- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into
KVM's 'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to
a simpler state and less shared data between EL1 and EL2 in
the nVHE case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be
unmapped from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once
the vcpu xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and
page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmHhxvsUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroPZkAf+Nz92UL/5nNGcdHtE4m7AToMmitE9
bYkesf9BMQvAe5wjkABLuoHGi6ay4jabo4fiGzbdkiK7lO5YgfsWiMB3/MT5fl4E
jRPzaVQabp3YZLM8UYCBmfUVuRj524S967SfSRe0AvYjDEH8y7klPf4+7sCsFT0/
Px9Vf2KGuOlf0eM78yKg4rGaF0jS22eLgXm6FfNMY8/e29ZAo/jyUmqBY+Z2xxZG
aWhceDtSheW1jwLHLj3nOlQJvHTn8LVGXBE/R8Gda3ZjrBV2rKaDi4Fh+HD+dz86
2zVXwzQ7uck2CMW73GMoXMTWoKSHMyvlBOs1BdvBm4UsnGcXR+q8IFCeuQ==
=s73m
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"RISCV:
- Use common KVM implementation of MMU memory caches
- SBI v0.2 support for Guest
- Initial KVM selftests support
- Fix to avoid spurious virtual interrupts after clearing hideleg CSR
- Update email address for Anup and Atish
ARM:
- Simplification of the 'vcpu first run' by integrating it into KVM's
'pid change' flow
- Refactoring of the FP and SVE state tracking, also leading to a
simpler state and less shared data between EL1 and EL2 in the nVHE
case
- Tidy up the header file usage for the nvhe hyp object
- New HYP unsharing mechanism, finally allowing pages to be unmapped
from the Stage-1 EL2 page-tables
- Various pKVM cleanups around refcounting and sharing
- A couple of vgic fixes for bugs that would trigger once the vcpu
xarray rework is merged, but not sooner
- Add minimal support for ARMv8.7's PMU extension
- Rework kvm_pgtable initialisation ahead of the NV work
- New selftest for IRQ injection
- Teach selftests about the lack of default IPA space and page sizes
- Expand sysreg selftest to deal with Pointer Authentication
- The usual bunch of cleanups and doc update
s390:
- fix sigp sense/start/stop/inconsistency
- cleanups
x86:
- Clean up some function prototypes more
- improved gfn_to_pfn_cache with proper invalidation, used by Xen
emulation
- add KVM_IRQ_ROUTING_XEN_EVTCHN and event channel delivery
- completely remove potential TOC/TOU races in nested SVM consistency
checks
- update some PMCs on emulated instructions
- Intel AMX support (joint work between Thomas and Intel)
- large MMU cleanups
- module parameter to disable PMU virtualization
- cleanup register cache
- first part of halt handling cleanups
- Hyper-V enlightened MSR bitmap support for nested hypervisors
Generic:
- clean up Makefiles
- introduce CONFIG_HAVE_KVM_DIRTY_RING
- optimize memslot lookup using a tree
- optimize vCPU array usage by converting to xarray"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (268 commits)
x86/fpu: Fix inline prefix warnings
selftest: kvm: Add amx selftest
selftest: kvm: Move struct kvm_x86_state to header
selftest: kvm: Reorder vcpu_load_state steps for AMX
kvm: x86: Disable interception for IA32_XFD on demand
x86/fpu: Provide fpu_sync_guest_vmexit_xfd_state()
kvm: selftests: Add support for KVM_CAP_XSAVE2
kvm: x86: Add support for getting/setting expanded xstate buffer
x86/fpu: Add uabi_size to guest_fpu
kvm: x86: Add CPUID support for Intel AMX
kvm: x86: Add XCR0 support for Intel AMX
kvm: x86: Disable RDMSR interception of IA32_XFD_ERR
kvm: x86: Emulate IA32_XFD_ERR for guest
kvm: x86: Intercept #NM for saving IA32_XFD_ERR
x86/fpu: Prepare xfd_err in struct fpu_guest
kvm: x86: Add emulation for IA32_XFD
x86/fpu: Provide fpu_update_guest_xfd() for IA32_XFD emulation
kvm: x86: Enable dynamic xfeatures at KVM_SET_CPUID2
x86/fpu: Provide fpu_enable_guest_xfd_features() for KVM
x86/fpu: Add guest support to xfd_enable_feature()
...
Extend CPUID emulation to support XFD, AMX_TILE, AMX_INT8 and
AMX_BF16. Adding those bits into kvm_cpu_caps finally activates all
previous logics in this series.
Hide XFD on 32bit host kernels. Otherwise it leads to a weird situation
where KVM tells userspace to migrate MSR_IA32_XFD and then rejects
attempts to read/write the MSR.
Signed-off-by: Jing Liu <jing2.liu@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Message-Id: <20220105123532.12586-17-yang.zhong@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add Collaborative Processor Performance Control feature flag for AMD
processors.
This feature flag will be used on the following AMD P-State driver. The
AMD P-State driver has two approaches to implement the frequency control
behavior. That depends on the CPU hardware implementation. One is "Full
MSR Support" and another is "Shared Memory Support". The feature flag
indicates the current processors with "Full MSR Support".
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Huang Rui <ray.huang@amd.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
The XSTATE initialization uses check_xstate_against_struct() to sanity
check the size of XSTATE-enabled features. AMX is a XSAVE-enabled feature,
and its size is not hard-coded but discoverable at run-time via CPUID.
The AMX state is composed of state components 17 and 18, which are all user
state components. The first component is the XTILECFG state of a 64-byte
tile-related control register. The state component 18, called XTILEDATA,
contains the actual tile data, and the state size varies on
implementations. The architectural maximum, as defined in the CPUID(0x1d,
1): EAX[15:0], is a byte less than 64KB. The first implementation supports
8KB.
Check the XTILEDATA state size dynamically. The feature introduces the new
tile register, TMM. Define one register struct only and read the number of
registers from CPUID. Cross-check the overall size with CPUID again.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20211021225527.10184-21-chang.seok.bae@intel.com
Intel's eXtended Feature Disable (XFD) feature is an extension of the XSAVE
architecture. XFD allows the kernel to enable a feature state in XCR0 and
to receive a #NM trap when a task uses instructions accessing that state.
This is going to be used to postpone the allocation of a larger XSTATE
buffer for a task to the point where it is actually using a related
instruction after the permission to use that facility has been granted.
XFD is not used by the kernel, but only applied to userspace. This is a
matter of policy as the kernel knows how a fpstate is reallocated and the
XFD state.
The compacted XSAVE format is adjustable for dynamic features. Make XFD
depend on XSAVES.
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211021225527.10184-13-chang.seok.bae@intel.com
Intel client processors that support the IA32_TSX_FORCE_ABORT MSR
related to perf counter interaction [1] received a microcode update that
deprecates the Transactional Synchronization Extension (TSX) feature.
The bit FORCE_ABORT_RTM now defaults to 1, writes to this bit are
ignored. A new bit TSX_CPUID_CLEAR clears the TSX related CPUID bits.
The summary of changes to the IA32_TSX_FORCE_ABORT MSR are:
Bit 0: FORCE_ABORT_RTM (legacy bit, new default=1) Status bit that
indicates if RTM transactions are always aborted. This bit is
essentially !SDV_ENABLE_RTM(Bit 2). Writes to this bit are ignored.
Bit 1: TSX_CPUID_CLEAR (new bit, default=0) When set, CPUID.HLE = 0
and CPUID.RTM = 0.
Bit 2: SDV_ENABLE_RTM (new bit, default=0) When clear, XBEGIN will
always abort with EAX code 0. When set, XBEGIN will not be forced to
abort (but will always abort in SGX enclaves). This bit is intended to
be used on developer systems. If this bit is set, transactional
atomicity correctness is not certain. SDV = Software Development
Vehicle (SDV), i.e. developer systems.
Performance monitoring counter 3 is usable in all cases, regardless of
the value of above bits.
Add support for a new CPUID bit - CPUID.RTM_ALWAYS_ABORT (CPUID 7.EDX[11])
- to indicate the status of always abort behavior.
[1] [ bp: Look for document ID 604224, "Performance Monitoring Impact
of Intel Transactional Synchronization Extension Memory". Since
there's no way for us to have stable links to documents... ]
[ bp: Massage and extend commit message. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Andi Kleen <ak@linux.intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
Link: https://lkml.kernel.org/r/9add61915b4a4eedad74fbd869107863a28b428e.1623704845.git-series.pawan.kumar.gupta@linux.intel.com
AMD and Hygon CPUs have a CPUID bit for RAPL. Drop the fam17h suffix as
it is stale already.
Make use of this instead of a model check to work more nicely in virtual
environments where RAPL typically isn't available.
[ bp: drop the ../cpu/powerflags.c hunk which is superfluous as the
"rapl" bit name appears already in flags. ]
Signed-off-by: Andrew Cooper <andrew.cooper3@citrix.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210514135920.16093-1-andrew.cooper3@citrix.com
- Stage-2 isolation for the host kernel when running in protected mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation,
zap under read lock, enable/disably dirty page logging under
read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing
the architecture-specific code
- Some selftests improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmCJ13kUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroM1HAgAqzPxEtiTPTFeFJV5cnPPJ3dFoFDK
y/juZJUQ1AOtvuWzzwuf175ewkv9vfmtG6rVohpNSkUlJYeoc6tw7n8BTTzCVC1b
c/4Dnrjeycr6cskYlzaPyV6MSgjSv5gfyj1LA5UEM16LDyekmaynosVWY5wJhju+
Bnyid8l8Utgz+TLLYogfQJQECCrsU0Wm//n+8TWQgLf1uuiwshU5JJe7b43diJrY
+2DX+8p9yWXCTz62sCeDWNahUv8AbXpMeJ8uqZPYcN1P0gSEUGu8xKmLOFf9kR7b
M4U1Gyz8QQbjd2lqnwiWIkvRLX6gyGVbq2zH0QbhUe5gg3qGUX7JjrhdDQ==
=AXUi
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"This is a large update by KVM standards, including AMD PSP (Platform
Security Processor, aka "AMD Secure Technology") and ARM CoreSight
(debug and trace) changes.
