1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

1942 commits

Author SHA1 Message Date
Ingo Molnar
c4d72e2db3 x86/fpu: Simplify fpstate_init_curr() usage
Now that fpstate_init_curr() is not doing implicit allocations
anymore, almost all uses of it involve a very simple pattern:

	if (!fpu->fpstate_active)
		fpstate_init_curr(fpu);

which is basically activating the FPU fpstate if it was not active
before.

So propagate the check into the function itself, and rename the
function according to its new purpose:

	fpu__activate_curr(fpu);

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:51 +02:00
Ingo Molnar
0ee6a51725 x86/fpu, kvm: Simplify fx_init()
Now that fpstate_init() cannot fail the error return of fx_init()
has lost its purpose. Eliminate the error return and propagate this
change to all callers.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:51 +02:00
Ingo Molnar
e62bb3d894 x86/fpu: Rename fpstate_alloc_init() to fpstate_init_curr()
Now that there are no FPU context allocations, rename fpstate_alloc_init()
to fpstate_init_curr(), to signal that it initializes the fpstate and
marks it active, for the current task.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:50 +02:00
Ingo Molnar
91d93d0e20 x86/fpu: Remove failure return from fpstate_alloc_init()
Remove the failure code and propagate this down to callers.

Note that this function still has an 'init' aspect, which must be
called.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:50 +02:00
Ingo Molnar
c4d6ee6e2e x86/fpu: Remove failure paths from fpstate-alloc low level functions
Now that we always allocate the FPU context as part of task_struct there's
no need for separate allocations - remove them and their primary failure
handling code.

( Note that there's still secondary error codes that have become superfluous,
  those will be removed in separate patches. )

Move the somewhat misplaced setup_xstate_comp() call to the core.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:50 +02:00
Ingo Molnar
7366ed771f x86/fpu: Simplify FPU handling by embedding the fpstate in task_struct (again)
So 6 years ago we made the FPU fpstate dynamically allocated:

  aa283f4927 ("x86, fpu: lazy allocation of FPU area - v5")
  61c4628b53 ("x86, fpu: split FPU state from task struct - v5")

In hindsight this was a mistake:

   - it complicated context allocation failure handling, such as:

		/* kthread execs. TODO: cleanup this horror. */
		if (WARN_ON(fpstate_alloc_init(fpu)))
			force_sig(SIGKILL, tsk);

   - it caused us to enable irqs in fpu__restore():

                local_irq_enable();
                /*
                 * does a slab alloc which can sleep
                 */
                if (fpstate_alloc_init(fpu)) {
                        /*
                         * ran out of memory!
                         */
                        do_group_exit(SIGKILL);
                        return;
                }
                local_irq_disable();

   - it (slightly) slowed down task creation/destruction by adding
     slab allocation/free pattens.

   - it made access to context contents (slightly) slower by adding
     one more pointer dereference.

The motivation for the dynamic allocation was two-fold:

   - reduce memory consumption by non-FPU tasks

   - allocate and handle only the necessary amount of context for
     various XSAVE processors that have varying hardware frame
     sizes.

These days, with glibc using SSE memcpy by default and GCC optimizing
for SSE/AVX by default, the scope of FPU using apps on an x86 system is
much larger than it was 6 years ago.

For example on a freshly installed Fedora 21 desktop system, with a
recent kernel, all non-kthread tasks have used the FPU shortly after
bootup.

Also, even modern embedded x86 CPUs try to support the latest vector
instruction set - so they'll too often use the larger xstate frame
sizes.

So remove the dynamic allocation complication by embedding the FPU
fpstate in task_struct again. This should make the FPU a lot more
accessible to all sorts of atomic contexts.

We could still optimize for the xstate frame size in the future,
by moving the state structure to the last element of task_struct,
and allocating only a part of that.

This change is kept minimal by still keeping the ctx_alloc()/free()
routines (that now do nothing substantial) - we'll remove them in
the following patches.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:49 +02:00
Ingo Molnar
4f83634710 x86/fpu: Rename fpu_save_init() to copy_fpregs_to_fpstate()
So fpu_save_init() is a historic name that got its name when the only
way the FPU state was FNSAVE, which cleared (well, destroyed) the FPU
state after saving it.

Nowadays the name is misleading, because ever since the introduction of
FXSAVE (and more modern FPU saving instructions) the 'we need to reload
the FPU state' part is only true if there's a pending FPU exception [*],
which is almost never the case.

So rename it to copy_fpregs_to_fpstate() to make it clear what's
happening. Also add a few comments about why we cannot keep registers
in certain cases.

Also clean up the control flow a bit, to make it more apparent when
we are dropping/keeping FP registers, and to optimize the common
case (of keeping fpregs) some more.

