By default, if the opener has CAP_DAC_OVERRIDE, a kernfs file can be opened
regardless of RW permissions. Writing to a kernfs file will thus succeed
even if permissions are 0000.
It's required to restrict the actions that can be performed on a resource
group from userspace based on the mode of the resource group. This
restriction will be done through a modification of the file
permissions. That is, for example, if a resource group is locked then the
user cannot add tasks to the resource group.
For this restriction through file permissions to work it has to be ensured
that the permissions are always respected. To do so the resctrl filesystem
is created with the KERNFS_ROOT_EXTRA_OPEN_PERM_CHECK flag that will result
in open(2) failing with -EACCESS regardless of CAP_DAC_OVERRIDE if the
permission does not have the respective read or write access.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/26f4fc25f110bfc07c2d2c8b2c4ee904922fedf7.1529706536.git.reinette.chatre@intel.com
With cache regions now explicitly marked as "shareable" or "exclusive"
we would like to communicate to the user how portions of the cache
are used.
Introduce "bit_usage" that indicates for each resource
how portions of the cache are configured to be used.
To assist the user to distinguish whether the sharing is from software or
hardware we add the following annotation:
0 - currently unused
X - currently available for sharing and used by software and hardware
H - currently used by hardware only but available for software use
S - currently used and shareable by software only
E - currently used exclusively by one resource group
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/105d44c40e582c2b7e2dccf0ae247e5e61137d4b.1529706536.git.reinette.chatre@intel.com
Currently when a new resource group is created its allocations would be
those that belonged to the resource group to which its closid belonged
previously.
That is, we can encounter a case like:
mkdir newgroup
cat newgroup/schemata
L2:0=ff;1=ff
echo 'L2:0=0xf0;1=0xf0' > newgroup/schemata
cat newgroup/schemata
L2:0=0xf0;1=0xf0
rmdir newgroup
mkdir newnewgroup
cat newnewgroup/schemata
L2:0=0xf0;1=0xf0
When the new group is created it would be reasonable to expect its
allocations to be initialized with all regions that it can possibly use.
At this time these regions would be all that are shareable by other
resource groups as well as regions that are not currently used.
If the available cache region is found to be non-contiguous the
available region is adjusted to enforce validity.
When a new resource group is created the hardware is initialized with
these new default allocations.
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: fenghua.yu@intel.com
Cc: tony.luck@intel.com
Cc: vikas.shivappa@linux.intel.com
Cc: gavin.hindman@intel.com
Cc: jithu.joseph@intel.com
Cc: dave.hansen@intel.com
Cc: hpa@zytor.com
Link: https://lkml.kernel.org/r/c468ed79340b63024111978e01430bb9589d85c0.1529706536.git.reinette.chatre@intel.com
The current logic incorrectly calculates the LLC ID from the APIC ID.
Unless specified otherwise, the LLC ID should be calculated by removing
the Core and Thread ID bits from the least significant end of the APIC
ID. For more info, see "ApicId Enumeration Requirements" in any Fam17h
PPR document.
[ bp: Improve commit message. ]
Fixes: 68091ee7ac ("Calculate last level cache ID from number of sharing threads")
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1528915390-30533-1-git-send-email-suravee.suthikulpanit@amd.com
When delivering a signal to a task that is using rseq, we call into
__rseq_handle_notify_resume() so that the registers pushed in the
sigframe are updated to reflect the state of the restartable sequence
(for example, ensuring that the signal returns to the abort handler if
necessary).
However, if the rseq management fails due to an unrecoverable fault when
accessing userspace or certain combinations of RSEQ_CS_* flags, then we
will attempt to deliver a SIGSEGV. This has the potential for infinite
recursion if the rseq code continuously fails on signal delivery.
Avoid this problem by using force_sigsegv() instead of force_sig(), which
is explicitly designed to reset the SEGV handler to SIG_DFL in the case
of a recursive fault. In doing so, remove rseq_signal_deliver() from the
internal rseq API and have an optional struct ksignal * parameter to
rseq_handle_notify_resume() instead.
