1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

118 commits

Author SHA1 Message Date
Linus Torvalds
fcc196579a Misc cleanups, including a large series from Thomas Gleixner to
cure Sparse warnings.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvAFQRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1hkDRAAwASVCQ88kiGqNQtHibXlK54mAFGsc0xv
 T8OPds15DUzoLg/y8lw0X0DHly6MdGXVmygybejNIw2BN4lhLjQ7f4Ria7rv7LDy
 FcI1jfvysEMyYRFHGRefb/GBFzuEfKoROwf+QylGmKz0ZK674gNMngsI9pwOBdbe
 wElq3IkHoNuTUfH9QA4BvqGam1n122nvVTop3g0PMHWzx9ky8hd/BEUjXFZhfINL
 zZk3fwUbER2QYbhHt+BN2GRbdf2BrKvqTkXpKxyXTdnpiqAo0CzBGKerZ62H82qG
 n737Nib1lrsfM5yDHySnau02aamRXaGvCJUd6gpac1ZmNpZMWhEOT/0Tr/Nj5ztF
 lUAvKqMZn/CwwQky1/XxD0LHegnve0G+syqQt/7x7o1ELdiwTzOWMCx016UeodzB
 yyHf3Xx9J8nt3snlrlZBaGEfegg9ePLu5Vir7iXjg3vrloUW8A+GZM62NVxF4HVV
 QWF80BfWf8zbLQ/OS1382t1shaioIe5pEXzIjcnyVIZCiiP2/5kP2O6P4XVbwVlo
 Ca5eEt8U1rtsLUZaCzI2ZRTQf/8SLMQWyaV+ZmkVwcVdFoARC31EgdE5wYYoZOf6
 7Vl+rXd+rZCuTWk0ZgznCZEm75aaqukaQCBa2V8hIVociLFVzhg/Tjedv7s0CspA
 hNfxdN1LDZc=
 =0eJ7
 -----END PGP SIGNATURE-----

Merge tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 cleanups from Ingo Molnar:
 "Misc cleanups, including a large series from Thomas Gleixner to cure
  sparse warnings"

* tag 'x86-cleanups-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/nmi: Drop unused declaration of proc_nmi_enabled()
  x86/callthunks: Use EXPORT_PER_CPU_SYMBOL_GPL() for per CPU variables
  x86/cpu: Provide a declaration for itlb_multihit_kvm_mitigation
  x86/cpu: Use EXPORT_PER_CPU_SYMBOL_GPL() for x86_spec_ctrl_current
  x86/uaccess: Add missing __force to casts in __access_ok() and valid_user_address()
  x86/percpu: Cure per CPU madness on UP
  smp: Consolidate smp_prepare_boot_cpu()
  x86/msr: Add missing __percpu annotations
  x86/msr: Prepare for including <linux/percpu.h> into <asm/msr.h>
  perf/x86/amd/uncore: Fix __percpu annotation
  x86/nmi: Remove an unnecessary IS_ENABLED(CONFIG_SMP)
  x86/apm_32: Remove dead function apm_get_battery_status()
  x86/insn-eval: Fix function param name in get_eff_addr_sib()
2024-03-11 19:37:56 -07:00
Thomas Gleixner
712610725c smp: Consolidate smp_prepare_boot_cpu()
There is no point in having seven architectures implementing the same empty
stub.

Provide a weak function in the init code and remove the stubs.

This also allows to utilize the function on UP which is required to
sanitize the per CPU handling on X86 UP.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/20240304005104.567671691@linutronix.de
2024-03-04 12:01:54 +01:00
Thomas Gleixner
8078f4d610 x86/cpu/topology: Rename smp_num_siblings
It's really a non-intuitive name. Rename it to __max_threads_per_core which
is obvious.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210253.011307973@linutronix.de
2024-02-15 22:07:45 +01:00
Thomas Gleixner
090610ba70 x86/cpu/topology: Use topology bitmaps for sizing
Now that all possible APIC IDs are tracked in the topology bitmaps, its
trivial to retrieve the real information from there.