[*] Probably not true anymore, modern instructions always leave the FPU
    state intact, even if exceptions are pending: because pending FP
    exceptions are posted on the next FP instruction, not asynchronously.

    They were truly asynchronous back in the IRQ13 case, and we had to
    synchronize with them, but that code is not working anymore: we don't
    have IRQ13 mapped in the IDT anymore.

    But a cleanup patch is obviously not the place to change subtle behavior.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:49 +02:00
Ingo Molnar
400e4b2091 x86/fpu: Rename xsave.header::xstate_bv to 'xfeatures'
'xsave.header::xstate_bv' is a misnomer - what does 'bv' stand for?

It probably comes from the 'XGETBV' instruction name, but I could
not find in the Intel documentation where that abbreviation comes
from. It could mean 'bit vector' - or something else?

But how about - instead of guessing about a weird name - we named
the field in an obvious and descriptive way that tells us exactly
what it does?

So rename it to 'xfeatures', which is a bitmask of the
xfeatures that are fpstate_active in that context structure.

Eyesore like:

           fpu->state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;

is now much more readable:

           fpu->state->xsave.header.xfeatures |= XSTATE_FP;

Which form is not just infinitely more readable, but is also
shorter as well.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:35 +02:00
Ingo Molnar
3a54450b5e x86/fpu: Rename 'xsave_hdr' to 'header'
Code like:

           fpu->state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;

is an eyesore, because not only is the words 'xsave' and 'state'
are repeated twice times (!), but also because of the 'hdr' and 'bv'
abbreviations that are pretty meaningless at a first glance.

Start cleaning this up by renaming 'xsave_hdr' to 'header'.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:34 +02:00
Ingo Molnar
78f7f1e54b x86/fpu: Rename fpu-internal.h to fpu/internal.h
This unifies all the FPU related header files under a unified, hiearchical
naming scheme:

 - asm/fpu/types.h:      FPU related data types, needed for 'struct task_struct',
                         widely included in almost all kernel code, and hence kept
                         as small as possible.

 - asm/fpu/api.h:        FPU related 'public' methods exported to other subsystems.

 - asm/fpu/internal.h:   FPU subsystem internal methods

 - asm/fpu/xsave.h:      XSAVE support internal methods

(Also standardize the header guard in asm/fpu/internal.h.)

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:31 +02:00
Ingo Molnar
db2b1d3ad1 x86/fpu: Use 'struct fpu' in fpstate_alloc_init()
Migrate this function to pure 'struct fpu' usage.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:29 +02:00
Ingo Molnar
c5bedc6847 x86/fpu: Get rid of PF_USED_MATH usage, convert it to fpu->fpstate_active
Introduce a simple fpu->fpstate_active flag in the fpu context data structure
and use that instead of PF_USED_MATH in task->flags.

Testing for this flag byte should be slightly more efficient than
testing a bit in a bitmask, but the main advantage is that most
FPU functions can now be performed on a 'struct fpu' alone, they
don't need access to 'struct task_struct' anymore.

There's a slight linecount increase, mostly due to the 'fpu' local
variables and due to extra comments. The local variables will go away
once we move most of the FPU methods to pure 'struct fpu' parameters.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:25 +02:00
Ingo Molnar
4c1384100e x86/fpu: Open code PF_USED_MATH usages
PF_USED_MATH is used directly, but also in a handful of helper inlines.

To ease the elimination of PF_USED_MATH, convert all inline helpers
to open-coded PF_USED_MATH usage.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:24 +02:00
Ingo Molnar
f89e32e0a3 x86/fpu: Fix header file dependencies of fpu-internal.h
Fix a minor header file dependency bug in asm/fpu-internal.h: it
relies on i387.h but does not include it. All users of fpu-internal.h
included it explicitly.

Also remove unnecessary includes, to reduce compilation time.

This also makes it easier to use it as a standalone header file
for FPU internals, such as an upcoming C module in arch/x86/kernel/fpu/.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:16 +02:00
Ingo Molnar
c0ee2cf61b x86/fpu: Rename fpu_finit() to fpstate_init()
Make it clear that we are initializing the in-memory FPU context area,
no the FPU registers.

Also move it to the fpu__*() namespace.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:13 +02:00
Ingo Molnar
a7c2a83364 x86/fpu: Rename fpu_free() to fpstate_free()
Use the fpu__*() namespace.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:13 +02:00
Ingo Molnar
ed97b08546 x86/fpu: Rename fpu_alloc() to fpstate_alloc()
Use the fpu__*() namespace for fpstate_alloc() as well.