Signed-off-by: Will Deacon <will.deacon@arm.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: peterz@infradead.org
Cc: paulmck@linux.vnet.ibm.com
Cc: boqun.feng@gmail.com
Link: https://lkml.kernel.org/r/1529664307-983-1-git-send-email-will.deacon@arm.com
The TOPOEXT reenablement is a workaround for broken BIOSen which didn't
enable the CPUID bit. amd_get_topology_early(), however, relies on
that bit being set so that it can read out the CPUID leaf and set
smp_num_siblings properly.
Move the reenablement up to early_init_amd(). While at it, simplify
amd_get_topology_early().
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
If we don't have MCA banks, we won't see machine checks anyway. Drop the
check.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180622095428.626-5-bp@alien8.de
Carve out the rendezvous handler timeout avoidance check into a separate
function in order to simplify the #MC handler.
No functional changes.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/r/20180622095428.626-4-bp@alien8.de
The machine check timestamp uses get_seconds(), which returns an
'unsigned long' number that might overflow on 32-bit architectures (in
the distant future) and is therefore deprecated.
The normal replacement would be ktime_get_real_seconds(), but that needs
to use a sequence lock that might cause a deadlock if the MCE happens at
just the wrong moment. The __ktime_get_real_seconds() skips that lock
and is safer here, but has a miniscule risk of returning the wrong time
when we read it on a 32-bit architecture at the same time as updating
the epoch, i.e. from before y2106 overflow time to after, or vice versa.
This seems to be an acceptable risk in this particular case, and is the
same thing we do in kdb.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: y2038@lists.linaro.org
Link: http://lkml.kernel.org/r/20180618100759.1921750-1-arnd@arndb.de
Some injection testing resulted in the following console log:
mce: [Hardware Error]: CPU 22: Machine Check Exception: f Bank 1: bd80000000100134
mce: [Hardware Error]: RIP 10:<ffffffffc05292dd> {pmem_do_bvec+0x11d/0x330 [nd_pmem]}
mce: [Hardware Error]: TSC c51a63035d52 ADDR 3234bc4000 MISC 88
mce: [Hardware Error]: PROCESSOR 0:50654 TIME 1526502199 SOCKET 0 APIC 38 microcode 2000043
mce: [Hardware Error]: Run the above through 'mcelog --ascii'
Kernel panic - not syncing: Machine check from unknown source
This confused everybody because the first line quite clearly shows
that we found a logged error in "Bank 1", while the last line says
"unknown source".
The problem is that the Linux code doesn't do the right thing
for a local machine check that results in a fatal error.
It turns out that we know very early in the handler whether the
machine check is fatal. The call to mce_no_way_out() has checked
all the banks for the CPU that took the local machine check. If
it says we must crash, we can do so right away with the right
messages.
We do scan all the banks again. This means that we might initially
not see a problem, but during the second scan find something fatal.
If this happens we print a slightly different message (so I can
see if it actually every happens).
[ bp: Remove unneeded severity assignment. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Qiuxu Zhuo <qiuxu.zhuo@intel.com>
Cc: linux-edac <linux-edac@vger.kernel.org>
Cc: stable@vger.kernel.org # 4.2
Link: http://lkml.kernel.org/r/52e049a497e86fd0b71c529651def8871c804df0.1527283897.git.tony.luck@intel.com
mce_no_way_out() does a quick check during #MC to see whether some of
the MCEs logged would require the kernel to panic immediately. And it
passes a struct mce where MCi_STATUS gets written.
However, after having saved a valid status value, the next iteration
of the loop which goes over the MCA banks on the CPU, overwrites the
valid status value because we're using struct mce as storage instead of
a temporary variable.
Which leads to MCE records with an empty status value:
mce: [Hardware Error]: CPU 0: Machine Check Exception: 6 Bank 0: 0000000000000000
mce: [Hardware Error]: RIP 10:<ffffffffbd42fbd7> {trigger_mce+0x7/0x10}
In order to prevent the loss of the status register value, return
immediately when severity is a panic one so that we can panic
immediately with the first fatal MCE logged. This is also the intention
of this function and not to noodle over the banks while a fatal MCE is
already logged.
Tony: read the rest of the MCA bank to populate the struct mce fully.
Suggested-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: <stable@vger.kernel.org>
Link: https://lkml.kernel.org/r/20180622095428.626-8-bp@alien8.de
insn_get_length() has the side-effect of processing the entire instruction
but only if it was decoded successfully, otherwise insn_complete() can fail
and in this case we need to just return an error without warning.