ARM:
- CoreSight: Add support for ETE and TRBE
- Stage-2 isolation for the host kernel when running in protected
mode
- Guest SVE support when running in nVHE mode
- Force W^X hypervisor mappings in nVHE mode
- ITS save/restore for guests using direct injection with GICv4.1
- nVHE panics now produce readable backtraces
- Guest support for PTP using the ptp_kvm driver
- Performance improvements in the S2 fault handler
x86:
- AMD PSP driver changes
- Optimizations and cleanup of nested SVM code
- AMD: Support for virtual SPEC_CTRL
- Optimizations of the new MMU code: fast invalidation, zap under
read lock, enable/disably dirty page logging under read lock
- /dev/kvm API for AMD SEV live migration (guest API coming soon)
- support SEV virtual machines sharing the same encryption context
- support SGX in virtual machines
- add a few more statistics
- improved directed yield heuristics
- Lots and lots of cleanups
Generic:
- Rework of MMU notifier interface, simplifying and optimizing the
architecture-specific code
- a handful of "Get rid of oprofile leftovers" patches
- Some selftests improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (379 commits)
KVM: selftests: Speed up set_memory_region_test
selftests: kvm: Fix the check of return value
KVM: x86: Take advantage of kvm_arch_dy_has_pending_interrupt()
KVM: SVM: Skip SEV cache flush if no ASIDs have been used
KVM: SVM: Remove an unnecessary prototype declaration of sev_flush_asids()
KVM: SVM: Drop redundant svm_sev_enabled() helper
KVM: SVM: Move SEV VMCB tracking allocation to sev.c
KVM: SVM: Explicitly check max SEV ASID during sev_hardware_setup()
KVM: SVM: Unconditionally invoke sev_hardware_teardown()
KVM: SVM: Enable SEV/SEV-ES functionality by default (when supported)
KVM: SVM: Condition sev_enabled and sev_es_enabled on CONFIG_KVM_AMD_SEV=y
KVM: SVM: Append "_enabled" to module-scoped SEV/SEV-ES control variables
KVM: SEV: Mask CPUID[0x8000001F].eax according to supported features
KVM: SVM: Move SEV module params/variables to sev.c
KVM: SVM: Disable SEV/SEV-ES if NPT is disabled
KVM: SVM: Free sev_asid_bitmap during init if SEV setup fails
KVM: SVM: Zero out the VMCB array used to track SEV ASID association
x86/sev: Drop redundant and potentially misleading 'sev_enabled'
KVM: x86: Move reverse CPUID helpers to separate header file
KVM: x86: Rename GPR accessors to make mode-aware variants the defaults
...
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability enumeration method
introduced on the latest Intel platforms. This table is in a well-defined PCI
namespace location and is read via MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter blocks, but
fancier counters still need to be enumerated explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of 'hybrid' CPUs
and PMUs. Alder Lake is a mix of Golden Cove ('big') and Gracemont ('small' - Atom derived)
cores.
The CPU-side feature set is entirely symmetrical - but on the PMU side there's
core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX profiling, by
fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The immediate motivation
is to support low-overhead sampling-based race detection for user-space code. The
feature consists of the following main changes:
- Add thread-only event inheritance via perf_event_attr::inherit_thread, which limits
inheritance of events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap, extend siginfo with an u64
::si_perf, and add the breakpoint information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the new field can be used
to introduce support for other types of metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmCJGpERHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1j9zBAAuVbG2snV6SBSdXLhQcM66N3NckOXvSY5
QjjhQcuwJQEK/NJB3266K5d8qSmdyRBsWf3GCsrmyBT67P1V28K44Pu7oCV0UDtf
mpVRjEP0oR7hNsANSSgo8Fa4ZD7H5waX7dK7925Tvw8By3mMoZoddiD/84WJHhxO
NDF+GRFaRj+/dpbhV8cdCoXTjYdkC36vYuZs3b9lu0tS9D/AJgsNy7TinLvO02Cs
5peP+2y29dgvCXiGBiuJtEA6JyGnX3nUJCvfOZZ/DWDc3fdduARlRrc5Aiq4n/wY
UdSkw1VTZBlZ1wMSdmHQVeC5RIH3uWUtRoNqy0Yc90lBm55AQ0EENwIfWDUDC5zy
USdBqWTNWKMBxlEilUIyqKPQK8LW/31TRzqy8BWKPNcZt5yP5YS1SjAJRDDjSwL/
I+OBw1vjLJamYh8oNiD5b+VLqNQba81jFASfv+HVWcULumnY6ImECCpkg289Fkpi
BVR065boifJDlyENXFbvTxyMBXQsZfA+EhtxG7ju2Ni+TokBbogyCb3L2injPt9g
7jjtTOqmfad4gX1WSc+215iYZMkgECcUd9E+BfOseEjBohqlo7yNKIfYnT8mE/Xq
nb7eHjyvLiE8tRtZ+7SjsujOMHv9LhWFAbSaxU/kEVzpkp0zyd6mnnslDKaaHLhz
goUMOL/D0lg=
=NhQ7
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf event updates from Ingo Molnar:
- Improve Intel uncore PMU support:
- Parse uncore 'discovery tables' - a new hardware capability
enumeration method introduced on the latest Intel platforms. This
table is in a well-defined PCI namespace location and is read via
MMIO. It is organized in an rbtree.
These uncore tables will allow the discovery of standard counter
blocks, but fancier counters still need to be enumerated
explicitly.
- Add Alder Lake support
- Improve IIO stacks to PMON mapping support on Skylake servers
- Add Intel Alder Lake PMU support - which requires the introduction of
'hybrid' CPUs and PMUs. Alder Lake is a mix of Golden Cove ('big')
and Gracemont ('small' - Atom derived) cores.
The CPU-side feature set is entirely symmetrical - but on the PMU
side there's core type dependent PMU functionality.
- Reduce data loss with CPU level hardware tracing on Intel PT / AUX
profiling, by fixing the AUX allocation watermark logic.
- Improve ring buffer allocation on NUMA systems
- Put 'struct perf_event' into their separate kmem_cache pool
- Add support for synchronous signals for select perf events. The
immediate motivation is to support low-overhead sampling-based race
detection for user-space code. The feature consists of the following
main changes:
- Add thread-only event inheritance via
perf_event_attr::inherit_thread, which limits inheritance of
events to CLONE_THREAD.
- Add the ability for events to not leak through exec(), via
perf_event_attr::remove_on_exec.
- Allow the generation of SIGTRAP via perf_event_attr::sigtrap,
extend siginfo with an u64 ::si_perf, and add the breakpoint
information to ::si_addr and ::si_perf if the event is
PERF_TYPE_BREAKPOINT.
The siginfo support is adequate for breakpoints right now - but the
new field can be used to introduce support for other types of
metadata passed over siginfo as well.
- Misc fixes, cleanups and smaller updates.
* tag 'perf-core-2021-04-28' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
signal, perf: Add missing TRAP_PERF case in siginfo_layout()
signal, perf: Fix siginfo_t by avoiding u64 on 32-bit architectures
perf/x86: Allow for 8<num_fixed_counters<16
perf/x86/rapl: Add support for Intel Alder Lake
perf/x86/cstate: Add Alder Lake CPU support
perf/x86/msr: Add Alder Lake CPU support
perf/x86/intel/uncore: Add Alder Lake support
perf: Extend PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
perf/x86/intel: Add Alder Lake Hybrid support
perf/x86: Support filter_match callback
perf/x86/intel: Add attr_update for Hybrid PMUs
perf/x86: Add structures for the attributes of Hybrid PMUs
perf/x86: Register hybrid PMUs
perf/x86: Factor out x86_pmu_show_pmu_cap
perf/x86: Remove temporary pmu assignment in event_init
perf/x86/intel: Factor out intel_pmu_check_extra_regs
perf/x86/intel: Factor out intel_pmu_check_event_constraints
perf/x86/intel: Factor out intel_pmu_check_num_counters
perf/x86: Hybrid PMU support for extra_regs
perf/x86: Hybrid PMU support for event constraints
...
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline how
one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery around
selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack
ops. Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCHyJQACgkQEsHwGGHe
VUpjiRAAwPZdwwp08ypZuMHR4EhLNru6gYhbAoALGgtYnQjLtn5onQhIeieK+R4L
cmZpxHT9OFp5dXHk4kwygaQBsD4pPOiIpm60kye1dN3cSbOORRdkwEoQMpKMZ+5Y
kvVsmn7lrwRbp600KdE4G6L5+N6gEgr0r6fMFWWGK3mgVAyCzPexVHgydcp131ch
iYMo6/pPDcNkcV/hboVKgx7GISdQ7L356L1MAIW/Sxtw6uD/X4qGYW+kV2OQg9+t
nQDaAo7a8Jqlop5W5TQUdMLKQZ1xK8SFOSX/nTS15DZIOBQOGgXR7Xjywn1chBH/
PHLwM5s4XF6NT5VlIA8tXNZjWIZTiBdldr1kJAmdDYacrtZVs2LWSOC0ilXsd08Z
EWtvcpHfHEqcuYJlcdALuXY8xDWqf6Q2F7BeadEBAxwnnBg+pAEoLXI/1UwWcmsj
wpaZTCorhJpYo2pxXckVdHz2z0LldDCNOXOjjaWU8tyaOBKEK6MgAaYU7e0yyENv
mVc9n5+WuvXuivC6EdZ94Pcr/KQsd09ezpJYcVfMDGv58YZrb6XIEELAJIBTu2/B
Ua8QApgRgetx+1FKb8X6eGjPl0p40qjD381TADb4rgETPb1AgKaQflmrSTIik+7p
O+Eo/4x/GdIi9jFk3K+j4mIznRbUX0cheTJgXoiI4zXML9Jv94w=
=bm4S
-----END PGP SIGNATURE-----
Merge tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 updates from Borislav Petkov:
- Turn the stack canary into a normal __percpu variable on 32-bit which
gets rid of the LAZY_GS stuff and a lot of code.
- Add an insn_decode() API which all users of the instruction decoder
should preferrably use. Its goal is to keep the details of the
instruction decoder away from its users and simplify and streamline
how one decodes insns in the kernel. Convert its users to it.