Also add a comment about FPU state alignment.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:13 +02:00
Ingo Molnar
97185c95f7 x86/fpu: Split an fpstate_alloc_init() function out of init_fpu()
Most init_fpu() users don't want the register-saving aspect of the
function, they are calling it for 'current' and when FPU registers
are not allocated and initialized yet.

Split out a simplified API that does just that (and add debug-checks
for these conditions): fpstate_alloc_init().

Use it where appropriate.

Reviewed-by: Borislav Petkov <bp@alien8.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Fenghua Yu <fenghua.yu@intel.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-05-19 15:47:10 +02:00
Xiao Guangrong
0be0226f07 KVM: MMU: fix SMAP virtualization
KVM may turn a user page to a kernel page when kernel writes a readonly
user page if CR0.WP = 1. This shadow page entry will be reused after
SMAP is enabled so that kernel is allowed to access this user page

Fix it by setting SMAP && !CR0.WP into shadow page's role and reset mmu
once CR4.SMAP is updated

Signed-off-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-11 17:17:50 +02:00
Radim Krčmář
74545705cb KVM: x86: fix initial PAT value
PAT should be 0007_0406_0007_0406h on RESET and not modified on INIT.
VMX used a wrong value (host's PAT) and while SVM used the right one,
it never got to arch.pat.

This is not an issue with QEMU as it will force the correct value.

Signed-off-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:29:46 +02:00
Rik van Riel
653f52c316 kvm,x86: load guest FPU context more eagerly
Currently KVM will clear the FPU bits in CR0.TS in the VMCS, and trap to
re-load them every time the guest accesses the FPU after a switch back into
the guest from the host.

This patch copies the x86 task switch semantics for FPU loading, with the
FPU loaded eagerly after first use if the system uses eager fpu mode,
or if the guest uses the FPU frequently.

In the latter case, after loading the FPU for 255 times, the fpu_counter
will roll over, and we will revert to loading the FPU on demand, until
it has been established that the guest is still actively using the FPU.

This mirrors the x86 task switch policy, which seems to work.

Signed-off-by: Rik van Riel <riel@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:29:45 +02:00
James Sullivan
93bbf0b8bc kvm: x86: Extended struct kvm_lapic_irq with msi_redir_hint for MSI delivery
Extended struct kvm_lapic_irq with bool msi_redir_hint, which will
be used to determine if the delivery of the MSI should target only
the lowest priority CPU in the logical group specified for delivery.
(In physical dest mode, the RH bit is not relevant). Initialized the value
of msi_redir_hint to true when RH=1 in kvm_set_msi_irq(), and initialized
to false in all other cases.

Added value of msi_redir_hint to a debug message dump of an IRQ in
apic_send_ipi().

Signed-off-by: James Sullivan <sullivan.james.f@gmail.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:29:44 +02:00
Nadav Amit
d28bc9dd25 KVM: x86: INIT and reset sequences are different
x86 architecture defines differences between the reset and INIT sequences.
INIT does not initialize the FPU (including MMX, XMM, YMM, etc.), TSC, PMU,
MSRs (in general), MTRRs machine-check, APIC ID, APIC arbitration ID and BSP.

References (from Intel SDM):

"If the MP protocol has completed and a BSP is chosen, subsequent INITs (either
to a specific processor or system wide) do not cause the MP protocol to be
repeated." [8.4.2: MP Initialization Protocol Requirements and Restrictions]

[Table 9-1. IA-32 Processor States Following Power-up, Reset, or INIT]

"If the processor is reset by asserting the INIT# pin, the x87 FPU state is not
changed." [9.2: X87 FPU INITIALIZATION]

"The state of the local APIC following an INIT reset is the same as it is after
a power-up or hardware reset, except that the APIC ID and arbitration ID
registers are not affected." [10.4.7.3: Local APIC State After an INIT Reset
("Wait-for-SIPI" State)]

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1428924848-28212-1-git-send-email-namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:29:43 +02:00
Nadav Amit
90de4a1875 KVM: x86: Support for disabling quirks
Introducing KVM_CAP_DISABLE_QUIRKS for disabling x86 quirks that were previous
created in order to overcome QEMU issues. Those issue were mostly result of
invalid VM BIOS.  Currently there are two quirks that can be disabled:

1. KVM_QUIRK_LINT0_REENABLED - LINT0 was enabled after boot
2. KVM_QUIRK_CD_NW_CLEARED - CD and NW are cleared after boot

These two issues are already resolved in recent releases of QEMU, and would
therefore be disabled by QEMU.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1428879221-29996-1-git-send-email-namit@cs.technion.ac.il>
[Report capability from KVM_CHECK_EXTENSION too. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:29:42 +02:00
Christian Borntraeger
ccf73aaf5a KVM: arm/mips/x86/power use __kvm_guest_{enter|exit}
Use __kvm_guest_{enter|exit} instead of kvm_guest_{enter|exit}
where interrupts are disabled.

Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-05-07 11:28:22 +02:00
Radim Krčmář
5dca0d9147 kvm: x86: fix kvmclock update protocol
The kvmclock spec says that the host will increment a version field to
an odd number, then update stuff, then increment it to an even number.
The host is buggy and doesn't do this, and the result is observable
when one vcpu reads another vcpu's kvmclock data.

There's no good way for a guest kernel to keep its vdso from reading
a different vcpu's kvmclock data, but we don't need to care about
changing VCPUs as long as we read a consistent data from kvmclock.
(VCPU can change outside of this loop too, so it doesn't matter if we
return a value not fit for this VCPU.)

Based on a patch by Radim Krčmář.

Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Acked-by: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-27 15:48:59 +02:00
Nadav Amit
9e9c3fe40b KVM: x86: Fix MSR_IA32_BNDCFGS in msrs_to_save
kvm_init_msr_list is currently called before hardware_setup. As a result,
vmx_mpx_supported always returns false when kvm_init_msr_list checks whether to
save MSR_IA32_BNDCFGS.

Move kvm_init_msr_list after vmx_hardware_setup is called to fix this issue.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>

Message-Id: <1428864435-4732-1-git-send-email-namit@cs.technion.ac.il>
Cc: stable@vger.kernel.org # 3.15+
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-14 18:09:50 +02:00
Linus Torvalds
7fd56474db Merge branch 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Ingo Molnar:
 "The main changes in this cycle were:

   - clockevents state machine cleanups and enhancements (Viresh Kumar)

   - clockevents broadcast notifier horror to state machine conversion
     and related cleanups (Thomas Gleixner, Rafael J Wysocki)

   - clocksource and timekeeping core updates (John Stultz)

   - clocksource driver updates and fixes (Ben Dooks, Dmitry Osipenko,
     Hans de Goede, Laurent Pinchart, Maxime Ripard, Xunlei Pang)

   - y2038 fixes (Xunlei Pang, John Stultz)

   - NMI-safe ktime_get_raw_fast() and general refactoring of the clock
     code, in preparation to perf's per event clock ID support (Peter
     Zijlstra)

   - generic sched/clock fixes, optimizations and cleanups (Daniel
     Thompson)

   - clockevents cpu_down() race fix (Preeti U Murthy)"

* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (94 commits)
  timers/PM: Drop unnecessary braces from tick_freeze()
  timers/PM: Fix up tick_unfreeze()
  timekeeping: Get rid of stale comment
  clockevents: Cleanup dead cpu explicitely
  clockevents: Make tick handover explicit
  clockevents: Remove broadcast oneshot control leftovers
  sched/idle: Use explicit broadcast oneshot control function
  ARM: Tegra: Use explicit broadcast oneshot control function
  ARM: OMAP: Use explicit broadcast oneshot control function
  intel_idle: Use explicit broadcast oneshot control function
  ACPI/idle: Use explicit broadcast control function
  ACPI/PAD: Use explicit broadcast oneshot control function
  x86/amd/idle, clockevents: Use explicit broadcast oneshot control functions
  clockevents: Provide explicit broadcast oneshot control functions
  clockevents: Remove the broadcast control leftovers
  ARM: OMAP: Use explicit broadcast control function
  intel_idle: Use explicit broadcast control function
  cpuidle: Use explicit broadcast control function
  ACPI/processor: Use explicit broadcast control function
  ACPI/PAD: Use explicit broadcast control function
  ...
2015-04-13 11:08:28 -07:00
Linus Torvalds
9003601310 The most interesting bit here is irqfd/ioeventfd support for ARM and ARM64.
ARM/ARM64: fixes for live migration, irqfd and ioeventfd support (enabling
 vhost, too), page aging
 
 s390: interrupt handling rework, allowing to inject all local interrupts
 via new ioctl and to get/set the full local irq state for migration
 and introspection.  New ioctls to access memory by virtual address,
 and to get/set the guest storage keys.  SIMD support.
 