Reported-by: syzbot+30d675e3ca03c1c351e7@syzkaller.appspotmail.com
Signed-off-by: Oleg Nesterov <oleg@redhat.com>
Reviewed-by: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: syzkaller-bugs@googlegroups.com
Link: https://lkml.kernel.org/lkml/20180518162739.GA5559@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The existing UNWIND_HINT_EMPTY annotations happen to be good indicators
of where entry code calls into C code for the first time. So also use
them to mark the end of the stack for the ORC unwinder.
Use that information to set unwind->error if the ORC unwinder doesn't
unwind all the way to the end. This will be needed for enabling
HAVE_RELIABLE_STACKTRACE for the ORC unwinder so we can use it with the
livepatch consistency model.
Thanks to Jiri Slaby for teaching the ORCs about the unwind hints.
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-5-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
save_stack_trace_reliable now returns "non reliable" when there are
kernel pt_regs on stack. This means an interrupt or exception happened
somewhere down the route. It is a problem for the frame pointer
unwinder, because the frame might not have been set up yet when the irq
happened, so the unwinder might fail to unwind from the interrupted
function.
With ORC, this is not a problem, as ORC has out-of-band data. We can
find ORC data even for the IP in the interrupted function and always
unwind one level up reliably.
So lift the check to apply only when CONFIG_FRAME_POINTER=y is enabled.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-4-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Make clear which path is for user tasks and for kthreads and idle
tasks. This will allow easier plug-in of the ORC unwinder in the next
patches.
Note that we added a check for unwind error to the top of the loop, so
that an error is returned also for user tasks (the 'goto success' would
skip the check after the loop otherwise).
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-3-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The stack unwinding can sometimes fail yet. Especially with the
generated debug info. So do not yell at users -- live patching (the only
user of this interface) will inform the user about the failure
gracefully.
And given this was the only user of the macro, remove the macro proper
too.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-2-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Josh pointed out, that there is no way a frame can be after user regs.
So remove the last unwind and the check.
Signed-off-by: Jiri Slaby <jslaby@suse.cz>
Acked-by: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Gerst <brgerst@gmail.com>
Cc: Denys Vlasenko <dvlasenk@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: https://lkml.kernel.org/lkml/20180518064713.26440-1-jslaby@suse.cz
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a kernel parameter that allows setting UV memory block size. This
is to provide an adjustment for new forms of PMEM and other DIMM memory
that might require alignment restrictions other than scanning the global
address table for the required minimum alignment. The value set will be
further adjusted by both the GAM range table scan as well as restrictions
imposed by set_memory_block_size_order().
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Andrew Banman <andrew.banman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Cc: jgross@suse.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/lkml/20180524201711.854849120@stormcage.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Add a call to the new function to "adjust" the current fixed UV memory
block size of 2GB so it can be changed to a different physical boundary.
This accommodates changes in the Intel BIOS, and therefore UV BIOS,
which now can align boundaries different than the previous UV standard
of 2GB. It also flags any UV Global Address boundaries from BIOS that
cause a change in the mem block size (boundary).
The current boundary of 2GB has been used on UV since the first system
release in 2009 with Linux 2.6 and has worked fine. But the new NVDIMM
persistent memory modules (PMEM), along with the Intel BIOS changes to
support these modules caused the memory block size boundary to be set
to a lower limit. Intel only guarantees that this minimum boundary at
64MB though the current Linux limit is 128MB.
Note that the default remains 2GB if no changes occur.
Signed-off-by: Mike Travis <mike.travis@hpe.com>
Reviewed-by: Andrew Banman <andrew.banman@hpe.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dimitri Sivanich <dimitri.sivanich@hpe.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Russ Anderson <russ.anderson@hpe.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: dan.j.williams@intel.com
Cc: jgross@suse.com
Cc: kirill.shutemov@linux.intel.com
Cc: mhocko@suse.com
Cc: stable@vger.kernel.org
Link: https://lkml.kernel.org/lkml/20180524201711.732785782@stormcage.americas.sgi.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
nosmt on the kernel command line merely prevents the onlining of the
secondary SMT siblings.
nosmt=force makes the APIC detection code ignore the secondary SMT siblings
completely, so they even do not show up as possible CPUs. That reduces the
amount of memory allocations for per cpu variables and saves other
resources from being allocated too large.
