This pull request contains the following branches:
docs.2022.04.20a: Documentation updates.
fixes.2022.04.20a: Miscellaneous fixes.
nocb.2022.04.11b: Callback-offloading updates, mainly simplifications.
rcu-tasks.2022.04.11b: RCU-tasks updates, including some -rt fixups,
handling of systems with sparse CPU numbering, and a fix for a
boot-time race-condition failure.
srcu.2022.05.03a: Put SRCU on a memory diet in order to reduce the size
of the srcu_struct structure.
torture.2022.04.11b: Torture-test updates fixing some bugs in tests and
closing some testing holes.
torture-tasks.2022.04.20a: Torture-test updates for the RCU tasks flavors,
most notably ensuring that building rcutorture and friends does
not change the RCU-tasks-related Kconfig options.
torturescript.2022.04.20a: Torture-test scripting updates.
exp.2022.05.11a: Expedited grace-period updates, most notably providing
milliseconds-scale (not all that) soft real-time response from
synchronize_rcu_expedited(). This is also the first time in
almost 30 years of RCU that someone other than me has pushed
for a reduction in the RCU CPU stall-warning timeout, in this
case by more than three orders of magnitude from 21 seconds to
20 milliseconds. This tighter timeout applies only to expedited
grace periods.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEbK7UrM+RBIrCoViJnr8S83LZ+4wFAmKG2zcTHHBhdWxtY2tA
a2VybmVsLm9yZwAKCRCevxLzctn7jGXgD/90xtRtZyN0umlN/IOBBn8fIOM+BAMu
5k3ef6wLsXKXlLO13WTjSitypX9LEFwytTeVhEyN4ODeX0cI9mUmts6Z8/6sV92D
fN8vqTavveE7m5YfFfLRvDRfVHpB0LpLMM+V0qWPu/F8dWPDKA0225rX9IC7iICP
LkxCuNVNzJ0cLaVTvsUWlxMdHcogydXZb1gPDVRhnR6iVFWCBtL4RRpU41CoSNh4
fWRSLQak6OhZRFE7hVoLQhZyLE0GIw1fuUJgj2fCllhgGogDx78FQ8jHdDzMEhVk
cD4Yel5vUPiy2AKphGfi28bKFYcyhVBnD/Jq733VJV0/szyddxNbz0xKpEA0/8qh
w1T7IjBN6MAKHSh0uUitm6U24VN13m4r30HrUQSpp71VFZkUD4QS6TismKsaRNjR
lK4q2QKBprBb3Hv7KPAGYT1Us3aS7qLPrgPf3gzSxL1aY5QV0A5UpPP6RKTLbWPl
CEQxEno6g5LTHwKd5QD74dG8ccphg9377lDMJpeesYShBqlLNrNWCxqJoZk2HnSf
f2dTQeQWrtRJjeTGy/4cfONCGZTghE0Pch43XMzLLt3ZTuDc8FVM0t3Xs9J5Kg22
zmThQh6LRXTGjrb1vLiOrjPf5JaTnX2Sz8OUJTo/ZxwcixxP/mj8Ja+W81NjfqnK
LLZ1D6UN4a8n9A==
=4spH
-----END PGP SIGNATURE-----
Merge tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu
Pull RCU update from Paul McKenney:
- Documentation updates
- Miscellaneous fixes
- Callback-offloading updates, mainly simplifications
- RCU-tasks updates, including some -rt fixups, handling of systems
with sparse CPU numbering, and a fix for a boot-time race-condition
failure
- Put SRCU on a memory diet in order to reduce the size of the
srcu_struct structure
- Torture-test updates fixing some bugs in tests and closing some
testing holes
- Torture-test updates for the RCU tasks flavors, most notably ensuring
that building rcutorture and friends does not change the
RCU-tasks-related Kconfig options
- Torture-test scripting updates
- Expedited grace-period updates, most notably providing
milliseconds-scale (not all that) soft real-time response from
synchronize_rcu_expedited().
This is also the first time in almost 30 years of RCU that someone
other than me has pushed for a reduction in the RCU CPU stall-warning
timeout, in this case by more than three orders of magnitude from 21
seconds to 20 milliseconds. This tighter timeout applies only to
expedited grace periods
* tag 'rcu.2022.05.19a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (80 commits)
rcu: Move expedited grace period (GP) work to RT kthread_worker
rcu: Introduce CONFIG_RCU_EXP_CPU_STALL_TIMEOUT
srcu: Drop needless initialization of sdp in srcu_gp_start()
srcu: Prevent expedited GPs and blocking readers from consuming CPU
srcu: Add contention check to call_srcu() srcu_data ->lock acquisition
srcu: Automatically determine size-transition strategy at boot
rcutorture: Make torture.sh allow for --kasan
rcutorture: Make torture.sh refscale and rcuscale specify Tasks Trace RCU
rcutorture: Make kvm.sh allow more memory for --kasan runs
torture: Save "make allmodconfig" .config file
scftorture: Remove extraneous "scf" from per_version_boot_params
rcutorture: Adjust scenarios' Kconfig options for CONFIG_PREEMPT_DYNAMIC
torture: Enable CSD-lock stall reports for scftorture
torture: Skip vmlinux check for kvm-again.sh runs
scftorture: Adjust for TASKS_RCU Kconfig option being selected
rcuscale: Allow rcuscale without RCU Tasks Rude/Trace
rcuscale: Allow rcuscale without RCU Tasks
refscale: Allow refscale without RCU Tasks Rude/Trace
refscale: Allow refscale without RCU Tasks
rcutorture: Allow specifying per-scenario stat_interval
...
Because GCC-12 is fully stupid about array bounds and it's just really
hard to get a solid array definition from a linker script, flip the
array order to avoid needing negative offsets :-/
This makes the whole relational pointer magic a little less obvious, but
alas.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Link: https://lkml.kernel.org/r/YoOLLmLG7HRTXeEm@hirez.programming.kicks-ass.net
Commit fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting
sched_switch event, 2022-01-20) added a new prev_state argument to the
sched_switch tracepoint, before the prev task_struct pointer.
This reordering of arguments broke BPF programs that use the raw
tracepoint (e.g. tp_btf programs). The type of the second argument has
changed and existing programs that assume a task_struct* argument
(e.g. for bpf_task_storage access) will now fail to verify.
If we instead append the new argument to the end, all existing programs
would continue to work and can conditionally extract the prev_state
argument on supported kernel versions.
Fixes: fa2c3254d7 (sched/tracing: Don't re-read p->state when emitting sched_switch event, 2022-01-20)
Signed-off-by: Delyan Kratunov <delyank@fb.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lkml.kernel.org/r/c8a6930dfdd58a4a5755fc01732675472979732b.camel@fb.com
Stop playing with tsk->__state to remove TASK_WAKEKILL while a ptrace
command is executing.
Instead remove TASK_WAKEKILL from the definition of TASK_TRACED, and
implement a new jobctl flag TASK_PTRACE_FROZEN. This new flag is set
in jobctl_freeze_task and cleared when ptrace_stop is awoken or in
jobctl_unfreeze_task (when ptrace_stop remains asleep).
In signal_wake_up add __TASK_TRACED to state along with TASK_WAKEKILL
when the wake up is for a fatal signal. Skip adding __TASK_TRACED
when TASK_PTRACE_FROZEN is not set. This has the same effect as
changing TASK_TRACED to __TASK_TRACED as all of the wake_ups that use
TASK_KILLABLE go through signal_wake_up.
Handle a ptrace_stop being called with a pending fatal signal.
