This patch introduces non-owning reference semantics to the verifier,
specifically linked_list API kfunc handling. release_on_unlock logic for
refs is refactored - with small functional changes - to implement these
semantics, and bpf_list_push_{front,back} are migrated to use them.
When a list node is pushed to a list, the program still has a pointer to
the node:
n = bpf_obj_new(typeof(*n));
bpf_spin_lock(&l);
bpf_list_push_back(&l, n);
/* n still points to the just-added node */
bpf_spin_unlock(&l);
What the verifier considers n to be after the push, and thus what can be
done with n, are changed by this patch.
Common properties both before/after this patch:
* After push, n is only a valid reference to the node until end of
critical section
* After push, n cannot be pushed to any list
* After push, the program can read the node's fields using n
Before:
* After push, n retains the ref_obj_id which it received on
bpf_obj_new, but the associated bpf_reference_state's
release_on_unlock field is set to true
* release_on_unlock field and associated logic is used to implement
"n is only a valid ref until end of critical section"
* After push, n cannot be written to, the node must be removed from
the list before writing to its fields
* After push, n is marked PTR_UNTRUSTED
After:
* After push, n's ref is released and ref_obj_id set to 0. NON_OWN_REF
type flag is added to reg's type, indicating that it's a non-owning
reference.
* NON_OWN_REF flag and logic is used to implement "n is only a
valid ref until end of critical section"
* n can be written to (except for special fields e.g. bpf_list_node,
timer, ...)
Summary of specific implementation changes to achieve the above:
* release_on_unlock field, ref_set_release_on_unlock helper, and logic
to "release on unlock" based on that field are removed
* The anonymous active_lock struct used by bpf_verifier_state is
pulled out into a named struct bpf_active_lock.
* NON_OWN_REF type flag is introduced along with verifier logic
changes to handle non-owning refs
* Helpers are added to use NON_OWN_REF flag to implement non-owning
ref semantics as described above
* invalidate_non_owning_refs - helper to clobber all non-owning refs
matching a particular bpf_active_lock identity. Replaces
release_on_unlock logic in process_spin_lock.
* ref_set_non_owning - set NON_OWN_REF type flag after doing some
sanity checking
* ref_convert_owning_non_owning - convert owning reference w/
specified ref_obj_id to non-owning references. Set NON_OWN_REF
flag for each reg with that ref_obj_id and 0-out its ref_obj_id
* Update linked_list selftests to account for minor semantic
differences introduced by this patch
* Writes to a release_on_unlock node ref are not allowed, while
writes to non-owning reference pointees are. As a result the
linked_list "write after push" failure tests are no longer scenarios
that should fail.
* The test##missing_lock##op and test##incorrect_lock##op
macro-generated failure tests need to have a valid node argument in
order to have the same error output as before. Otherwise
verification will fail early and the expected error output won't be seen.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230212092715.1422619-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Modify list_push_pop_multiple to alloc and insert nodes 2-at-a-time.
Without the previous patch's fix, this block of code:
bpf_spin_lock(lock);
bpf_list_push_front(head, &f[i]->node);
bpf_list_push_front(head, &f[i + 1]->node);
bpf_spin_unlock(lock);
would fail check_reference_leak check as release_on_unlock logic would miss
a ref that should've been released.
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
cc: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/r/20221201183406.1203621-2-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Include various tests covering the success and failure cases. Also, run
the success cases at runtime to verify correctness of linked list
manipulation routines, in addition to ensuring successful verification.
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20221118015614.2013203-23-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>