- kprobes improvements and fixes
- Set the maximum DIE per package variable on Hygon
- Rip out the dynamic NOP selection and simplify all the machinery
around selecting NOPs. Use the simplified NOPs in objtool now too.
- Add Xeon Sapphire Rapids to list of CPUs that support PPIN
- Simplify the retpolines by folding the entire thing into an
alternative now that objtool can handle alternatives with stack ops.
Then, have objtool rewrite the call to the retpoline with the
alternative which then will get patched at boot time.
- Document Intel uarch per models in intel-family.h
- Make Sub-NUMA Clustering topology the default and Cluster-on-Die the
exception on Intel.
* tag 'x86_core_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (53 commits)
x86, sched: Treat Intel SNC topology as default, COD as exception
x86/cpu: Comment Skylake server stepping too
x86/cpu: Resort and comment Intel models
objtool/x86: Rewrite retpoline thunk calls
objtool: Skip magical retpoline .altinstr_replacement
objtool: Cache instruction relocs
objtool: Keep track of retpoline call sites
objtool: Add elf_create_undef_symbol()
objtool: Extract elf_symbol_add()
objtool: Extract elf_strtab_concat()
objtool: Create reloc sections implicitly
objtool: Add elf_create_reloc() helper
objtool: Rework the elf_rebuild_reloc_section() logic
objtool: Fix static_call list generation
objtool: Handle per arch retpoline naming
objtool: Correctly handle retpoline thunk calls
x86/retpoline: Simplify retpolines
x86/alternatives: Optimize optimize_nops()
x86: Add insn_decode_kernel()
x86/kprobes: Move 'inline' to the beginning of the kprobe_is_ss() declaration
...
Newer CPUs provide a second mechanism to detect operations with lock
prefix which go accross a cache line boundary. Such operations have to
take bus lock which causes a system wide performance degradation when
these operations happen frequently.
The new mechanism is not using the #AC exception. It triggers #DB and is
restricted to operations in user space. Kernel side split lock access can
only be detected by the #AC based variant. Contrary to the #AC based
mechanism the #DB based variant triggers _after_ the instruction was
executed. The mechanism is CPUID enumerated and contrary to the #AC
version which is based on the magic TEST_CTRL_MSR and model/family based
enumeration on the way to become architectural.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmCGkr8THHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYodUKD/9tUXhInR7+1ykEHpMvdmSp48vqY3nc
sKmT22pPl+OchnJ62mw3T8gKpBYVleJmcCaY2qVx7hfaVcWApLGJvX4tmfXmv422
XDSJ6b8Os6wfgx5FR//I17z8ZtXnnuKkPrTMoRsQUw2qLq31y6fdQv+GW/cc1Kpw
mengjmPE+HnpaKbtuQfPdc4a+UvLjvzBMAlDZPTBPKYrP4FFqYVnUVwyTg5aLVDY
gHz4V8+b502RS/zPfTAtE3J848od+NmcUPdFlcG9DVA+hR0Rl0thvruCTFiD2vVh
i9DJ7INof5FoJDEzh0dGsD7x+MB6OY8GZyHdUMeGgIRPtWkqrG52feQQIn2YYlaL
fB3DlpNv7NIJ/0JMlALvh8S0tEoOcYdHqH+M/3K/zbzecg/FAo+lVo8WciGLPqWs
ykUG5/f/OnlTvgB8po1ebJu0h0jHnoK9heWWXk9zWIRVDPXHFOWKW3kSbTTb3icR
9hfjP/SNejpmt9Ju1OTwsgnV7NALIdVX+G5jyIEsjFl31Co1RZNYhHLFvi11FWlQ
/ssvFK9O5ZkliocGCAN9+yuOnM26VqWSCE4fis6/2aSgD2Y4Gpvb//cP96SrcNAH
u8eXNvGLlniJP3F3JImWIfIPQTrpvQhcU4eZ6NtviXqj/utQXX6c9PZ1PLYpcvUh
9AWF8rwhT8X4oA==
=lmi8
-----END PGP SIGNATURE-----
Merge tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 bus lock detection updates from Thomas Gleixner:
"Support for enhanced split lock detection:
Newer CPUs provide a second mechanism to detect operations with lock
prefix which go accross a cache line boundary. Such operations have to
take bus lock which causes a system wide performance degradation when
these operations happen frequently.
The new mechanism is not using the #AC exception. It triggers #DB and
is restricted to operations in user space. Kernel side split lock
access can only be detected by the #AC based variant.
Contrary to the #AC based mechanism the #DB based variant triggers
_after_ the instruction was executed. The mechanism is CPUID
enumerated and contrary to the #AC version which is based on the magic
TEST_CTRL_MSR and model/family based enumeration on the way to become
architectural"
* tag 'x86-splitlock-2021-04-26' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
Documentation/admin-guide: Change doc for split_lock_detect parameter
x86/traps: Handle #DB for bus lock
x86/cpufeatures: Enumerate #DB for bus lock detection
Christopherson, Kai Huang and Jarkko Sakkinen. Along with the usual
fixes, cleanups and improvements.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmCGlgYACgkQEsHwGGHe
VUqbYA/+IgX7uBkATndzTBL6l/D3QQaMRUkOk5nO9sOzQaYJ/Qwarfakax61CZrl
dZFdF07T/kSpMXQ6HIjzEaRx6j12xMYksrm8xBBSfXjtkIYu4auVloX2ldKhHwaK
OyiKS+R0O/Q7XvozEiPsQCf7XwraZFO+iMJ0jMxbPO7ZvxDXDBv0Fx3d9yzPx9Qg
BbJuIEKMoFPR3P39CWw0cOXr12Z9mmFReBKoSV4dZbZMRmv7FrA/Qlc+uS+RNZFK
/5sCn7x27qVx8Ha/Lh42kQf+yqv1l3437aqmG2vAbHQPmnbDmBeApZ6jhaoX3jhD
9ylkcpWFFf26oSbYAdmztZENLXRWLH6OIPxtmbf2HMsROiNR/cV0s4d2aduN/dHz
s1VnaDFayoub9CPWtiv0RJJnwmB6d+wF2JbQGh+kPZMX3VaxVPwTVLWQdsAVaB8Y
y7A2vZeWWHvP1a7ATbTFRDlTKKV3qDpMTD1B+hFELLNjMvyDU5c/1GhrIh0o1Jo3
jGrauylSInMxDkpDTDhQqU+/CSnV03zdzq1DSzxgig2Q0Es6pKxQHbL0honTf0GJ
l+8nefsQqRguZ1rVeuuSYvGPF++eqfyOiTZgN4fWdtZWJKMabsPNUbc4U3sP0/Sn
oe3Ixo2F41E9++MODF1G80DKLD/mVLYxdzC91suOmgfB2gbRhSg=
=KFYo
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX updates from Borislav Petkov:
"Add the guest side of SGX support in KVM guests. Work by Sean
Christopherson, Kai Huang and Jarkko Sakkinen.
Along with the usual fixes, cleanups and improvements"
* tag 'x86_sgx_for_v5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86/sgx: Mark sgx_vepc_vm_ops static
x86/sgx: Do not update sgx_nr_free_pages in sgx_setup_epc_section()
x86/sgx: Move provisioning device creation out of SGX driver
x86/sgx: Add helpers to expose ECREATE and EINIT to KVM
x86/sgx: Add helper to update SGX_LEPUBKEYHASHn MSRs
x86/sgx: Add encls_faulted() helper
x86/sgx: Add SGX2 ENCLS leaf definitions (EAUG, EMODPR and EMODT)
x86/sgx: Move ENCLS leaf definitions to sgx.h
x86/sgx: Expose SGX architectural definitions to the kernel
x86/sgx: Initialize virtual EPC driver even when SGX driver is disabled
x86/cpu/intel: Allow SGX virtualization without Launch Control support
x86/sgx: Introduce virtual EPC for use by KVM guests
x86/sgx: Add SGX_CHILD_PRESENT hardware error code
x86/sgx: Wipe out EREMOVE from sgx_free_epc_page()
x86/cpufeatures: Add SGX1 and SGX2 sub-features
x86/cpufeatures: Make SGX_LC feature bit depend on SGX bit
x86/sgx: Remove unnecessary kmap() from sgx_ioc_enclave_init()
selftests/sgx: Use getauxval() to simplify test code
selftests/sgx: Improve error detection and messages
x86/sgx: Add a basic NUMA allocation scheme to sgx_alloc_epc_page()
...
Add feature enumeration to identify a processor with Intel Hybrid
Technology: one in which CPUs of more than one type are the same package.
On a hybrid processor, all CPUs support the same homogeneous (i.e.,
symmetric) instruction set. All CPUs enumerate the same features in CPUID.
Thus, software (user space and kernel) can run and migrate to any CPU in
the system as well as utilize any of the enumerated features without any
change or special provisions. The main difference among CPUs in a hybrid
processor are power and performance properties.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Len Brown <len.brown@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/1618237865-33448-2-git-send-email-kan.liang@linux.intel.com
A bus lock is acquired through either a split locked access to writeback
(WB) memory or any locked access to non-WB memory. This is typically >1000
cycles slower than an atomic operation within a cache line. It also
disrupts performance on other cores.
Some CPUs have the ability to notify the kernel by a #DB trap after a user
instruction acquires a bus lock and is executed. This allows the kernel to
enforce user application throttling or mitigation. Both breakpoint and bus
lock can trigger the #DB trap in the same instruction and the ordering of
handling them is the kernel #DB handler's choice.
The CPU feature flag to be shown in /proc/cpuinfo will be "bus_lock_detect".
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/20210322135325.682257-2-fenghua.yu@intel.com
Add SGX1 and SGX2 feature flags, via CPUID.0x12.0x0.EAX, as scattered
features, since adding a new leaf for only two bits would be wasteful.
As part of virtualizing SGX, KVM will expose the SGX CPUID leafs to its
guest, and to do so correctly needs to query hardware and kernel support
for SGX1 and SGX2.