This is not fully equivalent to disabling SMT in the BIOS because the low
level SMT enabling in the BIOS can result in partitioning of resources
between the siblings, which is not undone by just ignoring them. Some CPUs
can use the full resources when their sibling is not onlined, but this is
depending on the CPU family and model and it's not well documented whether
this applies to all partitioned resources. That means depending on the
workload disabling SMT in the BIOS might result in better performance.
Linus analysis of the Intel manual:
The intel optimization manual is not very clear on what the partitioning
rules are.
I find:
"In general, the buffers for staging instructions between major pipe
stages are partitioned. These buffers include µop queues after the
execution trace cache, the queues after the register rename stage, the
reorder buffer which stages instructions for retirement, and the load
and store buffers.
In the case of load and store buffers, partitioning also provided an
easier implementation to maintain memory ordering for each logical
processor and detect memory ordering violations"
but some of that partitioning may be relaxed if the HT thread is "not
active":
"In Intel microarchitecture code name Sandy Bridge, the micro-op queue
is statically partitioned to provide 28 entries for each logical
processor, irrespective of software executing in single thread or
multiple threads. If one logical processor is not active in Intel
microarchitecture code name Ivy Bridge, then a single thread executing
on that processor core can use the 56 entries in the micro-op queue"
but I do not know what "not active" means, and how dynamic it is. Some of
that partitioning may be entirely static and depend on the early BIOS
disabling of HT, and even if we park the cores, the resources will just be
wasted.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. amd_get_topology() cannot be called before the APIC
driver is selected, so split out the part which initializes
smp_num_siblings and invoke it from amd_early_init().
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Old code used to check whether CPUID ext max level is >= 0x80000008 because
that last leaf contains the number of cores of the physical CPU. The three
functions called there now do not depend on that leaf anymore so the check
can go.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
Make use of the new early detection function to initialize smp_num_siblings
on the boot cpu before the MP-Table or ACPI/MADT scan happens. That's
required for force disabling SMT.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_extended_topology() cannot be called before
the APIC driver is selected, so split out the part which initializes
smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
To support force disabling of SMT it's required to know the number of
thread siblings early. detect_ht() cannot be called before the APIC driver
is selected, so split out the part which initializes smp_num_siblings.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Real 32bit AMD CPUs do not have SMT and the only value of the call was to
reach the magic printout which got removed.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
The value of this printout is dubious at best and there is no point in
having it in two different places along with convoluted ways to reach it.
Remove it completely.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Provide information whether SMT is supoorted by the CPUs. Preparatory patch
for SMT control mechanism.
Suggested-by: Dave Hansen <dave.hansen@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Ingo Molnar <mingo@kernel.org>
If the CPU is supporting SMT then the primary thread can be found by
checking the lower APIC ID bits for zero. smp_num_siblings is used to build
the mask for the APIC ID bits which need to be taken into account.
This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different
than the initial APIC ID in CPUID. But according to AMD the lower bits have
to be consistent. Intel gave a tentative confirmation as well.
Preparatory patch to support disabling SMT at boot/runtime.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Xen PV domain kernel is not by design affected by meltdown as it's
enforcing split CR3 itself. Let's not report such systems as "Vulnerable"
in sysfs (we're also already forcing PTI to off in X86_HYPER_XEN_PV cases);
the security of the system ultimately depends on presence of mitigation in
the Hypervisor, which can't be easily detected from DomU; let's report
that.
Reported-and-tested-by: Mike Latimer <mlatimer@suse.com>
Signed-off-by: Jiri Kosina <jkosina@suse.cz>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Juergen Gross <jgross@suse.com>
Cc: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/nycvar.YFH.7.76.1806180959080.6203@cbobk.fhfr.pm
[ Merge the user-visible string into a single line. ]
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Since int3 and debug exception(for singlestep) are run with
IRQ disabled and while running single stepping we drop IF
from regs->flags, that path must not be preemptible. So we
can remove the preempt disable/enable calls from that path.
Suggested-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ananth N Mavinakayanahalli <ananth@linux.vnet.ibm.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: linux-arch@vger.kernel.org
Cc: linux-doc@vger.kernel.org
Link: https://lore.kernel.org/lkml/152942497779.15209.2879580696589868291.stgit@devbox
Signed-off-by: Ingo Molnar <mingo@kernel.org>