpbBiNdYYVy6e7UKnV1yjB
 qP3v9jQW4+xIyRmlFiErJXEZx7DjAIP5nulGRrUMzRfWEGF8mdRZ+ugGqFMHCeC8
 vXI+Ixp2vvsfhG3N/algsJUdkjlpt3hBpElRZCfR08M253KAbAmUNMOr4sx4RPi5
 ymC+pLIHd1K0G9jiZaFnOMaY71gAzWizwxwjFKLQMo44q+lpNJvsVO00cr+9RBYj
 LQL2APkONVEzHPMYR/LrXCslYaW//DrfLdRQjNbzUTonxFadkTO2Eu8J90B/5SFZ
 CqC1NYKMQPVFeg4XuGWCgZEH+jokCGhl8vvmXClAMcOEOZt0/s4H89EKFkmziyon
 L1ZrA/U72gWV8EwD7GLtuFJmnV4Ayl/hlek2j0qNKaj6UUgTFg8=
 =LcUq
 -----END PGP SIGNATURE-----

Merge tag 'x86_cpu_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cpu updates from Borislav Petkov:

 - Compute the purposeful misalignment of zen_untrain_ret automatically
   and assert __x86_return_thunk's alignment so that future changes to
   the symbol macros do not accidentally break them.

 - Remove CONFIG_X86_FEATURE_NAMES Kconfig option as its existence is
   pointless

* tag 'x86_cpu_for_v6.5' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/retbleed: Add __x86_return_thunk alignment checks
  x86/cpu: Remove X86_FEATURE_NAMES
  x86/Kconfig: Make X86_FEATURE_NAMES non-configurable in prompt
2023-06-26 15:42:34 -07:00
Linus Torvalds
9244724fbf A large update for SMP management:
- Parallel CPU bringup
 
     The reason why people are interested in parallel bringup is to shorten
     the (kexec) reboot time of cloud servers to reduce the downtime of the
     VM tenants.
 
     The current fully serialized bringup does the following per AP:
 
       1) Prepare callbacks (allocate, intialize, create threads)
       2) Kick the AP alive (e.g. INIT/SIPI on x86)
       3) Wait for the AP to report alive state
       4) Let the AP continue through the atomic bringup
       5) Let the AP run the threaded bringup to full online state
 
     There are two significant delays:
 
       #3 The time for an AP to report alive state in start_secondary() on
          x86 has been measured in the range between 350us and 3.5ms
          depending on vendor and CPU type, BIOS microcode size etc.
 
       #4 The atomic bringup does the microcode update. This has been
          measured to take up to ~8ms on the primary threads depending on
          the microcode patch size to apply.
 
     On a two socket SKL server with 56 cores (112 threads) the boot CPU
     spends on current mainline about 800ms busy waiting for the APs to come
     up and apply microcode. That's more than 80% of the actual onlining
     procedure.
 
     This can be reduced significantly by splitting the bringup mechanism
     into two parts:
 
       1) Run the prepare callbacks and kick the AP alive for each AP which
       	 needs to be brought up.
 
 	 The APs wake up, do their firmware initialization and run the low
       	 level kernel startup code including microcode loading in parallel
       	 up to the first synchronization point. (#1 and #2 above)
 
       2) Run the rest of the bringup code strictly serialized per CPU
       	 (#3 - #5 above) as it's done today.
 
 	 Parallelizing that stage of the CPU bringup might be possible in
 	 theory, but it's questionable whether required surgery would be
 	 justified for a pretty small gain.
 
     If the system is large enough the first AP is already waiting at the
     first synchronization point when the boot CPU finished the wake-up of
     the last AP. That reduces the AP bringup time on that SKL from ~800ms
     to ~80ms, i.e. by a factor ~10x.
 
     The actual gain varies wildly depending on the system, CPU, microcode
     patch size and other factors. There are some opportunities to reduce
     the overhead further, but that needs some deep surgery in the x86 CPU
     bringup code.
 