Suppress both SGX1 and SGX2 from /proc/cpuinfo. SGX1 basically means
SGX, and for SGX2 there is no concrete use case of using it in
/proc/cpuinfo.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kai Huang <kai.huang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Acked-by: Jarkko Sakkinen <jarkko@kernel.org>
Link: https://lkml.kernel.org/r/d787827dbfca6b3210ac3e432e3ac1202727e786.1616136308.git.kai.huang@intel.com
This ensures that a NOP is a NOP and not a random other instruction that
is also a NOP. It allows simplification of dynamic code patching that
wants to verify existing code before writing new instructions (ftrace,
jump_label, static_call, etc..).
Differentiating on NOPs is not a feature.
This pessimises 32bit (DONTCARE) and 32bit on 64bit CPUs (CARELESS).
32bit is not a performance target.
Everything x86_64 since AMD K10 (2007) and Intel IvyBridge (2012) is
fine with using NOPL (as opposed to prefix NOP). And per FEATURE_NOPL
being required for x86_64, all x86_64 CPUs can use NOPL. So stop
caring about NOPs, simplify things and get on with life.
[ The problem seems to be that some uarchs can only decode NOPL on a
single front-end port while others have severe decode penalties for
excessive prefixes. All modern uarchs can handle both, except Atom,
which has prefix penalties. ]
[ Also, much doubt you can actually measure any of this on normal
workloads. ]
After this, FEATURE_NOPL is unused except for required-features for
x86_64. FEATURE_K8 is only used for PTI.
[ bp: Kernel build measurements showed ~0.3s slowdown on Sandybridge
which is hardly a slowdown. Get rid of X86_FEATURE_K7, while at it. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Alexei Starovoitov <alexei.starovoitov@gmail.com> # bpf
Acked-by: Linus Torvalds <torvalds@linuxfoundation.org>
Link: https://lkml.kernel.org/r/20210312115749.065275711@infradead.org
Newer AMD processors have a feature to virtualize the use of the
SPEC_CTRL MSR. Presence of this feature is indicated via CPUID
function 0x8000000A_EDX[20]: GuestSpecCtrl. When present, the
SPEC_CTRL MSR is automatically virtualized.
Signed-off-by: Babu Moger <babu.moger@amd.com>
Acked-by: Borislav Petkov <bp@suse.de>
Message-Id: <161188100272.28787.4097272856384825024.stgit@bmoger-ubuntu>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For being able to switch paravirt patching from special cased custom
code sequences to ALTERNATIVE handling some X86_FEATURE_* are needed
as new features. This enables to have the standard indirect pv call
as the default code and to patch that with the non-Xen custom code
sequence via ALTERNATIVE patching later.
Make sure paravirt patching is performed before alternatives patching.
Signed-off-by: Juergen Gross <jgross@suse.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20210311142319.4723-9-jgross@suse.com
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU. Instead of the complex
"fast page fault" logic that is used in mmu.c, tdp_mmu.c uses an
rwlock so that page faults are concurrent, but the code that can run
against page faults is limited. Right now only page faults take the
lock for reading; in the future this will be extended to some
cases of page table destruction. I hope to switch the default MMU
around 5.12-rc3 (some testing was delayed due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmApSRgUHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroOc7wf9FnlinKoTFaSk7oeuuhF/CoCVwSFs
Z9+A2sNI99tWHQxFR6dyDkEFeQoXnqSxfLHtUVIdH/JnTg0FkEvFz3NK+0PzY1PF
PnGNbSoyhP58mSBG4gbBAxdF3ZJZMB8GBgYPeR62PvMX2dYbcHqVBNhlf6W4MQK4
5mAUuAnbf19O5N267sND+sIg3wwJYwOZpRZB7PlwvfKAGKf18gdBz5dQ/6Ej+apf
P7GODZITjqM5Iho7SDm/sYJlZprFZT81KqffwJQHWFMEcxFgwzrnYPx7J3gFwRTR
eeh9E61eCBDyCTPpHROLuNTVBqrAioCqXLdKOtO5gKvZI3zmomvAsZ8uXQ==
=uFZU
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"x86:
- Support for userspace to emulate Xen hypercalls
- Raise the maximum number of user memslots
- Scalability improvements for the new MMU.
Instead of the complex "fast page fault" logic that is used in
mmu.c, tdp_mmu.c uses an rwlock so that page faults are concurrent,
but the code that can run against page faults is limited. Right now
only page faults take the lock for reading; in the future this will
be extended to some cases of page table destruction. I hope to
switch the default MMU around 5.12-rc3 (some testing was delayed
due to Chinese New Year).
- Cleanups for MAXPHYADDR checks
- Use static calls for vendor-specific callbacks
- On AMD, use VMLOAD/VMSAVE to save and restore host state
- Stop using deprecated jump label APIs
- Workaround for AMD erratum that made nested virtualization
unreliable
- Support for LBR emulation in the guest
- Support for communicating bus lock vmexits to userspace
- Add support for SEV attestation command
- Miscellaneous cleanups
PPC:
- Support for second data watchpoint on POWER10
- Remove some complex workarounds for buggy early versions of POWER9
- Guest entry/exit fixes
ARM64:
- Make the nVHE EL2 object relocatable
- Cleanups for concurrent translation faults hitting the same page
- Support for the standard TRNG hypervisor call
- A bunch of small PMU/Debug fixes
- Simplification of the early init hypercall handling
Non-KVM changes (with acks):
- Detection of contended rwlocks (implemented only for qrwlocks,
because KVM only needs it for x86)
- Allow __DISABLE_EXPORTS from assembly code
- Provide a saner follow_pfn replacements for modules"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (192 commits)
KVM: x86/xen: Explicitly pad struct compat_vcpu_info to 64 bytes
KVM: selftests: Don't bother mapping GVA for Xen shinfo test
KVM: selftests: Fix hex vs. decimal snafu in Xen test
KVM: selftests: Fix size of memslots created by Xen tests
KVM: selftests: Ignore recently added Xen tests' build output
KVM: selftests: Add missing header file needed by xAPIC IPI tests
KVM: selftests: Add operand to vmsave/vmload/vmrun in svm.c
KVM: SVM: Make symbol 'svm_gp_erratum_intercept' static
locking/arch: Move qrwlock.h include after qspinlock.h
KVM: PPC: Book3S HV: Fix host radix SLB optimisation with hash guests
KVM: PPC: Book3S HV: Ensure radix guest has no SLB entries
KVM: PPC: Don't always report hash MMU capability for P9 < DD2.2
KVM: PPC: Book3S HV: Save and restore FSCR in the P9 path
KVM: PPC: remove unneeded semicolon
KVM: PPC: Book3S HV: Use POWER9 SLBIA IH=6 variant to clear SLB
KVM: PPC: Book3S HV: No need to clear radix host SLB before loading HPT guest
KVM: PPC: Book3S HV: Fix radix guest SLB side channel
KVM: PPC: Book3S HV: Remove support for running HPT guest on RPT host without mixed mode support
KVM: PPC: Book3S HV: Introduce new capability for 2nd DAWR
KVM: PPC: Book3S HV: Add infrastructure to support 2nd DAWR
...
New AMD CPUs have a change that checks #VMEXIT intercept on special SVM
instructions before checking their EAX against reserved memory region.
This change is indicated by CPUID_0x8000000A_EDX[28]. If it is 1, #VMEXIT
is triggered before #GP. KVM doesn't need to intercept and emulate #GP
faults as #GP is supposed to be triggered.
Co-developed-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Bandan Das <bsd@redhat.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210126081831.570253-4-wei.huang2@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add AVX version of the Vector Neural Network (VNNI) Instructions.
A processor supports AVX VNNI instructions if CPUID.0x07.0x1:EAX[4] is
present. The following instructions are available when this feature is
present.
1. VPDPBUS: Multiply and Add Unsigned and Signed Bytes
2. VPDPBUSDS: Multiply and Add Unsigned and Signed Bytes with Saturation
3. VPDPWSSD: Multiply and Add Signed Word Integers
4. VPDPWSSDS: Multiply and Add Signed Integers with Saturation
The only in-kernel usage of this is kvm passthrough. The CPU feature
flag is shown as "avx_vnni" in /proc/cpuinfo.
This instruction is currently documented in the latest "extensions"
manual (ISE). It will appear in the "main" manual (SDM) in the future.
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Signed-off-by: Yang Zhong <yang.zhong@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Message-Id: <20210105004909.42000-2-yang.zhong@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Collect the scattered SME/SEV related feature flags into a dedicated
word. There are now five recognized features in CPUID.0x8000001F.EAX,
with at least one more on the horizon (SEV-SNP). Using a dedicated word
allows KVM to use its automagic CPUID adjustment logic when reporting
the set of supported features to userspace.
No functional change intended.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Brijesh Singh <brijesh.singh@amd.com>
Link: https://lkml.kernel.org/r/20210122204047.2860075-2-seanjc@google.com
* PSCI relay at EL2 when "protected KVM" is enabled
* New exception injection code
* Simplification of AArch32 system register handling
* Fix PMU accesses when no PMU is enabled
* Expose CSV3 on non-Meltdown hosts
* Cache hierarchy discovery fixes
* PV steal-time cleanups
* Allow function pointers at EL2
* Various host EL2 entry cleanups
* Simplification of the EL2 vector allocation
s390:
* memcg accouting for s390 specific parts of kvm and gmap
* selftest for diag318
* new kvm_stat for when async_pf falls back to sync
x86:
* Tracepoints for the new pagetable code from 5.10
* Catch VFIO and KVM irqfd events before userspace
* Reporting dirty pages to userspace with a ring buffer
* SEV-ES host support
* Nested VMX support for wait-for-SIPI activity state
* New feature flag (AVX512 FP16)
* New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
* Selftest improvements
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAl/bdL4UHHBib256aW5p
QHJlZGhhdC5jb20ACgkQv/vSX3jHroNgQQgAnTH6rhXa++Zd5F0EM2NwXwz3iEGb
lOq1DZSGjs6Eekjn8AnrWbmVQr+CBCuGU9MrxpSSzNDK/awryo3NwepOWAZw9eqk
BBCVwGBbJQx5YrdgkGC0pDq2sNzcpW/VVB3vFsmOxd9eHblnuKSIxEsCCXTtyqIt
XrLpQ1UhvI4yu102fDNhuFw2EfpzXm+K0Lc0x6idSkdM/p7SyeOxiv8hD4aMr6+G
bGUQuMl4edKZFOWFigzr8NovQAvDHZGrwfihu2cLRYKLhV97QuWVmafv/yYfXcz2
drr+wQCDNzDOXyANnssmviazrhOX0QmTAhbIXGGX/kTxYKcfPi83ZLoI3A==
=ISud
-----END PGP SIGNATURE-----
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini:
"Much x86 work was pushed out to 5.12, but ARM more than made up for it.
