1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

1137 commits

Author SHA1 Message Date
Chao Peng
bdd1c37a31 KVM: Rename KVM_PRIVATE_MEM_SLOTS to KVM_INTERNAL_MEM_SLOTS
KVM_INTERNAL_MEM_SLOTS better reflects the fact those slots are KVM
internally used (invisible to userspace) and avoids confusion to future
private slots that can have different meaning.

Signed-off-by: Chao Peng <chao.p.peng@linux.intel.com>
Message-Id: <20220816125322.1110439-2-chao.p.peng@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-08-19 04:05:40 -04:00
Sean Christopherson
982bae43f1 KVM: x86: Tag kvm_mmu_x86_module_init() with __init
Mark kvm_mmu_x86_module_init() with __init, the entire reason it exists
is to initialize variables when kvm.ko is loaded, i.e. it must never be
called after module initialization.

Fixes: 1d0e848060 ("KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded")
Cc: stable@vger.kernel.org
Reviewed-by: Kai Huang <kai.huang@intel.com>
Tested-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220803224957.1285926-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-08-10 15:08:24 -04:00
Sean Christopherson
ba28401bb9 KVM: x86: Restrict get_mt_mask() to a u8, use KVM_X86_OP_OPTIONAL_RET0
Restrict get_mt_mask() to a u8 and reintroduce using a RET0 static_call
for the SVM implementation.  EPT stores the memtype information in the
lower 8 bits (bits 6:3 to be precise), and even returns a shifted u8
without an explicit cast to a larger type; there's no need to return a
full u64.

Note, RET0 doesn't play nice with a u64 return on 32-bit kernels, see
commit bf07be36cd ("KVM: x86: do not use KVM_X86_OP_OPTIONAL_RET0 for
get_mt_mask").

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220714153707.3239119-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-07-14 11:43:12 -04:00
Sean Christopherson
43bb9e000e KVM: x86: Tweak name of MONITOR/MWAIT #UD quirk to make it #UD specific
Add a "UD" clause to KVM_X86_QUIRK_MWAIT_NEVER_FAULTS to make it clear
that the quirk only controls the #UD behavior of MONITOR/MWAIT.  KVM
doesn't currently enforce fault checks when MONITOR/MWAIT are supported,
but that could change in the future.  SVM also has a virtualization hole
in that it checks all faults before intercepts, and so "never faults" is
already a lie when running on SVM.

Fixes: bfbcc81bb8 ("KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20220711225753.1073989-4-seanjc@google.com
2022-07-13 18:14:05 -07:00
Hou Wenlong
6e1d2a3f25 KVM: x86/mmu: Replace UNMAPPED_GVA with INVALID_GPA for gva_to_gpa()
The result of gva_to_gpa() is physical address not virtual address,
it is odd that UNMAPPED_GVA macro is used as the result for physical
address. Replace UNMAPPED_GVA with INVALID_GPA and drop UNMAPPED_GVA
macro.

No functional change intended.

Signed-off-by: Hou Wenlong <houwenlong.hwl@antgroup.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/6104978956449467d3c68f1ad7f2c2f6d771d0ee.1656667239.git.houwenlong.hwl@antgroup.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2022-07-12 22:31:12 +00:00
Suravee Suthikulpanit
0e311d33bf KVM: SVM: Introduce hybrid-AVIC mode
Currently, AVIC is inhibited when booting a VM w/ x2APIC support.
because AVIC cannot virtualize x2APIC MSR register accesses.
However, the AVIC doorbell can be used to accelerate interrupt
injection into a running vCPU, while all guest accesses to x2APIC MSRs
will be intercepted and emulated by KVM.

With hybrid-AVIC support, the APICV_INHIBIT_REASON_X2APIC is
no longer enforced.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220519102709.24125-14-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 12:51:00 -04:00
Jue Wang
281b52780b KVM: x86: Add emulation for MSR_IA32_MCx_CTL2 MSRs.
This patch adds the emulation of IA32_MCi_CTL2 registers to KVM. A
separate mci_ctl2_banks array is used to keep the existing mce_banks
register layout intact.

In Machine Check Architecture, in addition to MCG_CMCI_P, bit 30 of
the per-bank register IA32_MCi_CTL2 controls whether Corrected Machine
Check error reporting is enabled.

Signed-off-by: Jue Wang <juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20220610171134.772566-7-juew@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:52:03 -04:00
David Matlack
ada51a9de7 KVM: x86/mmu: Extend Eager Page Splitting to nested MMUs
Add support for Eager Page Splitting pages that are mapped by nested
MMUs. Walk through the rmap first splitting all 1GiB pages to 2MiB
pages, and then splitting all 2MiB pages to 4KiB pages.

Note, Eager Page Splitting is limited to nested MMUs as a policy rather
than due to any technical reason (the sp->role.guest_mode check could
just be deleted and Eager Page Splitting would work correctly for all
shadow MMU pages). There is really no reason to support Eager Page
Splitting for tdp_mmu=N, since such support will eventually be phased
out, and there is no current use case supporting Eager Page Splitting on
hosts where TDP is either disabled or unavailable in hardware.
Furthermore, future improvements to nested MMU scalability may diverge
the code from the legacy shadow paging implementation. These
improvements will be simpler to make if Eager Page Splitting does not
have to worry about legacy shadow paging.

Splitting huge pages mapped by nested MMUs requires dealing with some
extra complexity beyond that of the TDP MMU:

(1) The shadow MMU has a limit on the number of shadow pages that are
    allowed to be allocated. So, as a policy, Eager Page Splitting
    refuses to split if there are KVM_MIN_FREE_MMU_PAGES or fewer
    pages available.