     For now this is only enabled on x86, but the core functionality
     obviously works for all SMP capable architectures.
 
   - Enhancements for SMP function call tracing so it is possible to locate
     the scheduling and the actual execution points. That allows to measure
     IPI delivery time precisely.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZb/YTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoRoOD/9vAiGI3IhGyZcX/RjXxauSHf8Pmqll
 05jUubFi5Vi3tKI1ubMOsnMmJTw2yy5xDyS/iGj7AcbRLq9uQd3iMtsXXHNBzo/X
 FNxnuWTXYUj0vcOYJ+j4puBumFzzpRCprqccMInH0kUnSWzbnaQCeelicZORAf+w
 zUYrswK4HpBXHDOnvPw6Z7MYQe+zyDQSwjSftstLyROzu+lCEw/9KUaysY2epShJ
 wHClxS2XqMnpY4rJ/CmJAlRhD0Plb89zXyo6k9YZYVDWoAcmBZy6vaTO4qoR171L
 37ApqrgsksMkjFycCMnmrFIlkeb7bkrYDQ5y+xqC3JPTlYDKOYmITV5fZ83HD77o
 K7FAhl/CgkPq2Ec+d82GFLVBKR1rijbwHf7a0nhfUy0yMeaJCxGp4uQ45uQ09asi
 a/VG2T38EgxVdseC92HRhcdd3pipwCb5wqjCH/XdhdlQrk9NfeIeP+TxF4QhADhg
 dApp3ifhHSnuEul7+HNUkC6U+Zc8UeDPdu5lvxSTp2ooQ0JwaGgC5PJq3nI9RUi2
 Vv826NHOknEjFInOQcwvp6SJPfcuSTF75Yx6xKz8EZ3HHxpvlolxZLq+3ohSfOKn
 2efOuZO5bEu4S/G2tRDYcy+CBvNVSrtZmCVqSOS039c8quBWQV7cj0334cjzf+5T
 TRiSzvssbYYmaw==
 =Y8if
 -----END PGP SIGNATURE-----

Merge tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull SMP updates from Thomas Gleixner:
 "A large update for SMP management:

   - Parallel CPU bringup

     The reason why people are interested in parallel bringup is to
     shorten the (kexec) reboot time of cloud servers to reduce the
     downtime of the VM tenants.

     The current fully serialized bringup does the following per AP:

       1) Prepare callbacks (allocate, intialize, create threads)
       2) Kick the AP alive (e.g. INIT/SIPI on x86)
       3) Wait for the AP to report alive state
       4) Let the AP continue through the atomic bringup
       5) Let the AP run the threaded bringup to full online state

     There are two significant delays:

       #3 The time for an AP to report alive state in start_secondary()
          on x86 has been measured in the range between 350us and 3.5ms
          depending on vendor and CPU type, BIOS microcode size etc.

       #4 The atomic bringup does the microcode update. This has been
          measured to take up to ~8ms on the primary threads depending
          on the microcode patch size to apply.

     On a two socket SKL server with 56 cores (112 threads) the boot CPU
     spends on current mainline about 800ms busy waiting for the APs to
     come up and apply microcode. That's more than 80% of the actual
     onlining procedure.

     This can be reduced significantly by splitting the bringup
     mechanism into two parts:

       1) Run the prepare callbacks and kick the AP alive for each AP
          which needs to be brought up.

          The APs wake up, do their firmware initialization and run the
          low level kernel startup code including microcode loading in
          parallel up to the first synchronization point. (#1 and #2
          above)

       2) Run the rest of the bringup code strictly serialized per CPU
          (#3 - #5 above) as it's done today.

          Parallelizing that stage of the CPU bringup might be possible
          in theory, but it's questionable whether required surgery
          would be justified for a pretty small gain.