 MIPS: FPU and MIPS SIMD Architecture (MSA) support.  Includes some patches
 from Ralf Baechle's MIPS tree.
 
 x86: bugfixes (notably for pvclock, the others are small) and cleanups.
 Another small latency improvement for the TSC deadline timer.
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v2.0.22 (GNU/Linux)
 
 iQEcBAABAgAGBQJVJ9vmAAoJEL/70l94x66DoMEH/R3rh8IMf4jTiWRkcqohOMPX
 k1+NaSY/lCKayaSgggJ2hcQenMbQoXEOdslvaA/H0oC+VfJGK+lmU6E63eMyyhjQ
 Y+Px6L85NENIzDzaVu/TIWWuhil5PvIRr3VO8cvntExRoCjuekTUmNdOgCvN2ObW
 wswN2qRdPIeEj2kkulbnye+9IV4G0Ne9bvsmUdOdfSSdi6ZcV43JcvrpOZT++mKj
 RrKB+3gTMZYGJXMMLBwMkdl8mK1ozriD+q0mbomT04LUyGlPwYLl4pVRDBqyksD7
 KsSSybaK2E4i5R80WEljgDMkNqrCgNfg6VZe4n9Y+CfAAOToNnkMJaFEi+yuqbs=
 =yu2b
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "First batch of KVM changes for 4.1

  The most interesting bit here is irqfd/ioeventfd support for ARM and
  ARM64.

  Summary:

  ARM/ARM64:
     fixes for live migration, irqfd and ioeventfd support (enabling
     vhost, too), page aging

  s390:
     interrupt handling rework, allowing to inject all local interrupts
     via new ioctl and to get/set the full local irq state for migration
     and introspection.  New ioctls to access memory by virtual address,
     and to get/set the guest storage keys.  SIMD support.

  MIPS:
     FPU and MIPS SIMD Architecture (MSA) support.  Includes some
     patches from Ralf Baechle's MIPS tree.

  x86:
     bugfixes (notably for pvclock, the others are small) and cleanups.
     Another small latency improvement for the TSC deadline timer"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (146 commits)
  KVM: use slowpath for cross page cached accesses
  kvm: mmu: lazy collapse small sptes into large sptes
  KVM: x86: Clear CR2 on VCPU reset
  KVM: x86: DR0-DR3 are not clear on reset
  KVM: x86: BSP in MSR_IA32_APICBASE is writable
  KVM: x86: simplify kvm_apic_map
  KVM: x86: avoid logical_map when it is invalid
  KVM: x86: fix mixed APIC mode broadcast
  KVM: x86: use MDA for interrupt matching
  kvm/ppc/mpic: drop unused IRQ_testbit
  KVM: nVMX: remove unnecessary double caching of MAXPHYADDR
  KVM: nVMX: checks for address bits beyond MAXPHYADDR on VM-entry
  KVM: x86: cache maxphyaddr CPUID leaf in struct kvm_vcpu
  KVM: vmx: pass error code with internal error #2
  x86: vdso: fix pvclock races with task migration
  KVM: remove kvm_read_hva and kvm_read_hva_atomic
  KVM: x86: optimize delivery of TSC deadline timer interrupt
  KVM: x86: extract blocking logic from __vcpu_run
  kvm: x86: fix x86 eflags fixed bit
  KVM: s390: migrate vcpu interrupt state
  ...
2015-04-13 09:47:01 -07:00
Wanpeng Li
3ea3b7fa9a kvm: mmu: lazy collapse small sptes into large sptes
Dirty logging tracks sptes in 4k granularity, meaning that large sptes
have to be split.  If live migration is successful, the guest in the
source machine will be destroyed and large sptes will be created in the
destination. However, the guest continues to run in the source machine
(for example if live migration fails), small sptes will remain around
and cause bad performance.

This patch introduce lazy collapsing of small sptes into large sptes.
The rmap will be scanned in ioctl context when dirty logging is stopped,
dropping those sptes which can be collapsed into a single large-page spte.
Later page faults will create the large-page sptes.

Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Wanpeng Li <wanpeng.li@linux.intel.com>
Message-Id: <1428046825-6905-1-git-send-email-wanpeng.li@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:47:04 +02:00
Nadav Amit
1119022c71 KVM: x86: Clear CR2 on VCPU reset
CR2 is not cleared as it should after reset.  See Intel SDM table named "IA-32
Processor States Following Power-up, Reset, or INIT".

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1427933438-12782-5-git-send-email-namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:47:03 +02:00
Nadav Amit
ae561edeb4 KVM: x86: DR0-DR3 are not clear on reset
DR0-DR3 are not cleared as they should during reset and when they are set from
userspace.  It appears to be caused by c77fb5fe6f ("KVM: x86: Allow the guest
to run with dirty debug registers").

Force their reload on these situations.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1427933438-12782-4-git-send-email-namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:47:03 +02:00
Nadav Amit
58d269d8cc KVM: x86: BSP in MSR_IA32_APICBASE is writable
After reset, the CPU can change the BSP, which will be used upon INIT.  Reset
should return the BSP which QEMU asked for, and therefore handled accordingly.