(2) Splitting a huge page may end up re-using an existing lower level
    shadow page tables. This is unlike the TDP MMU which always allocates
    new shadow page tables when splitting.

(3) When installing the lower level SPTEs, they must be added to the
    rmap which may require allocating additional pte_list_desc structs.

Case (2) is especially interesting since it may require a TLB flush,
unlike the TDP MMU which can fully split huge pages without any TLB
flushes. Specifically, an existing lower level page table may point to
even lower level page tables that are not fully populated, effectively
unmapping a portion of the huge page, which requires a flush.  As of
this commit, a flush is always done always after dropping the huge page
and before installing the lower level page table.

This TLB flush could instead be delayed until the MMU lock is about to be
dropped, which would batch flushes for multiple splits.  However these
flushes should be rare in practice (a huge page must be aliased in
multiple SPTEs and have been split for NX Huge Pages in only some of
them). Flushing immediately is simpler to plumb and also reduces the
chances of tripping over a CPU bug (e.g. see iTLB multihit).

[ This commit is based off of the original implementation of Eager Page
  Splitting from Peter in Google's kernel from 2016. ]

Suggested-by: Peter Feiner <pfeiner@google.com>
Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-23-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:52:00 -04:00
David Matlack
6a97575d5c KVM: x86/mmu: Cache the access bits of shadowed translations
Splitting huge pages requires allocating/finding shadow pages to replace
the huge page. Shadow pages are keyed, in part, off the guest access
permissions they are shadowing. For fully direct MMUs, there is no
shadowing so the access bits in the shadow page role are always ACC_ALL.
But during shadow paging, the guest can enforce whatever access
permissions it wants.

In particular, eager page splitting needs to know the permissions to use
for the subpages, but KVM cannot retrieve them from the guest page
tables because eager page splitting does not have a vCPU.  Fortunately,
the guest access permissions are easy to cache whenever page faults or
FNAME(sync_page) update the shadow page tables; this is an extension of
the existing cache of the shadowed GFNs in the gfns array of the shadow
page.  The access bits only take up 3 bits, which leaves 61 bits left
over for gfns, which is more than enough.

Now that the gfns array caches more information than just GFNs, rename
it to shadowed_translation.

While here, preemptively fix up the WARN_ON() that detects gfn
mismatches in direct SPs. The WARN_ON() was paired with a
pr_err_ratelimited(), which means that users could sometimes see the
WARN without the accompanying error message. Fix this by outputting the
error message as part of the WARN splat, and opportunistically make
them WARN_ONCE() because if these ever fire, they are all but guaranteed
to fire a lot and will bring down the kernel.

Signed-off-by: David Matlack <dmatlack@google.com>
Message-Id: <20220516232138.1783324-18-dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:58 -04:00
Ben Gardon
084cc29f8b KVM: x86/MMU: Allow NX huge pages to be disabled on a per-vm basis
In some cases, the NX hugepage mitigation for iTLB multihit is not
needed for all guests on a host. Allow disabling the mitigation on a
per-VM basis to avoid the performance hit of NX hugepages on trusted
workloads.

In order to disable NX hugepages on a VM, ensure that the userspace
actor has permission to reboot the system. Since disabling NX hugepages
would allow a guest to crash the system, it is similar to reboot
permissions.

Ideally, KVM would require userspace to prove it has access to KVM's
nx_huge_pages module param, e.g. so that userspace can opt out without
needing full reboot permissions.  But getting access to the module param
file info is difficult because it is buried in layers of sysfs and module
glue. Requiring CAP_SYS_BOOT is sufficient for all known use cases.

Suggested-by: Jim Mattson <jmattson@google.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Reviewed-by: Peter Xu <peterx@redhat.com>
Signed-off-by: Ben Gardon <bgardon@google.com>
Message-Id: <20220613212523.3436117-9-bgardon@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-24 04:51:49 -04:00
Sean Christopherson
bfbcc81bb8 KVM: x86: Add a quirk for KVM's "MONITOR/MWAIT are NOPs!" behavior
Add a quirk for KVM's behavior of emulating intercepted MONITOR/MWAIT
instructions a NOPs regardless of whether or not they are supported in
guest CPUID.  KVM's current behavior was likely motiviated by a certain
fruity operating system that expects MONITOR/MWAIT to be supported
unconditionally and blindly executes MONITOR/MWAIT without first checking
CPUID.  And because KVM does NOT advertise MONITOR/MWAIT to userspace,
that's effectively the default setup for any VMM that regurgitates
KVM_GET_SUPPORTED_CPUID to KVM_SET_CPUID2.

Note, this quirk interacts with KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT.  The
behavior is actually desirable, as userspace VMMs that want to
unconditionally hide MONITOR/MWAIT from the guest can leave the
MISC_ENABLE quirk enabled.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220608224516.3788274-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 11:50:42 -04:00
Sean Christopherson
ce0a58f475 KVM: x86: Move "apicv_active" into "struct kvm_lapic"
Move the per-vCPU apicv_active flag into KVM's local APIC instance.
APICv is fully dependent on an in-kernel local APIC, but that's not at
all clear when reading the current code due to the flag being stored in
the generic kvm_vcpu_arch struct.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:24 -04:00
Sean Christopherson
d39850f57d KVM: x86: Drop @vcpu parameter from kvm_x86_ops.hwapic_isr_update()
Drop the unused @vcpu parameter from hwapic_isr_update().  AMD/AVIC is
unlikely to implement the helper, and VMX/APICv doesn't need the vCPU as
it operates on the current VMCS.  The result is somewhat odd, but allows
for a decent amount of (future) cleanup in the APIC code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220614230548.3852141-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-20 06:21:23 -04:00
Paolo Bonzini
e15f5e6fa6 Merge branch 'kvm-5.20-early'
s390:

* add an interface to provide a hypervisor dump for secure guests

* improve selftests to show tests

x86:

* Intel IPI virtualization

* Allow getting/setting pending triple fault with KVM_GET/SET_VCPU_EVENTS

* PEBS virtualization

* Simplify PMU emulation by just using PERF_TYPE_RAW events

* More accurate event reinjection on SVM (avoid retrying instructions)

* Allow getting/setting the state of the speaker port data bit

* Rewrite gfn-pfn cache refresh

* Refuse starting the module if VM-Entry/VM-Exit controls are inconsistent

* "Notify" VM exit
2022-06-09 11:38:12 -04:00
Maxim Levitsky
3743c2f025 KVM: x86: inhibit APICv/AVIC on changes to APIC ID or APIC base
Neither of these settings should be changed by the guest and it is
a burden to support it in the acceleration code, so just inhibit
this code instead.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-3-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-09 10:52:18 -04:00
Maxim Levitsky
a9603ae0e4 KVM: x86: document AVIC/APICv inhibit reasons
These days there are too many AVIC/APICv inhibit
reasons, and it doesn't hurt to have some documentation
for them.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220606180829.102503-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-09 10:52:17 -04:00
Tao Xu
2f4073e08f KVM: VMX: Enable Notify VM exit
There are cases that malicious virtual machines can cause CPU stuck (due
to event windows don't open up), e.g., infinite loop in microcode when
nested #AC (CVE-2015-5307). No event window means no event (NMI, SMI and
IRQ) can be delivered. It leads the CPU to be unavailable to host or
other VMs.

VMM can enable notify VM exit that a VM exit generated if no event
window occurs in VM non-root mode for a specified amount of time (notify
window).

Feature enabling:
- The new vmcs field SECONDARY_EXEC_NOTIFY_VM_EXITING is introduced to
  enable this feature. VMM can set NOTIFY_WINDOW vmcs field to adjust
  the expected notify window.
- Add a new KVM capability KVM_CAP_X86_NOTIFY_VMEXIT so that user space
  can query and enable this feature in per-VM scope. The argument is a
  64bit value: bits 63:32 are used for notify window, and bits 31:0 are
  for flags. Current supported flags:
  - KVM_X86_NOTIFY_VMEXIT_ENABLED: enable the feature with the notify
    window provided.
  - KVM_X86_NOTIFY_VMEXIT_USER: exit to userspace once the exits happen.
- It's safe to even set notify window to zero since an internal hardware
  threshold is added to vmcs.notify_window.

VM exit handling:
- Introduce a vcpu state notify_window_exits to records the count of
  notify VM exits and expose it through the debugfs.
- Notify VM exit can happen incident to delivery of a vector event.
  Allow it in KVM.
- Exit to userspace unconditionally for handling when VM_CONTEXT_INVALID
  bit is set.

Nested handling
- Nested notify VM exits are not supported yet. Keep the same notify
  window control in vmcs02 as vmcs01, so that L1 can't escape the
  restriction of notify VM exits through launching L2 VM.

Notify VM exit is defined in latest Intel Architecture Instruction Set
Extensions Programming Reference, chapter 9.2.

Co-developed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Xiaoyao Li <xiaoyao.li@intel.com>
Signed-off-by: Tao Xu <tao3.xu@intel.com>
Co-developed-by: Chenyi Qiang <chenyi.qiang@intel.com>
Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-5-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 05:56:24 -04:00
Sean Christopherson
938c8745bc KVM: x86: Introduce "struct kvm_caps" to track misc caps/settings
Add kvm_caps to hold a variety of capabilites and defaults that aren't
handled by kvm_cpu_caps because they aren't CPUID bits in order to reduce
the amount of boilerplate code required to add a new feature.  The vast
majority (all?) of the caps interact with vendor code and are written
only during initialization, i.e. should be tagged __read_mostly, declared
extern in x86.h, and exported.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220524135624.22988-4-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 05:21:16 -04:00
Chenyi Qiang
ed2351174e KVM: x86: Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault
For the triple fault sythesized by KVM, e.g. the RSM path or
nested_vmx_abort(), if KVM exits to userspace before the request is
serviced, userspace could migrate the VM and lose the triple fault.

Extend KVM_{G,S}ET_VCPU_EVENTS to support pending triple fault with a
new event KVM_VCPUEVENT_VALID_FAULT_FAULT so that userspace can save and
restore the triple fault event. This extension is guarded by a new KVM
capability KVM_CAP_TRIPLE_FAULT_EVENT.

Note that in the set_vcpu_events path, userspace is able to set/clear
the triple fault request through triple_fault.pending field.

Signed-off-by: Chenyi Qiang <chenyi.qiang@intel.com>
Message-Id: <20220524135624.22988-2-chenyi.qiang@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 05:20:53 -04:00
Like Xu
854250329c KVM: x86/pmu: Disable guest PEBS temporarily in two rare situations
The guest PEBS will be disabled when some users try to perf KVM and
its user-space through the same PEBS facility OR when the host perf
doesn't schedule the guest PEBS counter in a one-to-one mapping manner
(neither of these are typical scenarios).

The PEBS records in the guest DS buffer are still accurate and the
above two restrictions will be checked before each vm-entry only if
guest PEBS is deemed to be enabled.