Previously it would have been handled by schedule simply failing to
sleep. As TASK_WAKEKILL is no longer part of TASK_TRACED schedule
will sleep with a fatal_signal_pending. The code in signal_wake_up
guarantees that the code will be awaked by any fatal signal that
codes after TASK_TRACED is set.
Previously the __state value of __TASK_TRACED was changed to
TASK_RUNNING when woken up or back to TASK_TRACED when the code was
left in ptrace_stop. Now when woken up ptrace_stop now clears
JOBCTL_PTRACE_FROZEN and when left sleeping ptrace_unfreezed_traced
clears JOBCTL_PTRACE_FROZEN.
Tested-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Oleg Nesterov <oleg@redhat.com>
Link: https://lkml.kernel.org/r/20220505182645.497868-10-ebiederm@xmission.com
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
When we use raw_spin_rq_lock() to acquire the rq lock and have to
update the rq clock while holding the lock, the kernel may issue
a WARN_DOUBLE_CLOCK warning.
Since we directly use raw_spin_rq_lock() to acquire rq lock instead of
rq_lock(), there is no corresponding change to rq->clock_update_flags.
In particular, we have obtained the rq lock of other CPUs, the
rq->clock_update_flags of this CPU may be RQCF_UPDATED at this time, and
then calling update_rq_clock() will trigger the WARN_DOUBLE_CLOCK warning.
So we need to clear RQCF_UPDATED of rq->clock_update_flags to avoid
the WARN_DOUBLE_CLOCK warning.
For the sched_rt_period_timer() and migrate_task_rq_dl() cases
we simply replace raw_spin_rq_lock()/raw_spin_rq_unlock() with
rq_lock()/rq_unlock().
For the {pull,push}_{rt,dl}_task() cases, we add the
double_rq_clock_clear_update() function to clear RQCF_UPDATED of
rq->clock_update_flags, and call double_rq_clock_clear_update()
before double_lock_balance()/double_rq_lock() returns to avoid the
WARN_DOUBLE_CLOCK warning.
Some call trace reports:
Call Trace 1:
<IRQ>
sched_rt_period_timer+0x10f/0x3a0
? enqueue_top_rt_rq+0x110/0x110
__hrtimer_run_queues+0x1a9/0x490
hrtimer_interrupt+0x10b/0x240
__sysvec_apic_timer_interrupt+0x8a/0x250
sysvec_apic_timer_interrupt+0x9a/0xd0
</IRQ>
<TASK>
asm_sysvec_apic_timer_interrupt+0x12/0x20
Call Trace 2:
<TASK>
activate_task+0x8b/0x110
push_rt_task.part.108+0x241/0x2c0
push_rt_tasks+0x15/0x30
finish_task_switch+0xaa/0x2e0
? __switch_to+0x134/0x420
__schedule+0x343/0x8e0
? hrtimer_start_range_ns+0x101/0x340
schedule+0x4e/0xb0
do_nanosleep+0x8e/0x160
hrtimer_nanosleep+0x89/0x120
? hrtimer_init_sleeper+0x90/0x90
__x64_sys_nanosleep+0x96/0xd0
do_syscall_64+0x34/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 3:
<TASK>
deactivate_task+0x93/0xe0
pull_rt_task+0x33e/0x400
balance_rt+0x7e/0x90
__schedule+0x62f/0x8e0
do_task_dead+0x3f/0x50
do_exit+0x7b8/0xbb0
do_group_exit+0x2d/0x90
get_signal+0x9df/0x9e0
? preempt_count_add+0x56/0xa0
? __remove_hrtimer+0x35/0x70
arch_do_signal_or_restart+0x36/0x720
? nanosleep_copyout+0x39/0x50
? do_nanosleep+0x131/0x160
? audit_filter_inodes+0xf5/0x120
exit_to_user_mode_prepare+0x10f/0x1e0
syscall_exit_to_user_mode+0x17/0x30
do_syscall_64+0x40/0x90
entry_SYSCALL_64_after_hwframe+0x44/0xae
Call Trace 4:
update_rq_clock+0x128/0x1a0
migrate_task_rq_dl+0xec/0x310
set_task_cpu+0x84/0x1e4
try_to_wake_up+0x1d8/0x5c0
wake_up_process+0x1c/0x30
hrtimer_wakeup+0x24/0x3c
__hrtimer_run_queues+0x114/0x270
hrtimer_interrupt+0xe8/0x244
arch_timer_handler_phys+0x30/0x50
handle_percpu_devid_irq+0x88/0x140
generic_handle_domain_irq+0x40/0x60
gic_handle_irq+0x48/0xe0
call_on_irq_stack+0x2c/0x60
do_interrupt_handler+0x80/0x84
Steps to reproduce:
1. Enable CONFIG_SCHED_DEBUG when compiling the kernel
2. echo 1 > /sys/kernel/debug/clear_warn_once
echo "WARN_DOUBLE_CLOCK" > /sys/kernel/debug/sched/features
echo "NO_RT_PUSH_IPI" > /sys/kernel/debug/sched/features
3. Run some rt/dl tasks that periodically work and sleep, e.g.
Create 2*n rt or dl (90% running) tasks via rt-app (on a system
with n CPUs), and Dietmar Eggemann reports Call Trace 4 when running
on PREEMPT_RT kernel.
Signed-off-by: Hao Jia <jiahao.os@bytedance.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lore.kernel.org/r/20220430085843.62939-2-jiahao.os@bytedance.com
IF CONFIG_SYSCTL is n, build warn:
kernel/sched/core.c:1782:12: warning: ‘sysctl_sched_uclamp_handler’ defined but not used [-Wunused-function]
static int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
^~~~~~~~~~~~~~~~~~~~~~~~~~~
sysctl_sched_uclamp_handler() is used while CONFIG_SYSCTL enabled,
wrap all related code with CONFIG_SYSCTL to fix this.
Fixes: 3267e0156c ("sched: Move uclamp_util sysctls to core.c")
Signed-off-by: YueHaibing <yuehaibing@huawei.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmJu9FYeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGAyEH/16xtJSpLmLwrQzG
o+4ToQxSQ+/9UHyu0RTEvHg2THm9/8emtIuYyc/5FgdoWctcSa3AaDcveWmuWmkS
KYcdhfJsaEqjNHS3OPYXN84fmo9Hel7263shu5+IYmP/sN0DfQp6UWTryX1q4B3Q
4Pdutkuq63Uwd8nBZ5LXQBumaBrmkkuMgWEdT4+6FOo1mPzwdIGBxCuz1UsNNl5k
chLWxkQfe2eqgWbYJrgCQfrVdORXVtoU2fGilZUNrHRVGkkldXkkz5clJfapyZD3
odmZCEbrE4GPKgZwCmDERMfD1hzhZDtYKiHfOQ506szH5ykJjPBcOjHed7dA60eB
J3+wdek=
=39Ca
-----END PGP SIGNATURE-----
Merge tag 'v5.18-rc5' into sched/core to pull in fixes & to resolve a conflict
- sched/core is on a pretty old -rc1 base - refresh it to include recent fixes.
- this also allows up to resolve a (trivial) .mailmap conflict
Conflicts:
.mailmap
Signed-off-by: Ingo Molnar <mingo@kernel.org>
This is invoked from the stopper thread too, which is definitely not idle.
Rename it to flush_smp_call_function_queue() and fixup the callers.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.305001096@linutronix.de
A W=1 build emits more than a dozen missing prototype warnings related to
scheduler and scheduler specific includes.
Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220413133024.249118058@linutronix.de
move uclamp_util sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move rt_period/runtime sysctls to rt.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
move schedstats sysctls to core.c and use the new
register_sysctl_init() to register the sysctl interface.