To quote: "If the MP protocol has completed and a BSP is chosen, subsequent
INITs (either to a specific processor or system wide) do not cause the MP
protocol to be repeated."
[Intel SDM 8.4.2: MP Initialization Protocol Requirements and Restrictions]

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Message-Id: <1427933438-12782-3-git-send-email-namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:47:02 +02:00
Eugene Korenevsky
5a4f55cde8 KVM: x86: cache maxphyaddr CPUID leaf in struct kvm_vcpu
cpuid_maxphyaddr(), which performs lot of memory accesses is called
extensively across KVM, especially in nVMX code.

This patch adds a cached value of maxphyaddr to vcpu.arch to reduce the
pressure onto CPU cache and simplify the code of cpuid_maxphyaddr()
callers. The cached value is initialized in kvm_arch_vcpu_init() and
reloaded every time CPUID is updated by usermode. It is obvious that
these reloads occur infrequently.

Signed-off-by: Eugene Korenevsky <ekorenevsky@gmail.com>
Message-Id: <20150329205612.GA1223@gnote>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:46:56 +02:00
Paolo Bonzini
9c8fd1ba22 KVM: x86: optimize delivery of TSC deadline timer interrupt
The newly-added tracepoint shows the following results on
the tscdeadline_latency test:

        qemu-kvm-8387  [002]  6425.558974: kvm_vcpu_wakeup:      poll time 10407 ns
        qemu-kvm-8387  [002]  6425.558984: kvm_vcpu_wakeup:      poll time 0 ns
        qemu-kvm-8387  [002]  6425.561242: kvm_vcpu_wakeup:      poll time 10477 ns
        qemu-kvm-8387  [002]  6425.561251: kvm_vcpu_wakeup:      poll time 0 ns

and so on.  This is because we need to go through kvm_vcpu_block again
after the timer IRQ is injected.  Avoid it by polling once before
entering kvm_vcpu_block.

On my machine (Xeon E5 Sandy Bridge) this removes about 500 cycles (7%)
from the latency of the TSC deadline timer.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:46:54 +02:00
Paolo Bonzini
362c698f82 KVM: x86: extract blocking logic from __vcpu_run
Rename the old __vcpu_run to vcpu_run, and extract part of it to a new
function vcpu_block.

The next patch will add a new condition in vcpu_block, avoid extra
indentation.

Reviewed-by: David Matlack <dmatlack@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-04-08 10:46:53 +02:00
Paolo Bonzini
bf0fb67cf9 KVM/ARM changes for v4.1:
- fixes for live migration
 - irqfd support
 - kvm-io-bus & vgic rework to enable ioeventfd
 - page ageing for stage-2 translation
 - various cleanups
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABAgAGBQJVHQ0kAAoJECPQ0LrRPXpDHKQQALjw6STaZd7n20OFopNgHd4P
 qVeWYEKBxnsiSvL4p3IOSlZlEul+7x08aZqtyxWQRQcDT4ggTI+3FKKfc+8yeRpH
 WV6YJP0bGqz7039PyMLuIgs48xkSZtntePw69hPJfHZh4C1RBlP5T2SfE8mU8VZX
 fWToiU3W12QfKnmN7JFgxZopnGhrYCrG0EexdTDziAZu0GEMlDrO4wnyTR60WCvT
 4TEF73R0kpAz4yplKuhcDHuxIG7VFhQ4z7b09M1JtR0gQ3wUvfbD3Wqqi49SwHkv
 NQOStcyLsIlDosSRcLXNCwb3IxjObXTBcAxnzgm2Aoc1xMMZX1ZPQNNs6zFZzycb
 2c6QMiQ35zm7ellbvrG+bT+BP86JYWcAtHjWcaUFgqSJjb8MtqcMtsCea/DURhqx
 /kictqbPYBBwKW6SKbkNkisz59hPkuQnv35fuf992MRCbT9LAXLPRLbcirucCzkE
 p1MOotsWoO3ldJMZaVn0KYk3sQf6mCIfbYPEdOcw3fhJlvyy3NdjVkLOFbA5UUg1
 rQ7Ru2rTemBc0ExVrymngNTMpMB4XcEeJzXfhcgMl3DWbDj60Ku/O26sDtZ6bsFv
 JuDYn8FVDHz9gpEQHgiUi1YMsBKXLhnILa1ppaa6AflykU3BRfYjAk1SXmX84nQK
 mJUJEdFuxi6pHN0UKxUI
 =avA4
 -----END PGP SIGNATURE-----

Merge tag 'kvm-arm-for-4.1' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into 'kvm-next'

KVM/ARM changes for v4.1:

- fixes for live migration
- irqfd support
- kvm-io-bus & vgic rework to enable ioeventfd
- page ageing for stage-2 translation
- various cleanups
2015-04-07 18:09:20 +02:00
Ingo Molnar
c5e77f5216 Linux 4.0-rc6
-----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQEcBAABAgAGBQJVGHwjAAoJEHm+PkMAQRiG8rcIAJ6cEJ6mbqLpyz5XrGf4yNp0
 +wG/QlEpT8rgrxe9wSjB3lfW3kR2Pe69b9fVVCdiklygdkmva5vfmDrVGGzYfe3M
 QrFSSlMVBplvh6IiM/L1mVMtr3DSmCO23YZZ9R5b7FoEYatNHRpNWBCBpuXpd4aD
 sLuIvO3L/S7LqeOAFkkYWv6AuL9umicmjR8u+nsmCSRJom7At/aJ6R66WIp9vxho
 Rn7r6wcUk6B2Q/gYNjdSE8SIwdyKhuBGyvqQ9U9s6Btg9DQfM/b0vG5kw9hqeAq/
 9445jqVDP1whA2vz6GjnvltidxrqRvuDPBwzOnFmY5U+KZz4lS3x2mnWAAJ3xWs=
 =TqVJ
 -----END PGP SIGNATURE-----

Merge tag 'v4.0-rc6' into timers/core, before applying new patches

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-31 09:08:13 +02:00
Peter Zijlstra
876e78818d time: Rename timekeeper::tkr to timekeeper::tkr_mono
In preparation of adding another tkr field, rename this one to
tkr_mono. Also rename tk_read_base::base_mono to tk_read_base::base,
since the structure is not specific to CLOCK_MONOTONIC and the mono
name got added to the tk_read_base instance.

Lots of trivial churn.

Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: John Stultz <john.stultz@linaro.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/20150319093400.344679419@infradead.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-03-27 09:45:06 +01:00
Nikolay Nikolaev
e32edf4fd0 KVM: Redesign kvm_io_bus_ API to pass VCPU structure to the callbacks.
This is needed in e.g. ARM vGIC emulation, where the MMIO handling
depends on the VCPU that does the access.

Signed-off-by: Nikolay Nikolaev <n.nikolaev@virtualopensystems.com>
Signed-off-by: Andre Przywara <andre.przywara@arm.com>
Acked-by: Paolo Bonzini <pbonzini@redhat.com>
Acked-by: Christoffer Dall <christoffer.dall@linaro.org>
Reviewed-by: Marc Zyngier <marc.zyngier@arm.com>
Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2015-03-26 21:43:11 +00:00
Xiubo Li
52eb5a6d57 KVM: x86: For the symbols used locally only should be static type
This patch fix the following sparse warnings:

for arch/x86/kvm/x86.c:
warning: symbol 'emulator_read_write' was not declared. Should it be static?
warning: symbol 'emulator_write_emulated' was not declared. Should it be static?
warning: symbol 'emulator_get_dr' was not declared. Should it be static?
warning: symbol 'emulator_set_dr' was not declared. Should it be static?

for arch/x86/kvm/pmu.c:
warning: symbol 'fixed_pmc_events' was not declared. Should it be static?

Signed-off-by: Xiubo Li <lixiubo@cmss.chinamobile.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2015-03-17 22:38:28 -03:00
Xiubo Li
795a149e78 KVM: x86: Avoid using plain integer as NULL pointer warning
This patch fix the following sparse warning:

for file arch/x86/kvm/x86.c:
warning: Using plain integer as NULL pointer

Signed-off-by: Xiubo Li <lixiubo@cmss.chinamobile.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2015-03-17 22:34:25 -03:00
Paolo Bonzini
dc9be0fac7 kvm: move advertising of KVM_CAP_IRQFD to common code
POWER supports irqfds but forgot to advertise them.  Some userspace does
not check for the capability, but others check it---thus they work on
x86 and s390 but not POWER.

To avoid that other architectures in the future make the same mistake, let
common code handle KVM_CAP_IRQFD the same way as KVM_CAP_IRQFD_RESAMPLE.

Reported-and-tested-by: Greg Kurz <gkurz@linux.vnet.ibm.com>
Cc: stable@vger.kernel.org
Fixes: 297e21053a
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2015-03-10 21:18:59 -03:00
Joel Schopp
5cb56059c9 kvm: x86: make kvm_emulate_* consistant
Currently kvm_emulate() skips the instruction but kvm_emulate_* sometimes
don't.  The end reult is the caller ends up doing the skip themselves.
Let's make them consistant.

Signed-off-by: Joel Schopp <joel.schopp@amd.com>
Reviewed-by: Radim Krčmář <rkrcmar@redhat.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2015-03-10 20:29:15 -03:00
Thomas Huth
548ef28449 KVM: Get rid of kvm_kvfree()
kvm_kvfree() provides exactly the same functionality as the
new common kvfree() function - so let's simply replace the
kvm function with the common function.