ARM:
- PSCI relay at EL2 when "protected KVM" is enabled
- New exception injection code
- Simplification of AArch32 system register handling
- Fix PMU accesses when no PMU is enabled
- Expose CSV3 on non-Meltdown hosts
- Cache hierarchy discovery fixes
- PV steal-time cleanups
- Allow function pointers at EL2
- Various host EL2 entry cleanups
- Simplification of the EL2 vector allocation
s390:
- memcg accouting for s390 specific parts of kvm and gmap
- selftest for diag318
- new kvm_stat for when async_pf falls back to sync
x86:
- Tracepoints for the new pagetable code from 5.10
- Catch VFIO and KVM irqfd events before userspace
- Reporting dirty pages to userspace with a ring buffer
- SEV-ES host support
- Nested VMX support for wait-for-SIPI activity state
- New feature flag (AVX512 FP16)
- New system ioctl to report Hyper-V-compatible paravirtualization features
Generic:
- Selftest improvements"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits)
KVM: SVM: fix 32-bit compilation
KVM: SVM: Add AP_JUMP_TABLE support in prep for AP booting
KVM: SVM: Provide support to launch and run an SEV-ES guest
KVM: SVM: Provide an updated VMRUN invocation for SEV-ES guests
KVM: SVM: Provide support for SEV-ES vCPU loading
KVM: SVM: Provide support for SEV-ES vCPU creation/loading
KVM: SVM: Update ASID allocation to support SEV-ES guests
KVM: SVM: Set the encryption mask for the SVM host save area
KVM: SVM: Add NMI support for an SEV-ES guest
KVM: SVM: Guest FPU state save/restore not needed for SEV-ES guest
KVM: SVM: Do not report support for SMM for an SEV-ES guest
KVM: x86: Update __get_sregs() / __set_sregs() to support SEV-ES
KVM: SVM: Add support for CR8 write traps for an SEV-ES guest
KVM: SVM: Add support for CR4 write traps for an SEV-ES guest
KVM: SVM: Add support for CR0 write traps for an SEV-ES guest
KVM: SVM: Add support for EFER write traps for an SEV-ES guest
KVM: SVM: Support string IO operations for an SEV-ES guest
KVM: SVM: Support MMIO for an SEV-ES guest
KVM: SVM: Create trace events for VMGEXIT MSR protocol processing
KVM: SVM: Create trace events for VMGEXIT processing
...
On systems that do not have hardware enforced cache coherency between
encrypted and unencrypted mappings of the same physical page, the
hypervisor can use the VM page flush MSR (0xc001011e) to flush the cache
contents of an SEV guest page. When a small number of pages are being
flushed, this can be used in place of issuing a WBINVD across all CPUs.
CPUID 0x8000001f_eax[2] is used to determine if the VM page flush MSR is
available. Add a CPUID feature to indicate it is supported and define the
MSR.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Message-Id: <f1966379e31f9b208db5257509c4a089a87d33d0.1607620209.git.thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Enumerate AVX512 Half-precision floating point (FP16) CPUID feature
flag. Compared with using FP32, using FP16 cut the number of bits
required for storage in half, reducing the exponent from 8 bits to 5,
and the mantissa from 23 bits to 10. Using FP16 also enables developers
to train and run inference on deep learning models fast when all
precision or magnitude (FP32) is not needed.
A processor supports AVX512 FP16 if CPUID.(EAX=7,ECX=0):EDX[bit 23]
is present. The AVX512 FP16 requires AVX512BW feature be implemented
since the instructions for manipulating 32bit masks are associated with
AVX512BW.
The only in-kernel usage of this is kvm passthrough. The CPU feature
flag is shown as "avx512_fp16" in /proc/cpuinfo.
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Acked-by: Dave Hansen <dave.hansen@intel.com>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Message-Id: <20201208033441.28207-2-kyung.min.park@intel.com>
Acked-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The SGX Launch Control hardware helps restrict which enclaves the
hardware will run. Launch control is intended to restrict what software
can run with enclave protections, which helps protect the overall system
from bad enclaves.
For the kernel's purposes, there are effectively two modes in which the
launch control hardware can operate: rigid and flexible. In its rigid
mode, an entity other than the kernel has ultimate authority over which
enclaves can be run (firmware, Intel, etc...). In its flexible mode, the
kernel has ultimate authority over which enclaves can run.
Enable X86_FEATURE_SGX_LC to enumerate when the CPU supports SGX Launch
Control in general.
Add MSR_IA32_SGXLEPUBKEYHASH{0, 1, 2, 3}, which when combined contain a
SHA256 hash of a 3072-bit RSA public key. The hardware allows SGX enclaves
signed with this public key to initialize and run [*]. Enclaves not signed
with this key can not initialize and run.
Add FEAT_CTL_SGX_LC_ENABLED, which informs whether the SGXLEPUBKEYHASH MSRs
can be written by the kernel.
If the MSRs do not exist or are read-only, the launch control hardware is
operating in rigid mode. Linux does not and will not support creating
enclaves when hardware is configured in rigid mode because it takes away
the authority for launch decisions from the kernel. Note, this does not
preclude KVM from virtualizing/exposing SGX to a KVM guest when launch
control hardware is operating in rigid mode.
[*] Intel SDM: 38.1.4 Intel SGX Launch Control Configuration
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-5-jarkko@kernel.org
Populate X86_FEATURE_SGX feature from CPUID and tie it to the Kconfig
option with disabled-features.h.
IA32_FEATURE_CONTROL.SGX_ENABLE must be examined in addition to the CPUID
bits to enable full SGX support. The BIOS must both set this bit and lock
IA32_FEATURE_CONTROL for SGX to be supported (Intel SDM section 36.7.1).
The setting or clearing of this bit has no impact on the CPUID bits above,
which is why it needs to be detected separately.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Co-developed-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Jarkko Sakkinen <jarkko@kernel.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Jethro Beekman <jethro@fortanix.com>
Link: https://lkml.kernel.org/r/20201112220135.165028-4-jarkko@kernel.org
called SEV by also encrypting the guest register state, making the
registers inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared between
the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest so
in order for that exception mechanism to work, the early x86 init code
needed to be made able to handle exceptions, which, in itself, brings
a bunch of very nice cleanups and improvements to the early boot code
like an early page fault handler, allowing for on-demand building of the
identity mapping. With that, !KASLR configurations do not use the EFI
page table anymore but switch to a kernel-controlled one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly
separate from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and behind
static keys to minimize the performance impact on !SEV-ES setups.
Work by Joerg Roedel and Thomas Lendacky and others.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+FiKYACgkQEsHwGGHe
VUqS5BAAlh5mKwtxXMyFyAIHa5tpsgDjbecFzy1UVmZyxN0JHLlM3NLmb+K52drY
PiWjNNMi/cFMFazkuLFHuY0poBWrZml8zRS/mExKgUJC6EtguS9FQnRE9xjDBoWQ
gOTSGJWEzT5wnFqo8qHwlC2CDCSF1hfL8ks3cUFW2tCWus4F9pyaMSGfFqD224rg
Lh/8+arDMSIKE4uH0cm7iSuyNpbobId0l5JNDfCEFDYRigQZ6pZsQ9pbmbEpncs4
rmjDvBA5eHDlNMXq0ukqyrjxWTX4ZLBOBvuLhpyssSXnnu2T+Tcxg09+ZSTyJAe0
LyC9Wfo0v78JASXMAdeH9b1d1mRYNMqjvnBItNQoqweoqUXWz7kvgxCOp6b/G4xp
cX5YhB6BprBW2DXL45frMRT/zX77UkEKYc5+0IBegV2xfnhRsjqQAQaWLIksyEaX
nz9/C6+1Sr2IAv271yykeJtY6gtlRjg/usTlYpev+K0ghvGvTmuilEiTltjHrso1
XAMbfWHQGSd61LNXofvx/GLNfGBisS6dHVHwtkayinSjXNdWxI6w9fhbWVjQ+y2V
hOF05lmzaJSG5kPLrsFHFqm2YcxOmsWkYYDBHvtmBkMZSf5B+9xxDv97Uy9NETcr
eSYk//TEkKQqVazfCQS/9LSm0MllqKbwNO25sl0Tw2k6PnheO2g=
=toqi
-----END PGP SIGNATURE-----
Merge tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SEV-ES support from Borislav Petkov:
"SEV-ES enhances the current guest memory encryption support called SEV
by also encrypting the guest register state, making the registers
inaccessible to the hypervisor by en-/decrypting them on world
switches. Thus, it adds additional protection to Linux guests against
exfiltration, control flow and rollback attacks.
With SEV-ES, the guest is in full control of what registers the
hypervisor can access. This is provided by a guest-host exchange
mechanism based on a new exception vector called VMM Communication
Exception (#VC), a new instruction called VMGEXIT and a shared
Guest-Host Communication Block which is a decrypted page shared
between the guest and the hypervisor.
Intercepts to the hypervisor become #VC exceptions in an SEV-ES guest
so in order for that exception mechanism to work, the early x86 init
code needed to be made able to handle exceptions, which, in itself,
brings a bunch of very nice cleanups and improvements to the early
boot code like an early page fault handler, allowing for on-demand
building of the identity mapping. With that, !KASLR configurations do
not use the EFI page table anymore but switch to a kernel-controlled
one.
The main part of this series adds the support for that new exchange
mechanism. The goal has been to keep this as much as possibly separate
from the core x86 code by concentrating the machinery in two
SEV-ES-specific files:
arch/x86/kernel/sev-es-shared.c
arch/x86/kernel/sev-es.c
Other interaction with core x86 code has been kept at minimum and
behind static keys to minimize the performance impact on !SEV-ES
setups.