Suggested-by: Wei Wang <wei.w.wang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-15-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:14 -04:00
Like Xu
902caeb684 KVM: x86/pmu: Add PEBS_DATA_CFG MSR emulation to support adaptive PEBS
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the adaptive
PEBS is supported. The PEBS_DATA_CFG MSR and adaptive record enable
bits (IA32_PERFEVTSELx.Adaptive_Record and IA32_FIXED_CTR_CTRL.
FCx_Adaptive_Record) are also supported.

Adaptive PEBS provides software the capability to configure the PEBS
records to capture only the data of interest, keeping the record size
compact. An overflow of PMCx results in generation of an adaptive PEBS
record with state information based on the selections specified in
MSR_PEBS_DATA_CFG.By default, the record only contain the Basic group.

When guest adaptive PEBS is enabled, the IA32_PEBS_ENABLE MSR will
be added to the perf_guest_switch_msr() and switched during the VMX
transitions just like CORE_PERF_GLOBAL_CTRL MSR.

According to Intel SDM, software is recommended to  PEBS Baseline
when the following is true. IA32_PERF_CAPABILITIES.PEBS_BASELINE[14]
&& IA32_PERF_CAPABILITIES.PEBS_FMT[11:8] ≥ 4.

Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220411101946.20262-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:06 -04:00
Like Xu
8183a538cd KVM: x86/pmu: Add IA32_DS_AREA MSR emulation to support guest DS
When CPUID.01H:EDX.DS[21] is set, the IA32_DS_AREA MSR exists and points
to the linear address of the first byte of the DS buffer management area,
which is used to manage the PEBS records.

When guest PEBS is enabled, the MSR_IA32_DS_AREA MSR will be added to the
perf_guest_switch_msr() and switched during the VMX transitions just like
CORE_PERF_GLOBAL_CTRL MSR. The WRMSR to IA32_DS_AREA MSR brings a #GP(0)
if the source register contains a non-canonical address.

Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-11-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:48:03 -04:00
Like Xu
c59a1f106f KVM: x86/pmu: Add IA32_PEBS_ENABLE MSR emulation for extended PEBS
If IA32_PERF_CAPABILITIES.PEBS_BASELINE [bit 14] is set, the
IA32_PEBS_ENABLE MSR exists and all architecturally enumerated fixed
and general-purpose counters have corresponding bits in IA32_PEBS_ENABLE
that enable generation of PEBS records. The general-purpose counter bits
start at bit IA32_PEBS_ENABLE[0], and the fixed counter bits start at
bit IA32_PEBS_ENABLE[32].

When guest PEBS is enabled, the IA32_PEBS_ENABLE MSR will be
added to the perf_guest_switch_msr() and atomically switched during
the VMX transitions just like CORE_PERF_GLOBAL_CTRL MSR.

Based on whether the platform supports x86_pmu.pebs_ept, it has also
refactored the way to add more msrs to arr[] in intel_guest_get_msrs()
for extensibility.

Originally-by: Andi Kleen <ak@linux.intel.com>
Co-developed-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:55 -04:00
Like Xu
2c985527dd KVM: x86/pmu: Introduce the ctrl_mask value for fixed counter
The mask value of fixed counter control register should be dynamic
adjusted with the number of fixed counters. This patch introduces a
variable that includes the reserved bits of fixed counter control
registers. This is a generic code refactoring.

Co-developed-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Luwei Kang <luwei.kang@intel.com>
Signed-off-by: Like Xu <like.xu@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Message-Id: <20220411101946.20262-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:50 -04:00
Chao Gao
d588bb9be1 KVM: VMX: enable IPI virtualization
With IPI virtualization enabled, the processor emulates writes to
APIC registers that would send IPIs. The processor sets the bit
corresponding to the vector in target vCPU's PIR and may send a
notification (IPI) specified by NDST and NV fields in target vCPU's
Posted-Interrupt Descriptor (PID). It is similar to what IOMMU
engine does when dealing with posted interrupt from devices.

A PID-pointer table is used by the processor to locate the PID of a
vCPU with the vCPU's APIC ID. The table size depends on maximum APIC
ID assigned for current VM session from userspace. Allocating memory
for PID-pointer table is deferred to vCPU creation, because irqchip
mode and VM-scope maximum APIC ID is settled at that point. KVM can
skip PID-pointer table allocation if !irqchip_in_kernel().

Like VT-d PI, if a vCPU goes to blocked state, VMM needs to switch its
notification vector to wakeup vector. This can ensure that when an IPI
for blocked vCPUs arrives, VMM can get control and wake up blocked
vCPUs. And if a VCPU is preempted, its posted interrupt notification
is suppressed.

Note that IPI virtualization can only virualize physical-addressing,
flat mode, unicast IPIs. Sending other IPIs would still cause a
trap-like APIC-write VM-exit and need to be handled by VMM.

Signed-off-by: Chao Gao <chao.gao@intel.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154510.11938-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:37 -04:00
Zeng Guang
3587531638 KVM: x86: Allow userspace to set maximum VCPU id for VM
Introduce new max_vcpu_ids in KVM for x86 architecture. Userspace
can assign maximum possible vcpu id for current VM session using
KVM_CAP_MAX_VCPU_ID of KVM_ENABLE_CAP ioctl().

This is done for x86 only because the sole use case is to guide
memory allocation for PID-pointer table, a structure needed to
enable VMX IPI.

By default, max_vcpu_ids set as KVM_MAX_VCPU_IDS.

Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Zeng Guang <guang.zeng@intel.com>
Message-Id: <20220419154444.11888-1-guang.zeng@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:31 -04:00
Sean Christopherson
2d61391270 KVM: x86: Differentiate Soft vs. Hard IRQs vs. reinjected in tracepoint
In the IRQ injection tracepoint, differentiate between Hard IRQs and Soft
"IRQs", i.e. interrupts that are reinjected after incomplete delivery of
a software interrupt from an INTn instruction.  Tag reinjected interrupts
as such, even though the information is usually redundant since soft
interrupts are only ever reinjected by KVM.  Though rare in practice, a
hard IRQ can be reinjected.

Signed-off-by: Sean Christopherson <seanjc@google.com>
[MSS: change "kvm_inj_virq" event "reinjected" field type to bool]
Signed-off-by: Maciej S. Szmigiero <maciej.szmigiero@oracle.com>
Message-Id: <9664d49b3bd21e227caa501cff77b0569bebffe2.1651440202.git.maciej.szmigiero@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:47:01 -04:00
Paolo Bonzini
6cd88243c7 KVM: x86: do not report a vCPU as preempted outside instruction boundaries
If a vCPU is outside guest mode and is scheduled out, it might be in the
process of making a memory access.  A problem occurs if another vCPU uses
the PV TLB flush feature during the period when the vCPU is scheduled
out, and a virtual address has already been translated but has not yet
been accessed, because this is equivalent to using a stale TLB entry.

To avoid this, only report a vCPU as preempted if sure that the guest
is at an instruction boundary.  A rescheduling request will be delivered
to the host physical CPU as an external interrupt, so for simplicity
consider any vmexit *not* instruction boundary except for external
interrupts.

It would in principle be okay to report the vCPU as preempted also
if it is sleeping in kvm_vcpu_block(): a TLB flush IPI will incur the
vmentry/vmexit overhead unnecessarily, and optimistic spinning is
also unlikely to succeed.  However, leave it for later because right
now kvm_vcpu_check_block() is doing memory accesses.  Even
though the TLB flush issue only applies to virtual memory address,
it's very much preferrable to be conservative.

Reported-by: Jann Horn <jannh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-06-08 04:21:07 -04:00
Paolo Bonzini
47e8eec832 KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
 
 - Guard pages for the EL2 stacks
 
 - Trap and emulate AArch32 ID registers to hide unsupported features
 
 - Ability to select and save/restore the set of hypercalls exposed
   to the guest
 
 - Support for PSCI-initiated suspend in collaboration with userspace
 
 - GICv3 register-based LPI invalidation support
 
 - Move host PMU event merging into the vcpu data structure
 
 - GICv3 ITS save/restore fixes
 
 - The usual set of small-scale cleanups and fixes
 -----BEGIN PGP SIGNATURE-----
 
 iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
 ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
 a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
 O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
 Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
 7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
 Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
 uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
 FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
 1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
 8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
 Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
 aTwPZAQ7
 =mh7W
 -----END PGP SIGNATURE-----

Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD

KVM/arm64 updates for 5.19

- Add support for the ARMv8.6 WFxT extension

- Guard pages for the EL2 stacks

- Trap and emulate AArch32 ID registers to hide unsupported features

- Ability to select and save/restore the set of hypercalls exposed
  to the guest

- Support for PSCI-initiated suspend in collaboration with userspace

- GICv3 register-based LPI invalidation support

- Move host PMU event merging into the vcpu data structure

- GICv3 ITS save/restore fixes

- The usual set of small-scale cleanups and fixes

[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
 from 4 to 6. - Paolo]
2022-05-25 05:09:23 -04:00
Sean Christopherson
1075d41efd KVM: x86/mmu: Expand and clean up page fault stats
Expand and clean up the page fault stats.  The current stats are at best
incomplete, and at worst misleading.  Differentiate between faults that
are actually fixed vs those that result in an MMIO SPTE being created,
track faults that are spurious, faults that trigger emulation, faults
that that are fixed in the fast path, and last but not least, track the
number of faults that are taken.

Note, the number of faults that require emulation for write-protected
shadow pages can roughly be calculated by subtracting the number of MMIO
SPTEs created from the overall number of faults that trigger emulation.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220423034752.1161007-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-05-12 09:51:43 -04:00
Lai Jiangshan
84e5ffd045 KVM: X86/MMU: Fix shadowing 5-level NPT for 4-level NPT L1 guest
When shadowing 5-level NPT for 4-level NPT L1 guest, the root_sp is
allocated with role.level = 5 and the guest pagetable's root gfn.

And root_sp->spt[0] is also allocated with the same gfn and the same
role except role.level = 4.  Luckily that they are different shadow
pages, but only root_sp->spt[0] is the real translation of the guest
pagetable.

Here comes a problem:

If the guest switches from gCR4_LA57=0 to gCR4_LA57=1 (or vice verse)
and uses the same gfn as the root page for nested NPT before and after
switching gCR4_LA57.  The host (hCR4_LA57=1) might use the same root_sp
for the guest even the guest switches gCR4_LA57.  The guest will see
unexpected page mapped and L2 may exploit the bug and hurt L1.  It is
lucky that the problem can't hurt L0.

And three special cases need to be handled:

The root_sp should be like role.direct=1 sometimes: its contents are
not backed by gptes, root_sp->gfns is meaningless.  (For a normal high
level sp in shadow paging, sp->gfns is often unused and kept zero, but
it could be relevant and meaningful if sp->gfns is used because they
are backed by concrete gptes.)

For such root_sp in the case, root_sp is just a portal to contribute
root_sp->spt[0], and root_sp->gfns should not be used and
root_sp->spt[0] should not be dropped if gpte[0] of the guest root
pagetable is changed.

Such root_sp should not be accounted too.