Signed-off-by: Zhen Ni <nizhen@uniontech.com>
Signed-off-by: Luis Chamberlain <mcgrof@kernel.org>
CONFIG_PREEMPT{_NONE, _VOLUNTARY} designate either:
o The build-time preemption model when !PREEMPT_DYNAMIC
o The default boot-time preemption model when PREEMPT_DYNAMIC
IOW, using those on PREEMPT_DYNAMIC kernels is meaningless - the actual
model could have been set to something else by the "preempt=foo" cmdline
parameter. Same problem applies to CONFIG_PREEMPTION.
Introduce a set of helpers to determine the actual preemption model used by
the live kernel.
Suggested-by: Marco Elver <elver@google.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Marco Elver <elver@google.com>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20211112185203.280040-3-valentin.schneider@arm.com
try_steal_cookie() looks at task_struct::cpus_mask to decide if the
task could be moved to `this' CPU. It ignores that the task might be in
a migration disabled section while not on the CPU. In this case the task
must not be moved otherwise per-CPU assumption are broken.
Use is_cpu_allowed(), as suggested by Peter Zijlstra, to decide if the a
task can be moved.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YjNK9El+3fzGmswf@linutronix.de
Steve reported that ChromeOS encounters the forceidle balancer being
ran from rt_mutex_setprio()'s balance_callback() invocation and
explodes.
Now, the forceidle balancer gets queued every time the idle task gets
selected, set_next_task(), which is strictly too often.
rt_mutex_setprio() also uses set_next_task() in the 'change' pattern:
queued = task_on_rq_queued(p); /* p->on_rq == TASK_ON_RQ_QUEUED */
running = task_current(rq, p); /* rq->curr == p */
if (queued)
dequeue_task(...);
if (running)
put_prev_task(...);
/* change task properties */
if (queued)
enqueue_task(...);
if (running)
set_next_task(...);
However, rt_mutex_setprio() will explicitly not run this pattern on
the idle task (since priority boosting the idle task is quite insane).
Most other 'change' pattern users are pidhash based and would also not
apply to idle.
Also, the change pattern doesn't contain a __balance_callback()
invocation and hence we could have an out-of-band balance-callback,
which *should* trigger the WARN in rq_pin_lock() (which guards against
this exact anti-pattern).
So while none of that explains how this happens, it does indicate that
having it in set_next_task() might not be the most robust option.
Instead, explicitly queue the forceidle balancer from pick_next_task()
when it does indeed result in forceidle selection. Having it here,
ensures it can only be triggered under the __schedule() rq->lock
instance, and hence must be ran from that context.
This also happens to clean up the code a little, so win-win.
Fixes: d2dfa17bc7 ("sched: Trivial forced-newidle balancer")
Reported-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: T.J. Alumbaugh <talumbau@chromium.org>
Link: https://lkml.kernel.org/r/20220330160535.GN8939@worktop.programming.kicks-ass.net
With the advent of various new memory types, some machines will have
multiple types of memory, e.g. DRAM and PMEM (persistent memory). The
memory subsystem of these machines can be called memory tiering system,
because the performance of the different types of memory are usually
different.
In such system, because of the memory accessing pattern changing etc,
some pages in the slow memory may become hot globally. So in this
patch, the NUMA balancing mechanism is enhanced to optimize the page
placement among the different memory types according to hot/cold
dynamically.
In a typical memory tiering system, there are CPUs, fast memory and slow
memory in each physical NUMA node. The CPUs and the fast memory will be
put in one logical node (called fast memory node), while the slow memory
will be put in another (faked) logical node (called slow memory node).
That is, the fast memory is regarded as local while the slow memory is
regarded as remote. So it's possible for the recently accessed pages in
the slow memory node to be promoted to the fast memory node via the
existing NUMA balancing mechanism.
The original NUMA balancing mechanism will stop to migrate pages if the
free memory of the target node becomes below the high watermark. This
is a reasonable policy if there's only one memory type. But this makes
the original NUMA balancing mechanism almost do not work to optimize
page placement among different memory types. Details are as follows.
It's the common cases that the working-set size of the workload is
larger than the size of the fast memory nodes. Otherwise, it's
unnecessary to use the slow memory at all. So, there are almost always
no enough free pages in the fast memory nodes, so that the globally hot
pages in the slow memory node cannot be promoted to the fast memory
node. To solve the issue, we have 2 choices as follows,
a. Ignore the free pages watermark checking when promoting hot pages
from the slow memory node to the fast memory node. This will
create some memory pressure in the fast memory node, thus trigger
the memory reclaiming. So that, the cold pages in the fast memory
node will be demoted to the slow memory node.
b. Define a new watermark called wmark_promo which is higher than
wmark_high, and have kswapd reclaiming pages until free pages reach
such watermark. The scenario is as follows: when we want to promote
hot-pages from a slow memory to a fast memory, but fast memory's free
pages would go lower than high watermark with such promotion, we wake
up kswapd with wmark_promo watermark in order to demote cold pages and
free us up some space. So, next time we want to promote hot-pages we
might have a chance of doing so.
The choice "a" may create high memory pressure in the fast memory node.
If the memory pressure of the workload is high, the memory pressure
may become so high that the memory allocation latency of the workload
is influenced, e.g. the direct reclaiming may be triggered.
The choice "b" works much better at this aspect. If the memory
pressure of the workload is high, the hot pages promotion will stop
earlier because its allocation watermark is higher than that of the
normal memory allocation. So in this patch, choice "b" is implemented.
A new zone watermark (WMARK_PROMO) is added. Which is larger than the
high watermark and can be controlled via watermark_scale_factor.
In addition to the original page placement optimization among sockets,
the NUMA balancing mechanism is extended to be used to optimize page
placement according to hot/cold among different memory types. So the
sysctl user space interface (numa_balancing) is extended in a backward
compatible way as follow, so that the users can enable/disable these
functionality individually.
The sysctl is converted from a Boolean value to a bits field. The
definition of the flags is,
- 0: NUMA_BALANCING_DISABLED
- 1: NUMA_BALANCING_NORMAL
- 2: NUMA_BALANCING_MEMORY_TIERING
We have tested the patch with the pmbench memory accessing benchmark
with the 80:20 read/write ratio and the Gauss access address
distribution on a 2 socket Intel server with Optane DC Persistent
Memory Model. The test results shows that the pmbench score can
improve up to 95.9%.
Thanks Andrew Morton to help fix the document format error.