This gets rid of the guesstimates for the maximal packages and dies per
package as the actual numbers can be determined before a single AP has been
brought up.

The number of SMT threads can now be determined correctly from the bitmaps
in all situations. Up to now a system which has SMT disabled in the BIOS
will still claim that it is SMT capable, because the lowest APIC ID bit is
reserved for that and CPUID leaf 0xb/0x1f still enumerates the SMT domain
accordingly. By calculating the bitmap weights of the SMT and the CORE
domain and setting them into relation the SMT disabled in BIOS situation
reports correctly that the system is not SMT capable.

It also handles the situation correctly when a hybrid systems boot CPU does
not have SMT as it takes the SMT capability of the APs fully into account.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210252.681709880@linutronix.de
2024-02-15 22:07:44 +01:00
Thomas Gleixner
58aa34abe9 x86/cpu/topology: Confine topology information
Now that all external fiddling with num_processors and disabled_cpus is
gone, move the last user prefill_possible_map() into the topology code too
and remove the global visibility of these variables.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Michael Kelley <mhklinux@outlook.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Link: https://lore.kernel.org/r/20240213210251.994756960@linutronix.de
2024-02-15 22:07:42 +01:00
Linus Torvalds
eb55307e67 X86 core code updates:
- Limit the hardcoded topology quirk for Hygon CPUs to those which have a
     model ID less than 4. The newer models have the topology CPUID leaf 0xB
     correctly implemented and are not affected.
 
   - Make SMT control more robust against enumeration failures
 
     SMT control was added to allow controlling SMT at boottime or
     runtime. The primary purpose was to provide a simple mechanism to
     disable SMT in the light of speculation attack vectors.
 
     It turned out that the code is sensible to enumeration failures and
     worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
     which means the primary thread mask is not set up correctly. By chance
     a XEN/PV boot ends up with smp_num_siblings == 2, which makes the
     hotplug control stay at its default value "enabled". So the mask is
     never evaluated.
 
     The ongoing rework of the topology evaluation caused XEN/PV to end up
     with smp_num_siblings == 1, which sets the SMT control to "not
     supported" and the empty primary thread mask causes the hotplug core to
     deny the bringup of the APS.
 
     Make the decision logic more robust and take 'not supported' and 'not
     implemented' into account for the decision whether a CPU should be
     booted or not.
 
   - Fake primary thread mask for XEN/PV
 
     Pretend that all XEN/PV vCPUs are primary threads, which makes the
     usage of the primary thread mask valid on XEN/PV. That is consistent
     with because all of the topology information on XEN/PV is fake or even
     non-existent.
 
   - Encapsulate topology information in cpuinfo_x86
 
     Move the randomly scattered topology data into a separate data
     structure for readability and as a preparatory step for the topology
     evaluation overhaul.
 
   - Consolidate APIC ID data type to u32
 
     It's fixed width hardware data and not randomly u16, int, unsigned long
     or whatever developers decided to use.
 
   - Cure the abuse of cpuinfo for persisting logical IDs.
 
     Per CPU cpuinfo is used to persist the logical package and die
     IDs. That's really not the right place simply because cpuinfo is
     subject to be reinitialized when a CPU goes through an offline/online
     cycle.
 
     Use separate per CPU data for the persisting to enable the further
     topology management rework. It will be removed once the new topology
     management is in place.
 