     If the system is large enough the first AP is already waiting at
     the first synchronization point when the boot CPU finished the
     wake-up of the last AP. That reduces the AP bringup time on that
     SKL from ~800ms to ~80ms, i.e. by a factor ~10x.

     The actual gain varies wildly depending on the system, CPU,
     microcode patch size and other factors. There are some
     opportunities to reduce the overhead further, but that needs some
     deep surgery in the x86 CPU bringup code.

     For now this is only enabled on x86, but the core functionality
     obviously works for all SMP capable architectures.

   - Enhancements for SMP function call tracing so it is possible to
     locate the scheduling and the actual execution points. That allows
     to measure IPI delivery time precisely"

* tag 'smp-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip: (45 commits)
  trace,smp: Add tracepoints for scheduling remotelly called functions
  trace,smp: Add tracepoints around remotelly called functions
  MAINTAINERS: Add CPU HOTPLUG entry
  x86/smpboot: Fix the parallel bringup decision
  x86/realmode: Make stack lock work in trampoline_compat()
  x86/smp: Initialize cpu_primary_thread_mask late
  cpu/hotplug: Fix off by one in cpuhp_bringup_mask()
  x86/apic: Fix use of X{,2}APIC_ENABLE in asm with older binutils
  x86/smpboot/64: Implement arch_cpuhp_init_parallel_bringup() and enable it
  x86/smpboot: Support parallel startup of secondary CPUs
  x86/smpboot: Implement a bit spinlock to protect the realmode stack
  x86/apic: Save the APIC virtual base address
  cpu/hotplug: Allow "parallel" bringup up to CPUHP_BP_KICK_AP_STATE
  x86/apic: Provide cpu_primary_thread mask
  x86/smpboot: Enable split CPU startup
  cpu/hotplug: Provide a split up CPUHP_BRINGUP mechanism
  cpu/hotplug: Reset task stack state in _cpu_up()
  cpu/hotplug: Remove unused state functions
  riscv: Switch to hotplug core state synchronization
  parisc: Switch to hotplug core state synchronization
  ...
2023-06-26 13:59:56 -07:00
Thomas Gleixner
b81fac906a x86/fpu: Move FPU initialization into arch_cpu_finalize_init()
Initializing the FPU during the early boot process is a pointless
exercise. Early boot is convoluted and fragile enough.

Nothing requires that the FPU is set up early. It has to be initialized
before fork_init() because the task_struct size depends on the FPU register
buffer size.

Move the initialization to arch_cpu_finalize_init() which is the perfect
place to do so.

No functional change.

This allows to remove quite some of the custom early command line parsing,
but that's subject to the next installment.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.902376621@linutronix.de
2023-06-16 10:16:01 +02:00
Thomas Gleixner
1f34bb2a24 x86/fpu: Remove cpuinfo argument from init functions
Nothing in the call chain requires it

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.783704297@linutronix.de
2023-06-16 10:16:01 +02:00
Thomas Gleixner
54d9a91a3d x86/init: Initialize signal frame size late
No point in doing this during really early boot. Move it to an early
initcall so that it is set up before possible user mode helpers are started
during device initialization.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.727330699@linutronix.de
2023-06-16 10:16:00 +02:00
Thomas Gleixner
439e17576e init, x86: Move mem_encrypt_init() into arch_cpu_finalize_init()
Invoke the X86ism mem_encrypt_init() from X86 arch_cpu_finalize_init() and
remove the weak fallback from the core code.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230613224545.670360645@linutronix.de
2023-06-16 10:16:00 +02:00
Thomas Gleixner
7c7077a726 x86/cpu: Switch to arch_cpu_finalize_init()
check_bugs() is a dumping ground for finalizing the CPU bringup. Only parts of
it has to do with actual CPU bugs.

Split it apart into arch_cpu_finalize_init() and cpu_select_mitigations().

Fixup the bogus 32bit comments while at it.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230613224545.019583869@linutronix.de
2023-06-16 10:15:59 +02:00