Link: https://lkml.kernel.org/r/20220221084529.1052339-3-ying.huang@intel.com
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Tested-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Reviewed-by: Baolin Wang <baolin.wang@linux.alibaba.com>
Acked-by: Johannes Weiner <hannes@cmpxchg.org>
Reviewed-by: Oscar Salvador <osalvador@suse.de>
Reviewed-by: Yang Shi <shy828301@gmail.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Rik van Riel <riel@surriel.com>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Zi Yan <ziy@nvidia.com>
Cc: Wei Xu <weixugc@google.com>
Cc: Shakeel Butt <shakeelb@google.com>
Cc: zhongjiang-ali <zhongjiang-ali@linux.alibaba.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Feng Tang <feng.tang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler build,
from the fast-headers tree - including placeholder *_api.h headers for
later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmI5rg8RHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1hGrw/+M3QOk6fH7G48wjlNnBvcOife6ls+Ni4k
ixOAcF4JKoixO8HieU5vv0A7yf/83tAa6fpeXeMf1hkCGc0NSlmLtuIux+WOmoAL
LzCyDEYfiP8KnVh0A1Tui/lK0+AkGo21O6ADhQE2gh8o2LpslOHQMzvtyekSzeeb
mVxMYQN+QH0m518xdO2D8IQv9ctOYK0eGjmkqdNfntOlytypPZHeNel/tCzwklP/
dElJUjNiSKDlUgTBPtL3DfpoLOI/0mHF2p6NEXvNyULxSOqJTu8pv9Z2ADb2kKo1
0D56iXBDngMi9MHIJLgvzsA8gKzHLFSuPbpODDqkTZCa28vaMB9NYGhJ643NtEie
IXTJEvF1rmNkcLcZlZxo0yjL0fjvPkczjw4Vj27gbrUQeEBfb4mfuI4BRmij63Ep
qEkgQTJhduCqqrQP1rVyhwWZRk1JNcVug+F6N42qWW3fg1xhj0YSrLai2c9nPez6
3Zt98H8YGS1Z/JQomSw48iGXVqfTp/ETI7uU7jqHK8QcjzQ4lFK5H4GZpwuqGBZi
NJJ1l97XMEas+rPHiwMEN7Z1DVhzJLCp8omEj12QU+tGLofxxwAuuOVat3CQWLRk
f80Oya3TLEgd22hGIKDRmHa22vdWnNQyS0S15wJotawBzQf+n3auS9Q3/rh979+t
ES/qvlGxTIs=
=Z8uT
-----END PGP SIGNATURE-----
Merge tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar:
- Cleanups for SCHED_DEADLINE
- Tracing updates/fixes
- CPU Accounting fixes
- First wave of changes to optimize the overhead of the scheduler
build, from the fast-headers tree - including placeholder *_api.h
headers for later header split-ups.
- Preempt-dynamic using static_branch() for ARM64
- Isolation housekeeping mask rework; preperatory for further changes
- NUMA-balancing: deal with CPU-less nodes
- NUMA-balancing: tune systems that have multiple LLC cache domains per
node (eg. AMD)
- Updates to RSEQ UAPI in preparation for glibc usage
- Lots of RSEQ/selftests, for same
- Add Suren as PSI co-maintainer
* tag 'sched-core-2022-03-22' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (81 commits)
sched/headers: ARM needs asm/paravirt_api_clock.h too
sched/numa: Fix boot crash on arm64 systems
headers/prep: Fix header to build standalone: <linux/psi.h>
sched/headers: Only include <linux/entry-common.h> when CONFIG_GENERIC_ENTRY=y
cgroup: Fix suspicious rcu_dereference_check() usage warning
sched/preempt: Tell about PREEMPT_DYNAMIC on kernel headers
sched/topology: Remove redundant variable and fix incorrect type in build_sched_domains
sched/deadline,rt: Remove unused parameter from pick_next_[rt|dl]_entity()
sched/deadline,rt: Remove unused functions for !CONFIG_SMP
sched/deadline: Use __node_2_[pdl|dle]() and rb_first_cached() consistently
sched/deadline: Merge dl_task_can_attach() and dl_cpu_busy()
sched/deadline: Move bandwidth mgmt and reclaim functions into sched class source file
sched/deadline: Remove unused def_dl_bandwidth
sched/tracing: Report TASK_RTLOCK_WAIT tasks as TASK_UNINTERRUPTIBLE
sched/tracing: Don't re-read p->state when emitting sched_switch event
sched/rt: Plug rt_mutex_setprio() vs push_rt_task() race
sched/cpuacct: Remove redundant RCU read lock
sched/cpuacct: Optimize away RCU read lock
sched/cpuacct: Fix charge percpu cpuusage
sched/headers: Reorganize, clean up and optimize kernel/sched/sched.h dependencies
...
Both functions are doing almost the same, that is checking if admission
control is still respected.
With exclusive cpusets, dl_task_can_attach() checks if the destination
cpuset (i.e. its root domain) has enough CPU capacity to accommodate the
task.
dl_cpu_busy() checks if there is enough CPU capacity in the cpuset in
case the CPU is hot-plugged out.
dl_task_can_attach() is used to check if a task can be admitted while
dl_cpu_busy() is used to check if a CPU can be hotplugged out.
Make dl_cpu_busy() able to deal with a task and use it instead of
dl_task_can_attach() in task_can_attach().
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-4-dietmar.eggemann@arm.com
Since commit 1724813d9f ("sched/deadline: Remove the sysctl_sched_dl
knobs") the default deadline bandwidth control structure has no purpose.
Remove it.
Signed-off-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Juri Lelli <juri.lelli@redhat.com>
Link: https://lore.kernel.org/r/20220302183433.333029-2-dietmar.eggemann@arm.com
As of commit
c6e7bd7afa ("sched/core: Optimize ttwu() spinning on p->on_cpu")
the following sequence becomes possible:
p->__state = TASK_INTERRUPTIBLE;
__schedule()
deactivate_task(p);
ttwu()
READ !p->on_rq
p->__state=TASK_WAKING
trace_sched_switch()
__trace_sched_switch_state()
task_state_index()
return 0;
TASK_WAKING isn't in TASK_REPORT, so the task appears as TASK_RUNNING in
the trace event.
Prevent this by pushing the value read from __schedule() down the trace
event.
Reported-by: Abhijeet Dharmapurikar <adharmap@quicinc.com>
Signed-off-by: Valentin Schneider <valentin.schneider@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Link: https://lore.kernel.org/r/20220120162520.570782-2-valentin.schneider@arm.com
Use all generic headers from kernel/sched/sched.h that are required
for it to build.
Sort the sections alphabetically.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
kernel/sched/sched.h is a weird mix of ad-hoc headers included
in the middle of the header.
Two of them rely on being included in the middle of kernel/sched/sched.h,
due to definitions they require:
- "stat.h" needs the rq definitions.
- "autogroup.h" needs the task_group definition.
Move the inclusion of these two files out of kernel/sched/sched.h, and
include them in all files that require them.
Move of the rest of the header dependencies to the top of the
kernel/sched/sched.h file.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Peter Zijlstra <peterz@infradead.org>
-----BEGIN PGP SIGNATURE-----
iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAmISrYgeHHRvcnZhbGRz
QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiGg20IAKDZr7rfSHBopjQV
Cocw744tom0XuxpvSZpp2GGOOXF+tkswcNNaRIrbGOl1mkyxA7eBZCTMpDeDS9aQ
wB0D0Gxx8QBAJp4KgB1W7TB+hIGes/rs8Ve+6iO4ulLLdCVWX/q2boI0aZ7QX9O9
qNi8OsoZQtk6falRvciZFHwV5Av1p2Sy1AW57udQ7DvJ4H98AfKf1u8/z208WWW8
1ixC+qJxQcUcM9vI+7P9Tt7NbFSKv8SvAmqjFY7P+DxQAsVw6KXoqVXykDzeOv0t
fUNOE/t0oFZafwtn8h7KBQnwS9lH03+3KkslVZs+iMFyUj/Bar+NVVyKoDhWXtVg
/PuMhEg=
=eU1o
-----END PGP SIGNATURE-----
Merge tag 'v5.17-rc5' into sched/core, to resolve conflicts
New conflicts in sched/core due to the following upstream fixes:
44585f7bc0 ("psi: fix "defined but not used" warnings when CONFIG_PROC_FS=n")
a06247c680 ("psi: Fix uaf issue when psi trigger is destroyed while being polled")
Conflicts:
include/linux/psi_types.h
kernel/sched/psi.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Where an architecture selects HAVE_STATIC_CALL but not
HAVE_STATIC_CALL_INLINE, each static call has an out-of-line trampoline
which will either branch to a callee or return to the caller.
On such architectures, a number of constraints can conspire to make
those trampolines more complicated and potentially less useful than we'd
like. For example:
* Hardware and software control flow integrity schemes can require the
addition of "landing pad" instructions (e.g. `BTI` for arm64), which
will also be present at the "real" callee.