Work by Joerg Roedel and Thomas Lendacky and others"
* tag 'x86_seves_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (73 commits)
x86/sev-es: Use GHCB accessor for setting the MMIO scratch buffer
x86/sev-es: Check required CPU features for SEV-ES
x86/efi: Add GHCB mappings when SEV-ES is active
x86/sev-es: Handle NMI State
x86/sev-es: Support CPU offline/online
x86/head/64: Don't call verify_cpu() on starting APs
x86/smpboot: Load TSS and getcpu GDT entry before loading IDT
x86/realmode: Setup AP jump table
x86/realmode: Add SEV-ES specific trampoline entry point
x86/vmware: Add VMware-specific handling for VMMCALL under SEV-ES
x86/kvm: Add KVM-specific VMMCALL handling under SEV-ES
x86/paravirt: Allow hypervisor-specific VMMCALL handling under SEV-ES
x86/sev-es: Handle #DB Events
x86/sev-es: Handle #AC Events
x86/sev-es: Handle VMMCALL Events
x86/sev-es: Handle MWAIT/MWAITX Events
x86/sev-es: Handle MONITOR/MONITORX Events
x86/sev-es: Handle INVD Events
x86/sev-es: Handle RDPMC Events
x86/sev-es: Handle RDTSC(P) Events
...
James Morse.
* Add support for controlling per-thread memory bandwidth throttling
delay values on hw which supports it, by Fenghua Yu.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl+ENo0ACgkQEsHwGGHe
VUpIAw/+JtO9mP/OxLUUQEkYGMlYWxiJKGxHdI0cnw6gN02TGakVPZS3RAhdrDPP
Oahfl8g2EiC2sXSo0QEMFfZyEc/eOWo17wL1B+wgPfIIxy6KfGe6WtkHMNlOkWOS
zKxUvR93PjSs7e1vS+AMGbqQVFcL4RTSZN5H/QDaBnkxd3O5uLEvUm4pOxPs9FtX
etnK3eM4Uk6qfH9Pa0XZowp2RU0okRsatu+VREkEBplEplA1tusw3u//SlGgi266
Jsy2Pa2S7D0PGaP2D2+eziNmff319AT1mLtZ/0PKjkeZtqq/Sz0MJ9TxkesyEQPH
iv7IWzp+Dfc8Ui5rDNDvOIY+uJxQPMC0qwpU6sZdAgpsCcI5/xiSqTbBz6mxZeql
vTINIs7Lg/FBfkUn52LxbWkl8QA6aLXYr3PwdcFJzyTYmQitYzdEKxn1i+teWKr2
16QHR2GnXIEfc87JuHJpwiToUYZg+5UlVPkFTLNk/2n0gSiJzWMGecuHdS9spToR
vtpt5vmcAJKUptJLwKId+oEHbMLrvDGjXLApD4x3ROeiKGY7Cf1OwNhAmn8QZ8K5
S7wv9hbPZvkByQSsaNgDzzFUuYTP7cR9ILbwkHDixlpLyESnPzAsip5H4rq8gxLn
OwRKFGRvGid72EaapEY3yMA++EfzPfnebUmiLakSfWLHquh+0XQ=
=u3qb
-----END PGP SIGNATURE-----
Merge tag 'x86_cache_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cache resource control updates from Borislav Petkov:
- Misc cleanups to the resctrl code in preparation for the ARM side
(James Morse)
- Add support for controlling per-thread memory bandwidth throttling
delay values on hw which supports it (Fenghua Yu)
* tag 'x86_cache_for_v5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/resctrl: Enable user to view thread or core throttling mode
x86/resctrl: Enumerate per-thread MBA controls
cacheinfo: Move resctrl's get_cache_id() to the cacheinfo header file
x86/resctrl: Add struct rdt_cache::arch_has_{sparse, empty}_bitmaps
x86/resctrl: Merge AMD/Intel parse_bw() calls
x86/resctrl: Add struct rdt_membw::arch_needs_linear to explain AMD/Intel MBA difference
x86/resctrl: Use is_closid_match() in more places
x86/resctrl: Include pid.h
x86/resctrl: Use container_of() in delayed_work handlers
x86/resctrl: Fix stale comment
x86/resctrl: Remove struct rdt_membw::max_delay
x86/resctrl: Remove unused struct mbm_state::chunks_bw
devices which doesn't need pinning of pages for DMA anymore. Add support
for the command submission to devices using new x86 instructions like
ENQCMD{,S} and MOVDIR64B. In addition, add support for process address
space identifiers (PASIDs) which are referenced by those command
submission instructions along with the handling of the PASID state on
context switch as another extended state. Work by Fenghua Yu, Ashok Raj,
Yu-cheng Yu and Dave Jiang.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAl996DIACgkQEsHwGGHe
VUqM4A/+JDI3GxNyMyBpJR0nQ2vs23ru1o3OxvxhYtcacZ0cNwkaO7g3TLQxH+LZ
k1QtvEd4jqI6BXV4de+HdZFDcqzikJf0KHnUflLTx956/Eop5rtxzMWVo69ZmYs8
QrW0mLhyh8eq19cOHbQBb4M/HFc1DXBw+l7Ft3MeA1divOVESRB/uNxjA25K4PvV
y+pipyUxqKSNhmBFf2bV8OVZloJiEtg3H6XudP0g/rZgjYe3qWxa+2iv6D08yBNe
g7NpMDMql2uo1bcFON7se2oF34poAi49BfiIQb5G4m9pnPyvVEMOCijxCx2FHYyF
nukyxt8g3Uq+UJYoolLNoWijL1jgBWeTBg1uuwsQOqWSARJx8nr859z0GfGyk2RP
GNoYE4rrWBUMEqWk4xeiPPgRDzY0cgcGh0AeuWqNhgBfbbZeGL0t0m5kfytk5i1s
W0YfRbz+T8+iYbgVfE/Zpthc7rH7iLL7/m34JC13+pzhPVTT32ECLJov2Ac8Tt15
X+fOe6kmlDZa4GIhKRzUoR2aEyLpjufZ+ug50hznBQjGrQfcx7zFqRAU4sJx0Yyz
rxUOJNZZlyJpkyXzc12xUvShaZvTcYenHGpxXl8TU3iMbY2otxk1Xdza8pc1LGQ/
qneYgILgKa+hSBzKhXCPAAgSYtPlvQrRizArS8Y0k/9rYaKCfBU=
=K9X4
-----END PGP SIGNATURE-----
Merge tag 'x86_pasid_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 PASID updates from Borislav Petkov:
"Initial support for sharing virtual addresses between the CPU and
devices which doesn't need pinning of pages for DMA anymore.
Add support for the command submission to devices using new x86
instructions like ENQCMD{,S} and MOVDIR64B. In addition, add support
for process address space identifiers (PASIDs) which are referenced by
those command submission instructions along with the handling of the
PASID state on context switch as another extended state.
Work by Fenghua Yu, Ashok Raj, Yu-cheng Yu and Dave Jiang"
* tag 'x86_pasid_for_5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/asm: Add an enqcmds() wrapper for the ENQCMDS instruction
x86/asm: Carve out a generic movdir64b() helper for general usage
x86/mmu: Allocate/free a PASID
x86/cpufeatures: Mark ENQCMD as disabled when configured out
mm: Add a pasid member to struct mm_struct
x86/msr-index: Define an IA32_PASID MSR
x86/fpu/xstate: Add supervisor PASID state for ENQCMD
x86/cpufeatures: Enumerate ENQCMD and ENQCMDS instructions
Documentation/x86: Add documentation for SVA (Shared Virtual Addressing)
iommu/vt-d: Change flags type to unsigned int in binding mm
drm, iommu: Change type of pasid to u32
In some hardware implementations, coherency between the encrypted and
unencrypted mappings of the same physical page is enforced. In such a system,
it is not required for software to flush the page from all CPU caches in the
system prior to changing the value of the C-bit for a page. This hardware-
enforced cache coherency is indicated by EAX[10] in CPUID leaf 0x8000001f.
[ bp: Use one of the free slots in word 3. ]
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200917212038.5090-2-krish.sadhukhan@oracle.com
Work submission instruction comes in two flavors. ENQCMD can be called
both in ring 3 and ring 0 and always uses the contents of a PASID MSR
when shipping the command to the device. ENQCMDS allows a kernel driver
to submit commands on behalf of a user process. The driver supplies the
PASID value in ENQCMDS. There isn't any usage of ENQCMD in the kernel as
of now.
The CPU feature flag is shown as "enqcmd" in /proc/cpuinfo.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1600187413-163670-5-git-send-email-fenghua.yu@intel.com
Add CPU feature detection for Secure Encrypted Virtualization with
Encrypted State. This feature enhances SEV by also encrypting the
guest register state, making it in-accessible to the hypervisor.
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200907131613.12703-6-joro@8bytes.org
Intel TSX suspend load tracking instructions aim to give a way to choose
which memory accesses do not need to be tracked in the TSX read set. Add
TSX suspend load tracking CPUID feature flag TSXLDTRK for enumeration.
A processor supports Intel TSX suspend load address tracking if
CPUID.0x07.0x0:EDX[16] is present. Two instructions XSUSLDTRK, XRESLDTRK
are available when this feature is present.
The CPU feature flag is shown as "tsxldtrk" in /proc/cpuinfo.
Signed-off-by: Kyung Min Park <kyung.min.park@intel.com>
Signed-off-by: Cathy Zhang <cathy.zhang@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/1598316478-23337-2-git-send-email-cathy.zhang@intel.com
Some systems support per-thread Memory Bandwidth Allocation (MBA) which
applies a throttling delay value to each hardware thread instead of to
a core. Per-thread MBA is enumerated by CPUID.
No feature flag is shown in /proc/cpuinfo. User applications need to
check a resctrl throttling mode info file to know if the feature is
supported.