   - Provide a debug interface for inspecting topology information
 
     Useful in general and extremly helpful for validating the topology
     management rework in terms of correctness or "bug" compatibility.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmU+yX0THHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoROUD/4vlvKEcpm9rbI5DzLcaq4DFHKbyEZF
 cQtzuOSM/9vTc9DHnuoNNLl9TWSYxiVYnejf3E21evfsqspYlzbTH8bId9XBCUid
 6B68AJW842M2erNuwj0b0HwF1z++zpDmBDyhGOty/KQhoM8pYOHMvntAmbzJbuso
 Dgx6BLVFcboTy6RwlfRa0EE8f9W5V+JbmG/VBDpdyCInal7VrudoVFZmWQnPIft7
 zwOJpAoehkp8OKq7geKDf79yWxu9a1sNPd62HtaVEvfHwehHqE6OaMLss1us+0vT
 SJ/D6gmRQBOwcXaZL0wL1dG7Km9Et4AisOvzhXGvTa5b2D5oljVoqJ7V7FTf5g3u
 y3aqWbeUJzERUbeJt1HoGVAKyA4GtZOvg+TNIysf6F1Z4khl9alfa9jiqjj4g1au
 zgItq/ZMBEBmJ7X4FxQUEUVBG2CDsEidyNBDRcimWQUDfBakV/iCs0suD8uu8ZOD
 K5jMx8Hi2+xFx7r1YqsfsyMBYOf/zUZw65RbNe+kI992JbJ9nhcODbnbo5MlAsyv
 vcqlK5FwXgZ4YAC8dZHU/tyTiqAW7oaOSkqKwTP5gcyNEqsjQHV//q6v+uqtjfYn
 1C4oUsRHT2vJiV9ktNJTA4GQHIYF4geGgpG8Ih2SjXsSzdGtUd3DtX1iq0YiLEOk
 eHhYsnniqsYB5g==
 =xrz8
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Thomas Gleixner:

 - Limit the hardcoded topology quirk for Hygon CPUs to those which have
   a model ID less than 4.

   The newer models have the topology CPUID leaf 0xB correctly
   implemented and are not affected.

 - Make SMT control more robust against enumeration failures

   SMT control was added to allow controlling SMT at boottime or
   runtime. The primary purpose was to provide a simple mechanism to
   disable SMT in the light of speculation attack vectors.

   It turned out that the code is sensible to enumeration failures and
   worked only by chance for XEN/PV. XEN/PV has no real APIC enumeration
   which means the primary thread mask is not set up correctly. By
   chance a XEN/PV boot ends up with smp_num_siblings == 2, which makes
   the hotplug control stay at its default value "enabled". So the mask
   is never evaluated.

   The ongoing rework of the topology evaluation caused XEN/PV to end up
   with smp_num_siblings == 1, which sets the SMT control to "not
   supported" and the empty primary thread mask causes the hotplug core
   to deny the bringup of the APS.

   Make the decision logic more robust and take 'not supported' and 'not
   implemented' into account for the decision whether a CPU should be
   booted or not.

 - Fake primary thread mask for XEN/PV

   Pretend that all XEN/PV vCPUs are primary threads, which makes the
   usage of the primary thread mask valid on XEN/PV. That is consistent
   with because all of the topology information on XEN/PV is fake or
   even non-existent.

 - Encapsulate topology information in cpuinfo_x86

   Move the randomly scattered topology data into a separate data
   structure for readability and as a preparatory step for the topology
   evaluation overhaul.

 - Consolidate APIC ID data type to u32

   It's fixed width hardware data and not randomly u16, int, unsigned
   long or whatever developers decided to use.

 - Cure the abuse of cpuinfo for persisting logical IDs.

   Per CPU cpuinfo is used to persist the logical package and die IDs.
   That's really not the right place simply because cpuinfo is subject
   to be reinitialized when a CPU goes through an offline/online cycle.

   Use separate per CPU data for the persisting to enable the further
   topology management rework. It will be removed once the new topology
   management is in place.

 - Provide a debug interface for inspecting topology information

   Useful in general and extremly helpful for validating the topology
   management rework in terms of correctness or "bug" compatibility.