So add role.passthrough to distinguish the shadow pages in the hash
when gCR4_LA57 is toggled and fix above special cases by using it in
kvm_mmu_page_{get|set}_gfn() and sp_has_gptes().

Signed-off-by: Lai Jiangshan <jiangshan.ljs@antgroup.com>
Message-Id: <20220420131204.2850-3-jiangshanlai@gmail.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:50:00 -04:00
Paolo Bonzini
347a0d0ded KVM: x86/mmu: replace direct_map with root_role.direct
direct_map is always equal to the direct field of the root page's role:

- for shadow paging, direct_map is true if CR0.PG=0 and root_role.direct is
copied from cpu_role.base.direct

- for TDP, it is always true and root_role.direct is also always true

- for shadow TDP, it is always false and root_role.direct is also always
false

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:59 -04:00
Paolo Bonzini
4d25502aa1 KVM: x86/mmu: replace root_level with cpu_role.base.level
Remove another duplicate field of struct kvm_mmu.  This time it's
the root level for page table walking; the separate field is
always initialized as cpu_role.base.level, so its users can look
up the CPU mode directly instead.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini
a972e29c1d KVM: x86/mmu: replace shadow_root_level with root_role.level
root_role.level is always the same value as shadow_level:

- it's kvm_mmu_get_tdp_level(vcpu) when going through init_kvm_tdp_mmu

- it's the level argument when going through kvm_init_shadow_ept_mmu

- it's assigned directly from new_role.base.level when going
  through shadow_mmu_init_context

Remove the duplication and get the level directly from the role.

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:58 -04:00
Paolo Bonzini
faf729621c KVM: x86/mmu: remove redundant bits from extended role
Before the separation of the CPU and the MMU role, CR0.PG was not
available in the base MMU role, because two-dimensional paging always
used direct=1 in the MMU role.  However, now that the raw role is
snapshotted in mmu->cpu_role, the value of CR0.PG always matches both
!cpu_role.base.direct and cpu_role.base.level > 0.  There is no need to
store it again in union kvm_mmu_extended_role; instead, write an is_cr0_pg
accessor by hand that takes care of the conversion.  Use cpu_role.base.level
since the future of the direct field is unclear.

Likewise, CR4.PAE is now always present in the CPU role as
!cpu_role.base.has_4_byte_gpte.  The inversion makes certain tests on
the MMU role easier, and is easily hidden by the is_cr4_pae accessor
when operating on the CPU role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:57 -04:00
Paolo Bonzini
7a7ae82923 KVM: x86/mmu: rename kvm_mmu_role union
It is quite confusing that the "full" union is called kvm_mmu_role
but is used for the "cpu_role" field of struct kvm_mmu.  Rename it
to kvm_cpu_role.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini
7a458f0e1b KVM: x86/mmu: remove extended bits from mmu_role, rename field
mmu_role represents the role of the root of the page tables.
It does not need any extended bits, as those govern only KVM's
page table walking; the is_* functions used for page table
walking always use the CPU role.

ext.valid is not present anymore in the MMU role, but an
all-zero MMU role is impossible because the level field is
never zero in the MMU role.  So just zap the whole mmu_role
in order to force invalidation after CPUID is updated.

While making this change, which requires touching almost every
occurrence of "mmu_role", rename it to "root_role".

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:56 -04:00
Paolo Bonzini
ec283cb1dc KVM: x86/mmu: remove ept_ad field
The ept_ad field is used during page walk to determine if the guest PTEs
have accessed and dirty bits.  In the MMU role, the ad_disabled
bit represents whether the *shadow* PTEs have the bits, so it
would be incorrect to replace PT_HAVE_ACCESSED_DIRTY with just
!mmu->mmu_role.base.ad_disabled.

However, the similar field in the CPU mode, ad_disabled, is initialized
correctly: to the opposite value of ept_ad for shadow EPT, and zero
for non-EPT guest paging modes (which always have A/D bits).  It is
therefore possible to compute PT_HAVE_ACCESSED_DIRTY from the CPU mode,
like other page-format fields; it just has to be inverted to account
for the different polarity.

In fact, now that the CPU mode is distinct from the MMU roles, it would
even be possible to remove PT_HAVE_ACCESSED_DIRTY macro altogether, and
use !mmu->cpu_role.base.ad_disabled instead.  I am not doing this because
the macro has a small effect in terms of dead code elimination:

   text	   data	    bss	    dec	    hex
 103544	  16665	    112	 120321	  1d601    # as of this patch
 103746	  16665	    112	 120523	  1d6cb    # without PT_HAVE_ACCESSED_DIRTY

Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:54 -04:00
Paolo Bonzini
e5ed0fb010 KVM: x86/mmu: split cpu_role from mmu_role
Snapshot the state of the processor registers that govern page walk into
a new field of struct kvm_mmu.  This is a more natural representation
than having it *mostly* in mmu_role but not exclusively; the delta
right now is represented in other fields, such as root_level.

The nested MMU now has only the CPU role; and in fact the new function
kvm_calc_cpu_role is analogous to the previous kvm_calc_nested_mmu_role,
except that it has role.base.direct equal to !CR0.PG.  For a walk-only
MMU, "direct" has no meaning, but we set it to !CR0.PG so that
role.ext.cr0_pg can go away in a future patch.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:53 -04:00
Sean Christopherson
6819af7597 KVM: x86: Clean up and document nested #PF workaround
Replace the per-vendor hack-a-fix for KVM's #PF => #PF => #DF workaround
with an explicit, common workaround in kvm_inject_emulated_page_fault().
Aside from being a hack, the current approach is brittle and incomplete,
e.g. nSVM's KVM_SET_NESTED_STATE fails to set ->inject_page_fault(),
and nVMX fails to apply the workaround when VMX is intercepting #PF due
to allow_smaller_maxphyaddr=1.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-29 12:49:49 -04:00
Mingwei Zhang
683412ccf6 KVM: SEV: add cache flush to solve SEV cache incoherency issues
Flush the CPU caches when memory is reclaimed from an SEV guest (where
reclaim also includes it being unmapped from KVM's memslots).  Due to lack
of coherency for SEV encrypted memory, failure to flush results in silent
data corruption if userspace is malicious/broken and doesn't ensure SEV
guest memory is properly pinned and unpinned.