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lkml.kernel.org/r/1598296281-127595-2-git-send-email-fenghua.yu@intel.com
- Prepare for Intel's new SERIALIZE instruction
- Enable split-lock debugging on more CPUs
- Add more Intel CPU models
- Optimize stack canary initialization a bit
- Simplify the Spectre logic a bit
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oTsQRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1gueQ//Vh9sTi8+q5ZCxXnJQOi59SZsFy1quC2Q
6bFoSQ46npMBoYyC2eDQ4exBncWLqorT8Vq/evlW3XPldUzHKOk7b4Omonwyrrj5
dg5fqcRjpjU8ni6egmy4ElMjab53gDuv0yNazjONeBGeWuBGu4vI2bP2eY3Addfm
2eo2d5ZIMRCdShrUNwToJWWt6q4DzL/lcrVZAlX0LwlWVLqUCdIARALRM7V1XDsC
udxS8KnvhTaJ7l63BSJREe3AGksLQd9P4UkJS4IE4t0zINBIrME043BYBMTh2Vvk
y3jykKegIbmhPquGXG8grJbPDUF2/3FxmGKTIhpoo++agb2fxt921y5kqMJwniNS
H/Gk032iGzjjwWnOoWE56UeuDTOlweSIrm4EG22HyEDK7kOMJusjYAV5fB4Sv7vj
TBy5q0PCIutjXDTL1hIWf0WDiQt6eGNQS/yt3FlapLBGVRQwMU/pKYVVIOIaFtNs
szx1ZeiT358Ww8a2fQlb8pqv50Upmr2wqFkAsMbm+NN3N92cqK6gJlo1p7fnxIuG
+YVASobjsqbn0S62v/9SB/KRJz07adlZ6Tl/O/ILRvWyqik7COCCHDVJ62Zzaz5z
LqR2daVM5H+Lp6jGZuIoq/JiUkxUe2K990eWHb3PUpOC4Rh73PvtMc7WFhbAjbye
XV3eOEDi65c=
=sL2Q
-----END PGP SIGNATURE-----
Merge tag 'x86-cpu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cpu updates from Ingo Molar:
- prepare for Intel's new SERIALIZE instruction
- enable split-lock debugging on more CPUs
- add more Intel CPU models
- optimize stack canary initialization a bit
- simplify the Spectre logic a bit
* tag 'x86-cpu-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu: Refactor sync_core() for readability
x86/cpu: Relocate sync_core() to sync_core.h
x86/cpufeatures: Add enumeration for SERIALIZE instruction
x86/split_lock: Enable the split lock feature on Sapphire Rapids and Alder Lake CPUs
x86/cpu: Add Lakefield, Alder Lake and Rocket Lake models to the to Intel CPU family
x86/stackprotector: Pre-initialize canary for secondary CPUs
x86/speculation: Merge one test in spectre_v2_user_select_mitigation()
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAl8oRTgRHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1huHQ//T2hZk5zlpOtojxvdAzsPgtV4tHawseK8
+ZZEbrH5qo5/ZMF18qyEJCm9p1yg8uIu71InULRCSgjU3v82GVCcuLXuE36U904G
gHUqkYPnqxCqx+Li125aye9tKWahXe1DxX+uWbV0Ju7fiCO0rwYIzpWn1bnR6ilp
fmLGSbgPlTVJwZ9mBvyi3VUlH5tDYidFN74TREUOwx2g5uhg+8uEo44Eb/bx8ESF
dGt1Z/fnfDHkUZtmhzJk5Uz8nbw7rPHU/EZ4iZAxEzxTutY5PhsvbIfLO4t4HhGn
utZCk/pIdiLLQ1GaTvFxqi3iolDqpOuXpnDlfEAJD8UlMCnwyh1Certq5LaRbtHS
8SW3/CeJgzqzrrsYhkxVu2PMFWriSMxgKTLiN0KnzJN0Hu7A5lHbBY/6G7zpsF/A
2KJ4e8lZiPCcNF7LteSRroUe4hNOYxZ2FlYTXm3AgycSL189UMfWlHFb5c+b4m1a
cNJpz+jAom8foXN4KhRkl5PFKXVXDGTVln3NRJCh1Mqd1Ef4hsTo9H6FgHX/EfHg
slJDwwPac80v0dzlMTSsMkyseaKRAqIObWOiknPt1wv/qja7ibVZ5mUbZ+/mfJX/
YWybcPi1omgUSNt7TNx6jtma67rUjmJW0x9g7UJ/ttEkf6yG2lemrdusydBYuIni
0Z2+hWzI9MM=
=X7o0
-----END PGP SIGNATURE-----
Merge tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Ingo Molnar:
"Misc cleanups all around the place"
* tag 'x86-cleanups-2020-08-03' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/ioperm: Initialize pointer bitmap with NULL rather than 0
x86: uv: uv_hub.h: Delete duplicated word
x86: cmpxchg_32.h: Delete duplicated word
x86: bootparam.h: Delete duplicated word
x86/mm: Remove the unused mk_kernel_pgd() #define
x86/tsc: Remove unused "US_SCALE" and "NS_SCALE" leftover macros
x86/ioapic: Remove unused "IOAPIC_AUTO" define
x86/mm: Drop unused MAX_PHYSADDR_BITS
x86/msr: Move the F15h MSRs where they belong
x86/idt: Make idt_descr static
initrd: Remove erroneous comment
x86/mm/32: Fix -Wmissing prototypes warnings for init.c
cpu/speculation: Add prototype for cpu_show_srbds()
x86/mm: Fix -Wmissing-prototypes warnings for arch/x86/mm/init.c
x86/asm: Unify __ASSEMBLY__ blocks
x86/cpufeatures: Mark two free bits in word 3
x86/msr: Lift AMD family 0x15 power-specific MSRs
The Intel architecture defines a set of Serializing Instructions (a
detailed definition can be found in Vol.3 Section 8.3 of the Intel "main"
manual, SDM). However, these instructions do more than what is required,
have side effects and/or may be rather invasive. Furthermore, some of
these instructions are only available in kernel mode or may cause VMExits.
Thus, software using these instructions only to serialize execution (as
defined in the manual) must handle the undesired side effects.
As indicated in the name, SERIALIZE is a new Intel architecture
Serializing Instruction. Crucially, it does not have any of the mentioned
side effects. Also, it does not cause VMExit and can be used in user mode.
This new instruction is currently documented in the latest "extensions"
manual (ISE). It will appear in the "main" manual in the future.
Signed-off-by: Ricardo Neri <ricardo.neri-calderon@linux.intel.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20200727043132.15082-2-ricardo.neri-calderon@linux.intel.com
CPUID.(EAX=07H, ECX=0):EDX[19] indicates whether an Intel CPU supports
Architectural LBRs.
The "X86_FEATURE_..., word 18" is already mirrored from CPUID
"0x00000007:0 (EDX)". Add X86_FEATURE_ARCH_LBR under the "word 18"
section.
The feature will appear as "arch_lbr" in /proc/cpuinfo.
The Architectural Last Branch Records (LBR) feature enables recording
of software path history by logging taken branches and other control
flows. The feature will be supported in the perf_events subsystem.
Signed-off-by: Kan Liang <kan.liang@linux.intel.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Dave Hansen <dave.hansen@intel.com>
Link: https://lkml.kernel.org/r/1593780569-62993-2-git-send-email-kan.liang@linux.intel.com
SRBDS is an MDS-like speculative side channel that can leak bits from the
random number generator (RNG) across cores and threads. New microcode
serializes the processor access during the execution of RDRAND and
RDSEED. This ensures that the shared buffer is overwritten before it is
released for reuse.
While it is present on all affected CPU models, the microcode mitigation
is not needed on models that enumerate ARCH_CAPABILITIES[MDS_NO] in the
cases where TSX is not supported or has been disabled with TSX_CTRL.
The mitigation is activated by default on affected processors and it
increases latency for RDRAND and RDSEED instructions. Among other
effects this will reduce throughput from /dev/urandom.
* Enable administrator to configure the mitigation off when desired using
either mitigations=off or srbds=off.
* Export vulnerability status via sysfs
* Rename file-scoped macros to apply for non-whitelist table initializations.
[ bp: Massage,
- s/VULNBL_INTEL_STEPPING/VULNBL_INTEL_STEPPINGS/g,
- do not read arch cap MSR a second time in tsx_fused_off() - just pass it in,
- flip check in cpu_set_bug_bits() to save an indentation level,
- reflow comments.
jpoimboe: s/Mitigated/Mitigation/ in user-visible strings
tglx: Dropped the fused off magic for now
]
Signed-off-by: Mark Gross <mgross@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Tested-by: Neelima Krishnan <neelima.krishnan@intel.com>
- Atomic operations (lock prefixed instructions) which span two cache
lines have to acquire the global bus lock. This is at least 1k cycles
slower than an atomic operation within a cache line and disrupts
performance on other cores. Aside of performance disruption this is
a unpriviledged form of DoS.
Some newer CPUs have the capability to raise an #AC trap when such an
operation is attempted. The detection is by default enabled in warning
mode which will warn once when a user space application is caught. A
command line option allows to disable the detection or to select fatal
mode which will terminate offending applications with SIGBUS.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAl6B/uMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYocsAD/9yqpw+XlPKNPsfbm9sbirBDfTrENcL
F44iwn4WnrjoW/gnnZCYmPxJFsTtGVPqxHdUf4eyGemg9r9ZEO0DQftmUHC5Z6KX
aa/b5JoeM61wp9HlpVlD4D1jVt4pWyQODQeZnUXE4DEzmRc3cD/5lSU+/VeaIwwz
lxwUemqmXK7ucH2KA7smOGsl2nU6ED84q3mdOB1b4Cw+gWYMUnPJnuS/ipriBRx4
BYbMItcxsFvtdO9Hx8PvGd5LUK0wW8JOWrYQICD2kLpZtHtGeaHpBzFzL0+nMU7d
1epyDqJQDmX+PAzvj+EYyn3HTfobZlckn+tbxMQkkS+oDk1ywOZd+BancClvn5/5
jMfPIQJF5bGASVnzGMWhzVdwthTZiMG4d1iKsUWOA/hN0ch0+rm1BqraToabsEFg
Sv7/rvl9KtSOtMJTeAmMhlZUMBj9m8BtPFjniDwp6nw/upGgJdST5mrKFNYZvqOj
JnXsEMr/nJVW6bnUvT6LF66xbHlzHdxtodkQWqF+IEsyRaOz1zAGpQamP98KxNLc
dq/XYoEe1KqIFbg4BkNP+GeDL3FQDxjFNwPQnnjQEzWRbjkHlfmq1uKCsR2r8mBO
fYNJ1X8lTyGV0kx/ERpWGazzabpzh+8Lr1yMhnoA3EWvlzUjmpN2PFI4oTpTrtzT
c/q16SCxim3NWA==
=D9x8
-----END PGP SIGNATURE-----
Merge tag 'x86-splitlock-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 splitlock updates from Thomas Gleixner:
"Support for 'split lock' detection:
Atomic operations (lock prefixed instructions) which span two cache
lines have to acquire the global bus lock. This is at least 1k cycles
slower than an atomic operation within a cache line and disrupts
performance on other cores. Aside of performance disruption this is a
unpriviledged form of DoS.