* tag 'x86-core-2023-10-29-v2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (23 commits)
  x86/apic, x86/hyperv: Use u32 in hv_snp_boot_ap() too
  x86/cpu: Provide debug interface
  x86/cpu/topology: Cure the abuse of cpuinfo for persisting logical ids
  x86/apic: Use u32 for wakeup_secondary_cpu[_64]()
  x86/apic: Use u32 for [gs]et_apic_id()
  x86/apic: Use u32 for phys_pkg_id()
  x86/apic: Use u32 for cpu_present_to_apicid()
  x86/apic: Use u32 for check_apicid_used()
  x86/apic: Use u32 for APIC IDs in global data
  x86/apic: Use BAD_APICID consistently
  x86/cpu: Move cpu_l[l2]c_id into topology info
  x86/cpu: Move logical package and die IDs into topology info
  x86/cpu: Remove pointless evaluation of x86_coreid_bits
  x86/cpu: Move cu_id into topology info
  x86/cpu: Move cpu_core_id into topology info
  hwmon: (fam15h_power) Use topology_core_id()
  scsi: lpfc: Use topology_core_id()
  x86/cpu: Move cpu_die_id into topology info
  x86/cpu: Move phys_proc_id into topology info
  x86/cpu: Encapsulate topology information in cpuinfo_x86
  ...
2023-10-30 17:37:47 -10:00
Linus Torvalds
fbe1bf1e5f Revert "x86/smp: Put CPUs into INIT on shutdown if possible"
This reverts commit 45e34c8af5, and the
two subsequent fixes to it:

  3f874c9b2a ("x86/smp: Don't send INIT to non-present and non-booted CPUs")
  b1472a60a5 ("x86/smp: Don't send INIT to boot CPU")

because it seems to result in hung machines at shutdown.  Particularly
some Dell machines, but Thomas says

 "The rest seems to be Lenovo and Sony with Alderlake/Raptorlake CPUs -
  at least that's what I could figure out from the various bug reports.

  I don't know which CPUs the DELL machines have, so I can't say it's a
  pattern.

  I agree with the revert for now"

Ashok Raj chimes in:

 "There was a report (probably this same one), and it turns out it was a
  bug in the BIOS SMI handler.

  The client BIOS's were waiting for the lowest APICID to be the SMI
  rendevous master. If this is MeteorLake, the BSP wasn't the one with
  the lowest APIC and it triped here.

  The BIOS change is also being pushed to others for assimilation :)

  Server BIOS's had this correctly for a while now"

and it does look likely to be some bad interaction between SMI and the
non-BSP cores having put into INIT (and thus unresponsive until reset).

Link: https://bbs.archlinux.org/viewtopic.php?pid=2124429
Link: https://www.reddit.com/r/openSUSE/comments/16qq99b/tumbleweed_shutdown_did_not_finish_completely/
Link: https://forum.artixlinux.org/index.php/topic,5997.0.html
Link: https://bugzilla.redhat.com/show_bug.cgi?id=2241279
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Cc: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2023-10-15 12:02:02 -07:00
Thomas Gleixner
4705243d23 x86/apic: Use u32 for APIC IDs in global data
APIC IDs are used with random data types u16, u32, int, unsigned int,
unsigned long.

Make it all consistently use u32 because that reflects the hardware
register width and fixup the most obvious usage sites of that.

The APIC callbacks will be addressed separately.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.922905727@linutronix.de
2023-10-10 14:38:18 +02:00
Thomas Gleixner
6e29032340 x86/cpu: Move cpu_l[l2]c_id into topology info
The topology IDs which identify the LLC and L2 domains clearly belong to
the per CPU topology information.

Move them into cpuinfo_x86::cpuinfo_topo and get rid of the extra per CPU
data and the related exports.