Cache coherency is not enforced across the VM boundary in SEV (AMD APM
vol.2 Section 15.34.7). Confidential cachelines, generated by confidential
VM guests have to be explicitly flushed on the host side. If a memory page
containing dirty confidential cachelines was released by VM and reallocated
to another user, the cachelines may corrupt the new user at a later time.

KVM takes a shortcut by assuming all confidential memory remain pinned
until the end of VM lifetime. Therefore, KVM does not flush cache at
mmu_notifier invalidation events. Because of this incorrect assumption and
the lack of cache flushing, malicous userspace can crash the host kernel:
creating a malicious VM and continuously allocates/releases unpinned
confidential memory pages when the VM is running.

Add cache flush operations to mmu_notifier operations to ensure that any
physical memory leaving the guest VM get flushed. In particular, hook
mmu_notifier_invalidate_range_start and mmu_notifier_release events and
flush cache accordingly. The hook after releasing the mmu lock to avoid
contention with other vCPUs.

Cc: stable@vger.kernel.org
Suggested-by: Sean Christpherson <seanjc@google.com>
Reported-by: Mingwei Zhang <mizhang@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
Message-Id: <20220421031407.2516575-4-mizhang@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-21 15:41:00 -04:00
Like Xu
34886e796c KVM: x86: Move .pmu_ops to kvm_x86_init_ops and tag as __initdata
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:45 -04:00
Like Xu
fdc298da86 KVM: x86: Move kvm_ops_static_call_update() to x86.c
The kvm_ops_static_call_update() is defined in kvm_host.h. That's
completely unnecessary, it should have exactly one caller,
kvm_arch_hardware_setup().  Move the helper to x86.c and have it do the
actual memcpy() of the ops in addition to the static call updates.  This
will also allow for cleanly giving kvm_pmu_ops static_call treatment.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: Move memcpy() into the helper and rename accordingly]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:44 -04:00
Peng Hao
8176472563 kvm: x86: Adjust the location of pkru_mask of kvm_mmu to reduce memory
Adjust the field pkru_mask to the back of direct_map to make up 8-byte
alignment.This reduces the size of kvm_mmu by 8 bytes.

Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Message-Id: <20220228030749.88353-1-flyingpeng@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:18 -04:00
Paolo Bonzini
a4cfff3f0f Merge branch 'kvm-older-features' into HEAD
Merge branch for features that did not make it into 5.18:

* New ioctls to get/set TSC frequency for a whole VM

* Allow userspace to opt out of hypercall patching

Nested virtualization improvements for AMD:

* Support for "nested nested" optimizations (nested vVMLOAD/VMSAVE,
  nested vGIF)

* Allow AVIC to co-exist with a nested guest running

* Fixes for LBR virtualizations when a nested guest is running,
  and nested LBR virtualization support

* PAUSE filtering for nested hypervisors

Guest support:

* Decoupling of vcpu_is_preempted from PV spinlocks

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-13 13:37:17 -04:00
Vitaly Kuznetsov
42dcbe7d8b KVM: x86: hyper-v: Avoid writing to TSC page without an active vCPU
The following WARN is triggered from kvm_vm_ioctl_set_clock():
 WARNING: CPU: 10 PID: 579353 at arch/x86/kvm/../../../virt/kvm/kvm_main.c:3161 mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 CPU: 10 PID: 579353 Comm: qemu-system-x86 Tainted: G        W  O      5.16.0.stable #20
 Hardware name: LENOVO 20UF001CUS/20UF001CUS, BIOS R1CET65W(1.34 ) 06/17/2021
 RIP: 0010:mark_page_dirty_in_slot+0x6c/0x80 [kvm]
 ...
 Call Trace:
  <TASK>
  ? kvm_write_guest+0x114/0x120 [kvm]
  kvm_hv_invalidate_tsc_page+0x9e/0xf0 [kvm]
  kvm_arch_vm_ioctl+0xa26/0xc50 [kvm]
  ? schedule+0x4e/0xc0
  ? __cond_resched+0x1a/0x50
  ? futex_wait+0x166/0x250
  ? __send_signal+0x1f1/0x3d0
  kvm_vm_ioctl+0x747/0xda0 [kvm]
  ...

The WARN was introduced by commit 03c0304a86bc ("KVM: Warn if
mark_page_dirty() is called without an active vCPU") but the change seems
to be correct (unlike Hyper-V TSC page update mechanism). In fact, there's
no real need to actually write to guest memory to invalidate TSC page, this
can be done by the first vCPU which goes through kvm_guest_time_update().

Reported-by: Maxim Levitsky <mlevitsk@redhat.com>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20220407201013.963226-1-vkuznets@redhat.com>
2022-04-11 13:29:51 -04:00
Suravee Suthikulpanit
c538dc792f KVM: SVM: Do not activate AVIC for SEV-enabled guest
Since current AVIC implementation cannot support encrypted memory,
inhibit AVIC for SEV-enabled guest.

Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Message-Id: <20220408133710.54275-1-suravee.suthikulpanit@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-11 13:28:56 -04:00
Sean Christopherson
1d0e848060 KVM: x86/mmu: Resolve nx_huge_pages when kvm.ko is loaded
Resolve nx_huge_pages to true/false when kvm.ko is loaded, leaving it as
-1 is technically undefined behavior when its value is read out by
param_get_bool(), as boolean values are supposed to be '0' or '1'.

Alternatively, KVM could define a custom getter for the param, but the
auto value doesn't depend on the vendor module in any way, and printing
"auto" would be unnecessarily unfriendly to the user.

In addition to fixing the undefined behavior, resolving the auto value
also fixes the scenario where the auto value resolves to N and no vendor
module is loaded.  Previously, -1 would result in Y being printed even
though KVM would ultimately disable the mitigation.

Rename the existing MMU module init/exit helpers to clarify that they're
invoked with respect to the vendor module, and add comments to document
why KVM has two separate "module init" flows.

  =========================================================================
  UBSAN: invalid-load in kernel/params.c:320:33
  load of value 255 is not a valid value for type '_Bool'
  CPU: 6 PID: 892 Comm: tail Not tainted 5.17.0-rc3+ #799
  Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 0.0.0 02/06/2015
  Call Trace:
   <TASK>
   dump_stack_lvl+0x34/0x44
   ubsan_epilogue+0x5/0x40
   __ubsan_handle_load_invalid_value.cold+0x43/0x48
   param_get_bool.cold+0xf/0x14
   param_attr_show+0x55/0x80
   module_attr_show+0x1c/0x30
   sysfs_kf_seq_show+0x93/0xc0
   seq_read_iter+0x11c/0x450
   new_sync_read+0x11b/0x1a0
   vfs_read+0xf0/0x190
   ksys_read+0x5f/0xe0
   do_syscall_64+0x3b/0xc0
   entry_SYSCALL_64_after_hwframe+0x44/0xae
   </TASK>
  =========================================================================

Fixes: b8e8c8303f ("kvm: mmu: ITLB_MULTIHIT mitigation")
Cc: stable@vger.kernel.org
Reported-by: Bruno Goncalves <bgoncalv@redhat.com>
Reported-by: Jan Stancek <jstancek@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220331221359.3912754-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-05 08:09:46 -04:00
Linus Torvalds
38904911e8 * Only do MSR filtering for MSRs accessed by rdmsr/wrmsr
* Documentation improvements
 
 * Prevent module exit until all VMs are freed
 
 * PMU Virtualization fixes
 
 * Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences
 
 * Other miscellaneous bugfixes
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmJIGV8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroO5FQgAhls4+Nu+NqId/yvvyNxr3vXq0dHI
 hLlHtvzgGzZisZ7y2bNeyIpJVBDT5LCbrptPD/5eTvchVswDh0+kCVC0Uni5ugGT
 tLT/Pv9Oq9e0X7aGdHRyuHIivIFDC20zIZO2DV48Lrj/+r6DafB2Fghq2XQLlBxN
 p8KislvuqAAos543BPC1+Lk3dhOLuZ8qcFD8wGRlcCwjNwYaitrQ16rO04cLfUur
 OwIks1I6TdI2JpLBhm6oWYVG/YnRsoo4bQE8cjdQ6yNSbwWtRpV33q7X6onw8x8K
 BEeESoTnMqfaxIF/6mPl6bnDblVHFp6Xhld/vJcgeWQTdajFtuFE/K4sCA==
 =xnQ6
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Only do MSR filtering for MSRs accessed by rdmsr/wrmsr

 - Documentation improvements

 - Prevent module exit until all VMs are freed

 - PMU Virtualization fixes

 - Fix for kvm_irq_delivery_to_apic_fast() NULL-pointer dereferences

 - Other miscellaneous bugfixes

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (42 commits)
  KVM: x86: fix sending PV IPI
  KVM: x86/mmu: do compare-and-exchange of gPTE via the user address
  KVM: x86: Remove redundant vm_entry_controls_clearbit() call
  KVM: x86: cleanup enter_rmode()
  KVM: x86: SVM: fix tsc scaling when the host doesn't support it
  kvm: x86: SVM: remove unused defines
  KVM: x86: SVM: move tsc ratio definitions to svm.h
  KVM: x86: SVM: fix avic spec based definitions again
  KVM: MIPS: remove reference to trap&emulate virtualization
  KVM: x86: document limitations of MSR filtering
  KVM: x86: Only do MSR filtering when access MSR by rdmsr/wrmsr
  KVM: x86/emulator: Emulate RDPID only if it is enabled in guest
  KVM: x86/pmu: Fix and isolate TSX-specific performance event logic
  KVM: x86: mmu: trace kvm_mmu_set_spte after the new SPTE was set
  KVM: x86/svm: Clear reserved bits written to PerfEvtSeln MSRs
  KVM: x86: Trace all APICv inhibit changes and capture overall status
  KVM: x86: Add wrappers for setting/clearing APICv inhibits
  KVM: x86: Make APICv inhibit reasons an enum and cleanup naming
  KVM: X86: Handle implicit supervisor access with SMAP
  KVM: X86: Rename variable smap to not_smap in permission_fault()
  ...
2022-04-02 12:09:02 -07:00
Maxim Levitsky
d5fa597ed8 KVM: x86: allow per cpu apicv inhibit reasons
Add optional callback .vcpu_get_apicv_inhibit_reasons returning
extra inhibit reasons that prevent APICv from working on this vCPU.

Suggested-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20220322174050.241850-6-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2022-04-02 05:41:24 -04:00