* Limited branch ranges can require that trampolines generate or load an
address into a register and perform an indirect branch (or at least
have a slow path that does so). This loses some of the benefits of
having a direct branch.
* Interaction with SW CFI schemes can be complicated and fragile, e.g.
requiring that we can recognise idiomatic codegen and remove
indirections understand, at least until clang proves more helpful
mechanisms for dealing with this.
For PREEMPT_DYNAMIC, we don't need the full power of static calls, as we
really only need to enable/disable specific preemption functions. We can
achieve the same effect without a number of the pain points above by
using static keys to fold early returns into the preemption functions
themselves rather than in an out-of-line trampoline, effectively
inlining the trampoline into the start of the function.
For arm64, this results in good code generation. For example, the
dynamic_cond_resched() wrapper looks as follows when enabled. When
disabled, the first `B` is replaced with a `NOP`, resulting in an early
return.
| <dynamic_cond_resched>:
| bti c
| b <dynamic_cond_resched+0x10> // or `nop`
| mov w0, #0x0
| ret
| mrs x0, sp_el0
| ldr x0, [x0, #8]
| cbnz x0, <dynamic_cond_resched+0x8>
| paciasp
| stp x29, x30, [sp, #-16]!
| mov x29, sp
| bl <preempt_schedule_common>
| mov w0, #0x1
| ldp x29, x30, [sp], #16
| autiasp
| ret
... compared to the regular form of the function:
| <__cond_resched>:
| bti c
| mrs x0, sp_el0
| ldr x1, [x0, #8]
| cbz x1, <__cond_resched+0x18>
| mov w0, #0x0
| ret
| paciasp
| stp x29, x30, [sp, #-16]!
| mov x29, sp
| bl <preempt_schedule_common>
| mov w0, #0x1
| ldp x29, x30, [sp], #16
| autiasp
| ret
Any architecture which implements static keys should be able to use this
to implement PREEMPT_DYNAMIC with similar cost to non-inlined static
calls. Since this is likely to have greater overhead than (inlined)
static calls, PREEMPT_DYNAMIC is only defaulted to enabled when
HAVE_PREEMPT_DYNAMIC_CALL is selected.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-6-mark.rutland@arm.com
Now that the enabled/disabled states for the preemption functions are
declared alongside their definitions, the core PREEMPT_DYNAMIC logic is
no longer tied to GENERIC_ENTRY, and can safely be selected so long as
an architecture provides enabled/disabled states for
irqentry_exit_cond_resched().
Make it possible to select HAVE_PREEMPT_DYNAMIC without GENERIC_ENTRY.
For existing users of HAVE_PREEMPT_DYNAMIC there should be no functional
change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-5-mark.rutland@arm.com
Currently sched_dynamic_update needs to open-code the enabled/disabled
function names for each preemption model it supports, when in practice
this is a boolean enabled/disabled state for each function.
Make this clearer and avoid repetition by defining the enabled/disabled
states at the function definition, and using helper macros to perform the
static_call_update(). Where x86 currently overrides the enabled
function, it is made to provide both the enabled and disabled states for
consistency, with defaults provided by the core code otherwise.
In subsequent patches this will allow us to support PREEMPT_DYNAMIC
without static calls.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-3-mark.rutland@arm.com
The PREEMPT_DYNAMIC logic in kernel/sched/core.c patches static calls
for a bunch of preemption functions. While most are defined prior to
this, the definition of cond_resched() is later in the file, and so we
only have its declarations from include/linux/sched.h.
In subsequent patches we'd like to define some macros alongside the
definition of each of the preemption functions, which we can use within
sched_dynamic_update(). For this to be possible, the PREEMPT_DYNAMIC
logic needs to be placed after the various preemption functions.
As a preparatory step, this patch moves the PREEMPT_DYNAMIC logic after
the various preemption functions, with no other changes -- this is
purely a move.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Ard Biesheuvel <ardb@kernel.org>
Acked-by: Frederic Weisbecker <frederic@kernel.org>
Link: https://lore.kernel.org/r/20220214165216.2231574-2-mark.rutland@arm.com
Where commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an
invalid sched_task_group") fixed a fork race vs cgroup, it opened up a
race vs syscalls by not placing the task on the runqueue before it
gets exposed through the pidhash.
Commit 13765de814 ("sched/fair: Fix fault in reweight_entity") is
trying to fix a single instance of this, instead fix the whole class
of issues, effectively reverting this commit.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Tested-by: Zhang Qiao <zhangqiao22@huawei.com>
Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Link: https://lkml.kernel.org/r/YgoeCbwj5mbCR0qA@hirez.programming.kicks-ass.net
Refer to housekeeping APIs using single feature types instead of flags.
This prevents from passing multiple isolation features at once to
housekeeping interfaces, which soon won't be possible anymore as each
isolation features will have their own cpumask.
Signed-off-by: Frederic Weisbecker <frederic@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juri Lelli <juri.lelli@redhat.com>
Reviewed-by: Phil Auld <pauld@redhat.com>
Link: https://lore.kernel.org/r/20220207155910.527133-5-frederic@kernel.org
The NUMA topology parameters (sched_numa_topology_type,
sched_domains_numa_levels, and sched_max_numa_distance, etc.)
identified by scheduler may be wrong for systems with CPU-less nodes.
For example, the ACPI SLIT of a system with CPU-less persistent
memory (Intel Optane DCPMM) nodes is as follows,
[000h 0000 4] Signature : "SLIT" [System Locality Information Table]
[004h 0004 4] Table Length : 0000042C
[008h 0008 1] Revision : 01
[009h 0009 1] Checksum : 59
[00Ah 0010 6] Oem ID : "XXXX"
[010h 0016 8] Oem Table ID : "XXXXXXX"
[018h 0024 4] Oem Revision : 00000001
[01Ch 0028 4] Asl Compiler ID : "INTL"
[020h 0032 4] Asl Compiler Revision : 20091013
[024h 0036 8] Localities : 0000000000000004
[02Ch 0044 4] Locality 0 : 0A 15 11 1C
[030h 0048 4] Locality 1 : 15 0A 1C 11
[034h 0052 4] Locality 2 : 11 1C 0A 1C
[038h 0056 4] Locality 3 : 1C 11 1C 0A
While the `numactl -H` output is as follows,
available: 4 nodes (0-3)
node 0 cpus: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
node 0 size: 64136 MB
node 0 free: 5981 MB
node 1 cpus: 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
node 1 size: 64466 MB
node 1 free: 10415 MB
node 2 cpus:
node 2 size: 253952 MB
node 2 free: 253920 MB
node 3 cpus:
node 3 size: 253952 MB
node 3 free: 253951 MB
node distances:
node 0 1 2 3
0: 10 21 17 28
1: 21 10 28 17
2: 17 28 10 28
3: 28 17 28 10
In this system, there are only 2 sockets. In each memory controller,
both DRAM and PMEM DIMMs are installed. Although the physical NUMA
topology is simple, the logical NUMA topology becomes a little
complex. Because both the distance(0, 1) and distance (1, 3) are less
than the distance (0, 3), it appears that node 1 sits between node 0
and node 3. And the whole system appears to be a glueless mesh NUMA
topology type. But it's definitely not, there is even no CPU in node 3.
This isn't a practical problem now yet. Because the PMEM nodes (node
2 and node 3 in example system) are offlined by default during system
boot. So init_numa_topology_type() called during system boot will
ignore them and set sched_numa_topology_type to NUMA_DIRECT. And
init_numa_topology_type() is only called at runtime when a CPU of a
never-onlined-before node gets plugged in. And there's no CPU in the
PMEM nodes. But it appears better to fix this to make the code more
robust.