This also paves the way to do proper topology evaluation during early boot
because it removes the only per CPU dependency for that.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Juergen Gross <jgross@suse.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Zhang Rui <rui.zhang@intel.com>
Reviewed-by: Arjan van de Ven <arjan@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20230814085112.803864641@linutronix.de
2023-10-10 14:38:18 +02:00
Linus Torvalds
1687d8aca5 * Rework apic callbacks, getting rid of unnecessary ones and
coalescing lots of silly duplicates.
  * Use static_calls() instead of indirect calls for apic->foo()
  * Tons of cleanups an crap removal along the way
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmTvfO8ACgkQaDWVMHDJ
 krAP2A//ccii/LuvtTnNEIMMR5w2rwTdHv91ancgFkC8pOeNk37Z8sSLq8tKuLFA
 vgjBIysVIqunuRcNCJ+eqwIIxYfU+UGCWHppzLwO+DY3Q7o9EoTL0BgytdAqxpQQ
 ntEVarqWq25QYXKFoAqbUTJ1UXa42/8HfiXAX/jvP+ACXfilkGPZre6ASxlXeOhm
 XbgPuNQPmXi2WYQH9GCQEsz2Nh80hKap8upK2WbQzzJ3lXsm+xA//4klab0HCYwl
 Uc302uVZozyXRMKbAlwmgasTFOLiV8KKriJ0oHoktBpWgkpdR9uv/RDeSaFR3DAl
 aFmecD4k/Hqezg4yVl+4YpEn2KjxiwARCm4PMW5AV7lpWBPBHAOOai65yJlAi9U6
 bP8pM0+aIx9xg7oWfsTnQ7RkIJ+GZ0w+KZ9LXFM59iu3eV1pAJE3UVyUehe/J1q9
 n8OcH0UeHRlAb8HckqVm1AC7IPvfHw4OAPtUq7z3NFDwbq6i651Tu7f+i2bj31cX
 77Ames+fx6WjxUjyFbJwaK44E7Qez3waztdBfn91qw+m0b+gnKE3ieDNpJTqmm5b
 mKulV7KJwwS6cdqY3+Kr+pIlN+uuGAv7wGzVLcaEAXucDsVn/YAMJHY2+v97xv+n
 J9N+yeaYtmSXVlDsJ6dndMrTQMmcasK1CVXKxs+VYq5Lgf+A68w=
 =eoKm
 -----END PGP SIGNATURE-----

Merge tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 apic updates from Dave Hansen:
 "This includes a very thorough rework of the 'struct apic' handlers.
  Quite a variety of them popped up over the years, especially in the
  32-bit days when odd apics were much more in vogue.

  The end result speaks for itself, which is a removal of a ton of code
  and static calls to replace indirect calls.

  If there's any breakage here, it's likely to be around the 32-bit
  museum pieces that get light to no testing these days.

  Summary:

   - Rework apic callbacks, getting rid of unnecessary ones and
     coalescing lots of silly duplicates.

   - Use static_calls() instead of indirect calls for apic->foo()

   - Tons of cleanups an crap removal along the way"

* tag 'x86_apic_for_6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits)
  x86/apic: Turn on static calls
  x86/apic: Provide static call infrastructure for APIC callbacks
  x86/apic: Wrap IPI calls into helper functions
  x86/apic: Mark all hotpath APIC callback wrappers __always_inline
  x86/xen/apic: Mark apic __ro_after_init
  x86/apic: Convert other overrides to apic_update_callback()
  x86/apic: Replace acpi_wake_cpu_handler_update() and apic_set_eoi_cb()
  x86/apic: Provide apic_update_callback()
  x86/xen/apic: Use standard apic driver mechanism for Xen PV
  x86/apic: Provide common init infrastructure
  x86/apic: Wrap apic->native_eoi() into a helper
  x86/apic: Nuke ack_APIC_irq()
  x86/apic: Remove pointless arguments from [native_]eoi_write()
  x86/apic/noop: Tidy up the code
  x86/apic: Remove pointless NULL initializations
  x86/apic: Sanitize APIC ID range validation
  x86/apic: Prepare x2APIC for using apic::max_apic_id
  x86/apic: Simplify X2APIC ID validation
  x86/apic: Add max_apic_id member
  x86/apic: Wrap APIC ID validation into an inline
  ...
2023-08-30 10:44:46 -07:00
Thomas Gleixner
f2bb0b4f15 x86/apic/32: Remove x86_cpu_to_logical_apicid
This per CPU variable is just yet another form of voodoo programming. The
boot ordering is:

  per_cpu(x86_cpu_to_logical_apicid, cpu) = 1U << cpu;

  .....

  setup_apic()
     apic->init_apic_ldr()
       default_init_apic_ldr()
         apic_write(SET_APIC_LOGICAL_ID(1UL << smp_processor_id(), APIC_LDR);

     id = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR);
     WARN_ON(id != per_cpu(x86_cpu_to_logical_apicid, cpu));
     per_cpu(x86_cpu_to_logical_apicid, cpu) = id;

So first write the default into LDR and then validate it against the same default
which was set up during early boot APIC enumeration.