Signed-off-by: Thomas Huth <thuth@linux.vnet.ibm.com>
Signed-off-by: Marcelo Tosatti <mtosatti@redhat.com>
2015-03-10 10:37:43 -03:00
Paolo Bonzini
f781951299 kvm: add halt_poll_ns module parameter
This patch introduces a new module parameter for the KVM module; when it
is present, KVM attempts a bit of polling on every HLT before scheduling
itself out via kvm_vcpu_block.

This parameter helps a lot for latency-bound workloads---in particular
I tested it with O_DSYNC writes with a battery-backed disk in the host.
In this case, writes are fast (because the data doesn't have to go all
the way to the platters) but they cannot be merged by either the host or
the guest.  KVM's performance here is usually around 30% of bare metal,
or 50% if you use cache=directsync or cache=writethrough (these
parameters avoid that the guest sends pointless flush requests, and
at the same time they are not slow because of the battery-backed cache).
The bad performance happens because on every halt the host CPU decides
to halt itself too.  When the interrupt comes, the vCPU thread is then
migrated to a new physical CPU, and in general the latency is horrible
because the vCPU thread has to be scheduled back in.

With this patch performance reaches 60-65% of bare metal and, more
important, 99% of what you get if you use idle=poll in the guest.  This
means that the tunable gets rid of this particular bottleneck, and more
work can be done to improve performance in the kernel or QEMU.

Of course there is some price to pay; every time an otherwise idle vCPUs
is interrupted by an interrupt, it will poll unnecessarily and thus
impose a little load on the host.  The above results were obtained with
a mostly random value of the parameter (500000), and the load was around
1.5-2.5% CPU usage on one of the host's core for each idle guest vCPU.

The patch also adds a new stat, /sys/kernel/debug/kvm/halt_successful_poll,
that can be used to tune the parameter.  It counts how many HLT
instructions received an interrupt during the polling period; each
successful poll avoids that Linux schedules the VCPU thread out and back
in, and may also avoid a likely trip to C1 and back for the physical CPU.

While the VM is idle, a Linux 4 VCPU VM halts around 10 times per second.
Of these halts, almost all are failed polls.  During the benchmark,
instead, basically all halts end within the polling period, except a more
or less constant stream of 50 per second coming from vCPUs that are not
running the benchmark.  The wasted time is thus very low.  Things may
be slightly different for Windows VMs, which have a ~10 ms timer tick.

The effect is also visible on Marcelo's recently-introduced latency
test for the TSC deadline timer.  Though of course a non-RT kernel has
awful latency bounds, the latency of the timer is around 8000-10000 clock
cycles compared to 20000-120000 without setting halt_poll_ns.  For the TSC
deadline timer, thus, the effect is both a smaller average latency and
a smaller variance.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-02-06 13:08:37 +01:00
Kai Huang
843e433057 KVM: VMX: Add PML support in VMX
This patch adds PML support in VMX. A new module parameter 'enable_pml' is added
to allow user to enable/disable it manually.

Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-01-30 09:39:54 +01:00
Kai Huang
88178fd4f7 KVM: x86: Add new dirty logging kvm_x86_ops for PML
This patch adds new kvm_x86_ops dirty logging hooks to enable/disable dirty
logging for particular memory slot, and to flush potentially logged dirty GPAs
before reporting slot->dirty_bitmap to userspace.

kvm x86 common code calls these hooks when they are available so PML logic can
be hidden to VMX specific. SVM won't be impacted as these hooks remain NULL
there.

Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-01-29 15:31:41 +01:00
Kai Huang
1c91cad423 KVM: x86: Change parameter of kvm_mmu_slot_remove_write_access
This patch changes the second parameter of kvm_mmu_slot_remove_write_access from
'slot id' to 'struct kvm_memory_slot *' to align with kvm_x86_ops dirty logging
hooks, which will be introduced in further patch.

Better way is to change second parameter of kvm_arch_commit_memory_region from
'struct kvm_userspace_memory_region *' to 'struct kvm_memory_slot * new', but it
requires changes on other non-x86 ARCH too, so avoid it now.

Signed-off-by: Kai Huang <kai.huang@linux.intel.com>
Reviewed-by: Xiao Guangrong <guangrong.xiao@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-01-29 15:31:37 +01:00
Nadav Amit
bac155310b KVM: x86: 32-bit wraparound read/write not emulated correctly
If we got a wraparound of 32-bit operand, and the limit is 0xffffffff, read and
writes should be successful. It just needs to be done in two segments.

Signed-off-by: Nadav Amit <namit@cs.technion.ac.il>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-01-26 12:15:18 +01:00