To test the potential problem. We have used a debug patch to call
init_numa_topology_type() when the PMEM node is onlined (in
__set_migration_target_nodes()). With that, the NUMA parameters
identified by scheduler is as follows,
sched_numa_topology_type: NUMA_GLUELESS_MESH
sched_domains_numa_levels: 4
sched_max_numa_distance: 28
To fix the issue, the CPU-less nodes are ignored when the NUMA topology
parameters are identified. Because a node may become CPU-less or not
at run time because of CPU hotplug, the NUMA topology parameters need
to be re-initialized at runtime for CPU hotplug too.
With the patch, the NUMA parameters identified for the example system
above is as follows,
sched_numa_topology_type: NUMA_DIRECT
sched_domains_numa_levels: 2
sched_max_numa_distance: 21
Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220214121553.582248-1-ying.huang@intel.com
In some places, kernel/sched code calls cpumask_weight() to check if
any bit of a given cpumask is set. We can do it more efficiently with
cpumask_empty() because cpumask_empty() stops traversing the cpumask as
soon as it finds first set bit, while cpumask_weight() counts all bits
unconditionally.
Signed-off-by: Yury Norov <yury.norov@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20220210224933.379149-23-yury.norov@gmail.com
Syzbot found a GPF in reweight_entity. This has been bisected to
commit 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid
sched_task_group")
There is a race between sched_post_fork() and setpriority(PRIO_PGRP)
within a thread group that causes a null-ptr-deref in
reweight_entity() in CFS. The scenario is that the main process spawns
number of new threads, which then call setpriority(PRIO_PGRP, 0, -20),
wait, and exit. For each of the new threads the copy_process() gets
invoked, which adds the new task_struct and calls sched_post_fork()
for it.
In the above scenario there is a possibility that
setpriority(PRIO_PGRP) and set_one_prio() will be called for a thread
in the group that is just being created by copy_process(), and for
which the sched_post_fork() has not been executed yet. This will
trigger a null pointer dereference in reweight_entity(), as it will
try to access the run queue pointer, which hasn't been set.
Before the mentioned change the cfs_rq pointer for the task has been
set in sched_fork(), which is called much earlier in copy_process(),
before the new task is added to the thread_group. Now it is done in
the sched_post_fork(), which is called after that. To fix the issue
the remove the update_load param from the update_load param() function
and call reweight_task() only if the task flag doesn't have the
TASK_NEW flag set.
Fixes: 4ef0c5c6b5 ("kernel/sched: Fix sched_fork() access an invalid sched_task_group")
Reported-by: syzbot+af7a719bc92395ee41b3@syzkaller.appspotmail.com
Signed-off-by: Tadeusz Struk <tadeusz.struk@linaro.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com>
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/r/20220203161846.1160750-1-tadeusz.struk@linaro.org
Rename blk_flush_plug to __blk_flush_plug and add a wrapper that includes
the NULL check instead of open coding that check everywhere.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Chaitanya Kulkarni <kch@nvidia.com>
Link: https://lore.kernel.org/r/20220127070549.1377856-2-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
blk_needs_flush_plug fails to account for the cb_list, which needs
flushing as well. Remove it and just check if there is a plug instead
of poking into the internals of the plug structure.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lore.kernel.org/r/20220127070549.1377856-1-hch@lst.de
Signed-off-by: Jens Axboe <axboe@kernel.dk>
We can't use this tracepoint in modules without having the symbol
exported first, fix that.
Fixes: 765047932f ("sched/pelt: Add support to track thermal pressure")
Signed-off-by: Qais Yousef <qais.yousef@arm.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20211028115005.873539-1-qais.yousef@arm.com
propagation in the sched hierarchies and other minor cleanups and
improvements
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHtNkcACgkQEsHwGGHe
VUru2xAAq2sJYOjb3AFQQskKDMjUqY42+Z2LnFk+zbv/2NfXPG17lGRNl8zIFWgK
en+RguHOnBDo4Lc4qcx06k02gmZmSA7YonLJVYtT/N1mwsW6zkW0wDho/W3+ssU5
5fJEFSd/y9XmoFOyFj7k+POND/Prk/sguxYcYDRMwjdw4pZoDZ4WgPU3oS3PCiBk
ISua8zqxNC+kqSnlKzDbc23K22mdcsneW/aLFK7npyaKqzypy9IvqaBL6h8tyOgb
Q7jOBavUQwmfi/J5A39JgUrYs90gMuQKMJ0wxWrix+YCgvdRLCX3gcWBvdxHwlmm
KkxmWmM3iGO4qKXUDmmTt8e8GO1c0HgR7tBiVKkG2977fIojLGXTXwZKjIz/gn7f
wg3oltKWj2JZ7X3Z3Te4TDjtWSfibUkUHhrVlm94HgZL9ZiFFY+qigBTUoa/QVAf
q1nkk/acpSDAKY2CGcjeQZtkuIcfz+5Z94n07NsV4O8OriwkEOgVWGGXkky3687C
/woT4a3iIeqiFzSQ8raJq0bdMj3J+wpDe4gmjKmx7oPjiS7FzsyGc8HckwQtiOQ3
kGTTB+9zJS9ChWEk2ViQQgNOUUaJJjAwsBoYkRQakFnQ4AhvQKHmD+MS02vSPBD7
j3k3RPkO0Gm+gUBnkgyKSRTQpAcoVY0lBwttJoEr0IlA/MUWMJ0=
=4m7x
-----END PGP SIGNATURE-----
Merge tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler fixes from Borislav Petkov:
"A bunch of fixes: forced idle time accounting, utilization values
propagation in the sched hierarchies and other minor cleanups and
improvements"
* tag 'sched_urgent_for_v5.17_rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
kernel/sched: Remove dl_boosted flag comment
sched: Avoid double preemption in __cond_resched_*lock*()
sched/fair: Fix all kernel-doc warnings
sched/core: Accounting forceidle time for all tasks except idle task
sched/pelt: Relax the sync of load_sum with load_avg
sched/pelt: Relax the sync of runnable_sum with runnable_avg
sched/pelt: Continue to relax the sync of util_sum with util_avg
sched/pelt: Relax the sync of util_sum with util_avg
psi: Fix uaf issue when psi trigger is destroyed while being polled
For PREEMPT/DYNAMIC_PREEMPT the *_unlock() will already trigger a
preemption, no point in then calling preempt_schedule_common()
*again*.
Use _cond_resched() instead, since this is a NOP for the preemptible
configs while it provide a preemption point for the others.
Reported-by: xuhaifeng <xuhaifeng@oppo.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/YcGnvDEYBwOiV0cR@hirez.programming.kicks-ass.net
There are two types of forced idle time: forced idle time from cookie'd
task and forced idle time form uncookie'd task. The forced idle time from
uncookie'd task is actually caused by the cookie'd task in runqueue
indirectly, and it's more accurate to measure the capacity loss with the
sum of both.
Assuming cpu x and cpu y are a pair of SMT siblings, consider the
following scenarios:
1.There's a cookie'd task running on cpu x, and there're 4 uncookie'd
tasks running on cpu y. For cpu x, there will be 80% forced idle time
(from uncookie'd task); for cpu y, there will be 20% forced idle time
(from cookie'd task).
2.There's a uncookie'd task running on cpu x, and there're 4 cookie'd
tasks running on cpu y. For cpu x, there will be 80% forced idle time
(from cookie'd task); for cpu y, there will be 20% forced idle time
(from uncookie'd task).