Some newer CPUs have the capability to raise an #AC trap when such an
operation is attempted. The detection is by default enabled in warning
mode which will warn once when a user space application is caught. A
command line option allows to disable the detection or to select fatal
mode which will terminate offending applications with SIGBUS"
* tag 'x86-splitlock-2020-03-30' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Avoid runtime reads of the TEST_CTRL MSR
x86/split_lock: Rework the initialization flow of split lock detection
x86/split_lock: Enable split lock detection by kernel
Pull perf updates from Ingo Molnar:
"The main changes in this cycle were:
Kernel side changes:
- A couple of x86/cpu cleanups and changes were grandfathered in due
to patch dependencies. These clean up the set of CPU model/family
matching macros with a consistent namespace and C99 initializer
style.
- A bunch of updates to various low level PMU drivers:
* AMD Family 19h L3 uncore PMU
* Intel Tiger Lake uncore support
* misc fixes to LBR TOS sampling
- optprobe fixes
- perf/cgroup: optimize cgroup event sched-in processing
- misc cleanups and fixes
Tooling side changes are to:
- perf {annotate,expr,record,report,stat,test}
- perl scripting
- libapi, libperf and libtraceevent
- vendor events on Intel and S390, ARM cs-etm
- Intel PT updates
- Documentation changes and updates to core facilities
- misc cleanups, fixes and other enhancements"
* 'perf-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (89 commits)
cpufreq/intel_pstate: Fix wrong macro conversion
x86/cpu: Cleanup the now unused CPU match macros
hwrng: via_rng: Convert to new X86 CPU match macros
crypto: Convert to new CPU match macros
ASoC: Intel: Convert to new X86 CPU match macros
powercap/intel_rapl: Convert to new X86 CPU match macros
PCI: intel-mid: Convert to new X86 CPU match macros
mmc: sdhci-acpi: Convert to new X86 CPU match macros
intel_idle: Convert to new X86 CPU match macros
extcon: axp288: Convert to new X86 CPU match macros
thermal: Convert to new X86 CPU match macros
hwmon: Convert to new X86 CPU match macros
platform/x86: Convert to new CPU match macros
EDAC: Convert to new X86 CPU match macros
cpufreq: Convert to new X86 CPU match macros
ACPI: Convert to new X86 CPU match macros
x86/platform: Convert to new CPU match macros
x86/kernel: Convert to new CPU match macros
x86/kvm: Convert to new CPU match macros
x86/perf/events: Convert to new CPU match macros
...
Newer AMD CPUs support a feature called protected processor
identification number (PPIN). This feature can be detected via
CPUID_Fn80000008_EBX[23].
However, CPUID alone is not enough to read the processor identification
number - MSR_AMD_PPIN_CTL also needs to be configured properly. If, for
any reason, MSR_AMD_PPIN_CTL[PPIN_EN] can not be turned on, such as
disabled in BIOS, the CPU capability bit X86_FEATURE_AMD_PPIN needs to
be cleared.
When the X86_FEATURE_AMD_PPIN capability is available, the
identification number is issued together with the MCE error info in
order to keep track of the source of MCE errors.
[ bp: Massage. ]
Co-developed-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Smita Koralahalli Channabasappa <smita.koralahallichannabasappa@amd.com>
Signed-off-by: Wei Huang <wei.huang2@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20200321193800.3666964-1-wei.huang2@amd.com
Family 19h CPUs are Zen-based and still share most architectural
features with Family 17h CPUs, and therefore still need to call
init_amd_zn() e.g., to set the RECLAIM_DISTANCE override.
init_amd_zn() also sets X86_FEATURE_ZEN, which today is only used
in amd_set_core_ssb_state(), which isn't called on some late
model Family 17h CPUs, nor on any Family 19h CPUs:
X86_FEATURE_AMD_SSBD replaces X86_FEATURE_LS_CFG_SSBD on those
later model CPUs, where the SSBD mitigation is done via the
SPEC_CTRL MSR instead of the LS_CFG MSR.
Family 19h CPUs also don't have the erratum where the CPB feature
bit isn't set, but that code can stay unchanged and run safely
on Family 19h.
Signed-off-by: Kim Phillips <kim.phillips@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20200311191451.13221-1-kim.phillips@amd.com
A split-lock occurs when an atomic instruction operates on data that spans
two cache lines. In order to maintain atomicity the core takes a global bus
lock.
This is typically >1000 cycles slower than an atomic operation within a
cache line. It also disrupts performance on other cores (which must wait
for the bus lock to be released before their memory operations can
complete). For real-time systems this may mean missing deadlines. For other
systems it may just be very annoying.
Some CPUs have the capability to raise an #AC trap when a split lock is
attempted.
Provide a command line option to give the user choices on how to handle
this:
split_lock_detect=
off - not enabled (no traps for split locks)
warn - warn once when an application does a
split lock, but allow it to continue
running.
fatal - Send SIGBUS to applications that cause split lock
On systems that support split lock detection the default is "warn". Note
that if the kernel hits a split lock in any mode other than "off" it will
OOPs.
One implementation wrinkle is that the MSR to control the split lock
detection is per-core, not per thread. This might result in some short
lived races on HT systems in "warn" mode if Linux tries to enable on one
thread while disabling on the other. Race analysis by Sean Christopherson:
- Toggling of split-lock is only done in "warn" mode. Worst case
scenario of a race is that a misbehaving task will generate multiple
#AC exceptions on the same instruction. And this race will only occur
if both siblings are running tasks that generate split-lock #ACs, e.g.
a race where sibling threads are writing different values will only
occur if CPUx is disabling split-lock after an #AC and CPUy is
re-enabling split-lock after *its* previous task generated an #AC.
- Transitioning between off/warn/fatal modes at runtime isn't supported
and disabling is tracked per task, so hardware will always reach a steady
state that matches the configured mode. I.e. split-lock is guaranteed to
be enabled in hardware once all _TIF_SLD threads have been scheduled out.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Co-developed-by: Fenghua Yu <fenghua.yu@intel.com>
Signed-off-by: Fenghua Yu <fenghua.yu@intel.com>
Co-developed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/20200126200535.GB30377@agluck-desk2.amr.corp.intel.com
Pull x86 cpu-features updates from Ingo Molnar:
"The biggest change in this cycle was a large series from Sean
Christopherson to clean up the handling of VMX features. This both
fixes bugs/inconsistencies and makes the code more coherent and
future-proof.
There are also two cleanups and a minor TSX syslog messages
enhancement"
* 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
x86/cpu: Remove redundant cpu_detect_cache_sizes() call
x86/cpu: Print "VMX disabled" error message iff KVM is enabled
KVM: VMX: Allow KVM_INTEL when building for Centaur and/or Zhaoxin CPUs
perf/x86: Provide stubs of KVM helpers for non-Intel CPUs
KVM: VMX: Use VMX_FEATURE_* flags to define VMCS control bits
KVM: VMX: Check for full VMX support when verifying CPU compatibility
KVM: VMX: Use VMX feature flag to query BIOS enabling
KVM: VMX: Drop initialization of IA32_FEAT_CTL MSR
x86/cpufeatures: Add flag to track whether MSR IA32_FEAT_CTL is configured
x86/cpu: Set synthetic VMX cpufeatures during init_ia32_feat_ctl()
x86/cpu: Print VMX flags in /proc/cpuinfo using VMX_FEATURES_*
x86/cpu: Detect VMX features on Intel, Centaur and Zhaoxin CPUs
x86/vmx: Introduce VMX_FEATURES_*
x86/cpu: Clear VMX feature flag if VMX is not fully enabled
x86/zhaoxin: Use common IA32_FEAT_CTL MSR initialization
x86/centaur: Use common IA32_FEAT_CTL MSR initialization
x86/mce: WARN once if IA32_FEAT_CTL MSR is left unlocked
x86/intel: Initialize IA32_FEAT_CTL MSR at boot
tools/x86: Sync msr-index.h from kernel sources
selftests, kvm: Replace manual MSR defs with common msr-index.h
...
Add a new feature flag, X86_FEATURE_MSR_IA32_FEAT_CTL, to track whether
IA32_FEAT_CTL has been initialized. This will allow KVM, and any future
subsystems that depend on IA32_FEAT_CTL, to rely purely on cpufeatures
to query platform support, e.g. allows a future patch to remove KVM's
manual IA32_FEAT_CTL MSR checks.
Various features (on platforms that support IA32_FEAT_CTL) are dependent
on IA32_FEAT_CTL being configured and locked, e.g. VMX and LMCE. The
MSR is always configured during boot, but only if the CPU vendor is
recognized by the kernel. Because CPUID doesn't incorporate the current
IA32_FEAT_CTL value in its reporting of relevant features, it's possible
for a feature to be reported as supported in cpufeatures but not truly
enabled, e.g. if the CPU supports VMX but the kernel doesn't recognize
the CPU.
As a result, without the flag, KVM would see VMX as supported even if
IA32_FEAT_CTL hasn't been initialized, and so would need to manually
read the MSR and check the various enabling bits to avoid taking an
unexpected #GP on VMXON.
Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20191221044513.21680-14-sean.j.christopherson@intel.com