The scenario1 can recurrent by stress-ng(scenario2 can recurrent similary):
(cookie'd)taskset -c x stress-ng -c 1 -l 100
(uncookie'd)taskset -c y stress-ng -c 4 -l 100
In the above two scenarios, the total capacity loss is 1 cpu, but in
scenario1, the cookie'd forced idle time tells us 20% cpu capacity loss, in
scenario2, the cookie'd forced idle time tells us 80% cpu capacity loss,
which are not accurate. It'll be more accurate to measure with cookie'd
forced idle time and uncookie'd forced idle time.
Signed-off-by: Cruz Zhao <CruzZhao@linux.alibaba.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Josh Don <joshdon@google.com>
Link: https://lore.kernel.org/r/1641894961-9241-2-git-send-email-CruzZhao@linux.alibaba.com
Pull signal/exit/ptrace updates from Eric Biederman:
"This set of changes deletes some dead code, makes a lot of cleanups
which hopefully make the code easier to follow, and fixes bugs found
along the way.
The end-game which I have not yet reached yet is for fatal signals
that generate coredumps to be short-circuit deliverable from
complete_signal, for force_siginfo_to_task not to require changing
userspace configured signal delivery state, and for the ptrace stops
to always happen in locations where we can guarantee on all
architectures that the all of the registers are saved and available on
the stack.
Removal of profile_task_ext, profile_munmap, and profile_handoff_task
are the big successes for dead code removal this round.
A bunch of small bug fixes are included, as most of the issues
reported were small enough that they would not affect bisection so I
simply added the fixes and did not fold the fixes into the changes
they were fixing.
There was a bug that broke coredumps piped to systemd-coredump. I
dropped the change that caused that bug and replaced it entirely with
something much more restrained. Unfortunately that required some
rebasing.
Some successes after this set of changes: There are few enough calls
to do_exit to audit in a reasonable amount of time. The lifetime of
struct kthread now matches the lifetime of struct task, and the
pointer to struct kthread is no longer stored in set_child_tid. The
flag SIGNAL_GROUP_COREDUMP is removed. The field group_exit_task is
removed. Issues where task->exit_code was examined with
signal->group_exit_code should been examined were fixed.
There are several loosely related changes included because I am
cleaning up and if I don't include them they will probably get lost.
The original postings of these changes can be found at:
https://lkml.kernel.org/r/87a6ha4zsd.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87bl1kunjj.fsf@email.froward.int.ebiederm.orghttps://lkml.kernel.org/r/87r19opkx1.fsf_-_@email.froward.int.ebiederm.org
I trimmed back the last set of changes to only the obviously correct
once. Simply because there was less time for review than I had hoped"
* 'signal-for-v5.17' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (44 commits)
ptrace/m68k: Stop open coding ptrace_report_syscall
ptrace: Remove unused regs argument from ptrace_report_syscall
ptrace: Remove second setting of PT_SEIZED in ptrace_attach
taskstats: Cleanup the use of task->exit_code
exit: Use the correct exit_code in /proc/<pid>/stat
exit: Fix the exit_code for wait_task_zombie
exit: Coredumps reach do_group_exit
exit: Remove profile_handoff_task
exit: Remove profile_task_exit & profile_munmap
signal: clean up kernel-doc comments
signal: Remove the helper signal_group_exit
signal: Rename group_exit_task group_exec_task
coredump: Stop setting signal->group_exit_task
signal: Remove SIGNAL_GROUP_COREDUMP
signal: During coredumps set SIGNAL_GROUP_EXIT in zap_process
signal: Make coredump handling explicit in complete_signal
signal: Have prepare_signal detect coredumps using signal->core_state
signal: Have the oom killer detect coredumps using signal->core_state
exit: Move force_uaccess back into do_exit
exit: Guarantee make_task_dead leaks the tsk when calling do_task_exit
...
"Lots of cleanups and preparation; highlights:
- futex: Cleanup and remove runtime futex_cmpxchg detection
- rtmutex: Some fixes for the PREEMPT_RT locking infrastructure
- kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
annotate the racy owner->on_cpu access *once*.
- atomic64: Dead-Code-Elemination"
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvssACgkQEsHwGGHe
VUrbBg//VQvz5BwddIJDj9utt5AvSixNcTF5mJyFKCSIqO0S4J8nCNcvJjZ2bs4S
w1YmInFbp0WFGUhaIZiw0e6KWJUoINTng4MfHDZosS1doT2of53ZaQqXs3i81jDz
87w8ADVHL0x4+BNjdsIwbcuPSDTmJFoyFOdeXTIl9hv9ZULT8m4Mt+LJuUHNZ+vF
rS1jyseVPWkcm5y+Yie0rhip+ygzbfbt0ArsLfRcrBJsKr6oxLxV2DDF+2djXuuP
d2OgGT7VkbgAhoKpzVXUiHsT6ppR5Mn5TLSa4EZ4bPPCUFldOhKuCAImF3T6yVIa
44iX5vQN9v5VHBy6ocPbdOIBuYBYVGCMurh1t7pbpB6G+mmSxMiyta5MY37POwjv
K2JT9mC2A6a4d17gue5FT3mnJMBB4eHwVaDfAwCZs/5rRNuoTz4aY5Xy04Mq0ltI
39uarwBd5hwSugBWg44AS5E9h52E654FQ7g6iS4NtUvJuuaXBTl43EcZWx2+mnPL
zY+iOMVMgg33VIVcm/mlf/6zWL0LXPmILUiA1fp4Q9/n8u1EuOOyeA/GsC9Pl3wO
HY3KpYJA5eQpIk/JEnzKm5ZE3pCrUdH6VDC/SB4owQtafQG6OxyQVP1Gj7KYxZsD
NqqpJ4nkKooc5f5DqVEN8wrjyYsnVxEfriEG09OoR6wI3MqyUA4=
=vrYy
-----END PGP SIGNATURE-----
Merge tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull locking updates from Borislav Petkov:
"Lots of cleanups and preparation. Highlights:
- futex: Cleanup and remove runtime futex_cmpxchg detection
- rtmutex: Some fixes for the PREEMPT_RT locking infrastructure
- kcsan: Share owner_on_cpu() between mutex,rtmutex and rwsem and
annotate the racy owner->on_cpu access *once*.
- atomic64: Dead-Code-Elemination"
[ Description above by Peter Zijlstra ]
* tag 'locking_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
locking/atomic: atomic64: Remove unusable atomic ops
futex: Fix additional regressions
locking: Allow to include asm/spinlock_types.h from linux/spinlock_types_raw.h
x86/mm: Include spinlock_t definition in pgtable.
locking: Mark racy reads of owner->on_cpu
locking: Make owner_on_cpu() into <linux/sched.h>
lockdep/selftests: Adapt ww-tests for PREEMPT_RT
lockdep/selftests: Skip the softirq related tests on PREEMPT_RT
lockdep/selftests: Unbalanced migrate_disable() & rcu_read_lock().
lockdep/selftests: Avoid using local_lock_{acquire|release}().
lockdep: Remove softirq accounting on PREEMPT_RT.
locking/rtmutex: Add rt_mutex_lock_nest_lock() and rt_mutex_lock_killable().
locking/rtmutex: Squash self-deadlock check for ww_rt_mutex.
locking: Remove rt_rwlock_is_contended().
sched: Trigger warning if ->migration_disabled counter underflows.
futex: Fix sparc32/m68k/nds32 build regression
futex: Remove futex_cmpxchg detection
futex: Ensure futex_atomic_cmpxchg_inatomic() is present
kernel/locking: Use a pointer in ww_mutex_trylock().
"Mostly minor things this time; some highlights:
- core-sched: Add 'Forced Idle' accounting; this allows to track how
much CPU time is 'lost' due to core scheduling constraints.
- psi: Fix for MEM_FULL; a task running reclaim would be counted as a
runnable task and prevent MEM_FULL from being reported.
- cpuacct: Long standing fixes for some cgroup accounting issues.
- rt: Bandwidth timer could, under unusual circumstances, be failed to
armed, leading to indefinite throttling."
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHdvGkACgkQEsHwGGHe
VUq3tQ/9GdaCpbo+WgtM20vo3FqzoRCWAtZZRLWm87g9G7FKE6tD1JCZ+cXn63jR
wz4nuTMGg0lHkrmMiHoeTWoRo7Brw3vPdKTbFBxRaPS3gi3qyz8gaDHSKzAHTJSx
L3j5XaTLcZnXwXV0MOphbK8ZD2W0f9PJZJjwYy1HFUrXh1AFT0WaMXL3aXuaZr8M
jYZoB8r5qXsTBgzNZR8unq5bSUXgvoDAqupFU8gvQWYvNFV4NGK9WFQLlznG1ZhE
aE7oHRbpCnb4avbv9xIm/QgLEHeCVTb/4kLBPk57nrW+aXTHX4ZTHuFtFs0nfDHS
yHSgie3hthr5lFQ/c2G4a5bi5EfPcyURmgNHpWrs2zWWtWzVtqy1WAQ//m8twd14
9cMeefQzttPUbOjykj5QNCJPqkkGgKlblz3p9j8NwUBYUBtBIejsEP0UFPoVgZuL
DjeGhPuGGeTqkVEhLD/pb9kSzUsi1ptTJtnzT9EvtBOi+EpnZnFC6jB98qcuRT19
jhlXwlFNH+SNnMrCniTjLhQK5gVEbvzbU86/nj9CHWDTNdu6DFeJv1S+ZBsjRHUe
f8dV9+laXdLK5QJKAeAubq8ciMvacW8pTf/5PJfaFCJHHDs8rgmx/Ip6TxCZzVEG
XEhNqOmMNnvbkj+9a1yk6SyD9QkVmitZrvRiqeoGayQMjsphT3E=
=H0vR
-----END PGP SIGNATURE-----
Merge tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Borislav Petkov:
"Mostly minor things this time; some highlights:
- core-sched: Add 'Forced Idle' accounting; this allows to track how
much CPU time is 'lost' due to core scheduling constraints.
- psi: Fix for MEM_FULL; a task running reclaim would be counted as a
runnable task and prevent MEM_FULL from being reported.
- cpuacct: Long standing fixes for some cgroup accounting issues.
- rt: Bandwidth timer could, under unusual circumstances, be failed
to armed, leading to indefinite throttling."
[ Description above by Peter Zijlstra ]
* tag 'sched_core_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
sched/fair: Replace CFS internal cpu_util() with cpu_util_cfs()
sched/fair: Cleanup task_util and capacity type
sched/rt: Try to restart rt period timer when rt runtime exceeded
sched/fair: Document the slow path and fast path in select_task_rq_fair
sched/fair: Fix per-CPU kthread and wakee stacking for asym CPU capacity
sched/fair: Fix detection of per-CPU kthreads waking a task
sched/cpuacct: Make user/system times in cpuacct.stat more precise
sched/cpuacct: Fix user/system in shown cpuacct.usage*
cpuacct: Convert BUG_ON() to WARN_ON_ONCE()
cputime, cpuacct: Include guest time in user time in cpuacct.stat
psi: Fix PSI_MEM_FULL state when tasks are in memstall and doing reclaim
sched/core: Forced idle accounting
psi: Add a missing SPDX license header
psi: Remove repeated verbose comment
accesing it in order to prevent any potential data races, and convert
all users to those new accessors
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmHcgFoACgkQEsHwGGHe
VUqXeRAAvcNEfFw6BvXeGfFTxKmOrsRtu2WCkAkjvamyhXMCrjBqqHlygLJFCH5i
2mc6HBohzo4vBFcgi3R5tVkGazqlthY1KUM9Jpk7rUuUzi0phTH7n/MafZOm9Es/
BHYcAAyT/NwZRbCN0geccIzBtbc4xr8kxtec7vkRfGDx8B9/uFN86xm7cKAaL62G
UDs0IquDPKEns3A7uKNuvKztILtuZWD1WcSkbOULJzXgLkb+cYKO1Lm9JK9rx8Ds
8tjezrJgOYGLQyyv0i3pWelm3jCZOKUChPslft0opvVUbrNd8piehvOm9CWopHcB
QsYOWchnULTE9o4ZAs/1PkxC0LlFEWZH8bOLxBMTDVEY+xvmDuj1PdBUpncgJbOh
dunHzsvaWproBSYUXA9nKhZWTVGl+CM8Ks7jXjl3IPynLd6cpYZ/5gyBVWEX7q3e
8htG95NzdPPo7doxMiNSKGSmSm0Np1TJ/i89vsYeGfefsvsq53Fyjhu7dIuTWHmU
2YUe6qHs6dF9x1bkHAAZz6T9Hs4BoGQBcXUnooT9JbzVdv2RfTPsrawdu8dOnzV1
RhwCFdFcll0AIEl0T9fCYzUI/Ga8ZS0roXs5NZ4wl0lwr0BGFwiU8WC1FUdGsZo9
0duaa0Tpv0OWt6rIMMB/E9QsqCDsQ4CMHuQpVVw+GOO5ux9kMms=
=v6Xn
-----END PGP SIGNATURE-----
Merge tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull thread_info flag accessor helper updates from Borislav Petkov:
"Add a set of thread_info.flags accessors which snapshot it before
accesing it in order to prevent any potential data races, and convert
all users to those new accessors"
* tag 'core_entry_for_v5.17_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
powerpc: Snapshot thread flags
powerpc: Avoid discarding flags in system_call_exception()
openrisc: Snapshot thread flags
microblaze: Snapshot thread flags
arm64: Snapshot thread flags
ARM: Snapshot thread flags
alpha: Snapshot thread flags
sched: Snapshot thread flags
entry: Snapshot thread flags
x86: Snapshot thread flags
thread_info: Add helpers to snapshot thread flags
The point of using set_child_tid to hold the kthread pointer was that
it already did what is necessary. There are now restrictions on when
set_child_tid can be initialized and when set_child_tid can be used in
schedule_tail. Which indicates that continuing to use set_child_tid
to hold the kthread pointer is a bad idea.
Instead of continuing to use the set_child_tid field of task_struct
generalize the pf_io_worker field of task_struct and use it to hold
the kthread pointer.
Rename pf_io_worker (which is a void * pointer) to worker_private so
it can be used to store kthreads struct kthread pointer. Update the
kthread code to store the kthread pointer in the worker_private field.
Remove the places where set_child_tid had to be dealt with carefully
because kthreads also used it.
Link: https://lkml.kernel.org/r/CAHk-=wgtFAA9SbVYg0gR1tqPMC17-NYcs0GQkaYg1bGhh1uJQQ@mail.gmail.com
Link: https://lkml.kernel.org/r/87a6grvqy8.fsf_-_@email.froward.int.ebiederm.org
Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
Kernel threads abuse set_child_tid. Historically that has been fine
as set_child_tid was initialized after the kernel thread had been
forked. Unfortunately storing struct kthread in set_child_tid after
the thread is running makes struct kthread being unusable for storing
result codes of the thread.
When set_child_tid is set to struct kthread during fork that results
in schedule_tail writing the thread id to the beggining of struct
kthread (if put_user does not realize it is a kernel address).
Solve this by skipping the put_user for all kthreads.
Reported-by: Nathan Chancellor <nathan@kernel.org>
Link: https://lkml.kernel.org/r/YcNsG0Lp94V13whH@archlinux-ax161
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>