Brilliant, isn't it?

The comment above the per CPU variable declaration describes it well:
'Let's keep it ugly for now.'

Remove the useless gunk and use '1U << cpu' consistently all over the place.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:23 -07:00
Thomas Gleixner
a6625b473b x86/apic: Get rid of hard_smp_processor_id()
No point in having a wrapper around read_apic_id().

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:17 -07:00
Thomas Gleixner
d23c977fb0 x86/apic: Remove pointless x86_bios_cpu_apicid
It's a useless copy of x86_cpu_to_apicid.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
2023-08-09 11:58:17 -07:00
Sohil Mehta
d7114f83ee x86/smpboot: Change smp_store_boot_cpu_info() to static
The function is only used locally. Convert it to a static one.

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-4-sohil.mehta@intel.com
2023-07-28 10:17:53 +02:00
Sohil Mehta
54bfd02bbf x86/smp: Remove a non-existent function declaration
x86_idle_thread_init() does not exist anywhere. Remove its declaration
from the header.

Signed-off-by: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20230727180533.3119660-3-sohil.mehta@intel.com
2023-07-28 10:17:53 +02:00
Linus Torvalds
88afbb21d4 A set of fixes for kexec(), reboot and shutdown issues
- Ensure that the WBINVD in stop_this_cpu() has been completed before the
    control CPU proceedes.
 
    stop_this_cpu() is used for kexec(), reboot and shutdown to park the APs
    in a HLT loop.
 
    The control CPU sends an IPI to the APs and waits for their CPU online bits
    to be cleared. Once they all are marked "offline" it proceeds.
 
    But stop_this_cpu() clears the CPU online bit before issuing WBINVD,
    which means there is no guarantee that the AP has reached the HLT loop.
 
    This was reported to cause intermittent reboot/shutdown failures due to
    some dubious interaction with the firmware.
 
    This is not only a problem of WBINVD. The code to actually "stop" the
    CPU which runs between clearing the online bit and reaching the HLT loop
    can cause large enough delays on its own (think virtualization). That's
    especially dangerous for kexec() as kexec() expects that all APs are in
    a safe state and not executing code while the boot CPU jumps to the new
    kernel. There are more issues vs. kexec() which are addressed separately.
 
    Cure this by implementing an explicit synchronization point right before
    the AP reaches HLT. This guarantees that the AP has completed the full
    stop proceedure.
 
  - Fix the condition for WBINVD in stop_this_cpu().
 
    The WBINVD in stop_this_cpu() is required for ensuring that when
    switching to or from memory encryption no dirty data is left in the
    cache lines which might cause a write back in the wrong more later.
 
    This checks CPUID directly because the feature bit might have been
    cleared due to a command line option.
 
    But that CPUID check accesses leaf 0x8000001f::EAX unconditionally. Intel
    CPUs return the content of the highest supported leaf when a non-existing
    leaf is read, while AMD CPUs return all zeros for unsupported leafs.
 
    So the result of the test on Intel CPUs is lottery and on AMD its just
    correct by chance.
 
    While harmless it's incorrect and causes the conditional wbinvd() to be
    issued where not required, which caused the above issue to be unearthed.
 
  - Make kexec() robust against AP code execution
 
    Ashok observed triple faults when doing kexec() on a system which had
    been booted with "nosmt".
 
    It turned out that the SMT siblings which had been brought up partially
    are parked in mwait_play_dead() to enable power savings.
 
    mwait_play_dead() is monitoring the thread flags of the AP's idle task,
    which has been chosen as it's unlikely to be written to.
 
    But kexec() can overwrite the previous kernel text and data including
    page tables etc. When it overwrites the cache lines monitored by an AP
    that AP resumes execution after the MWAIT on eventually overwritten
    text, stack and page tables, which obviously might end up in a triple
    fault easily.
 
    Make this more robust in several steps:
 
     1) Use an explicit per CPU cache line for monitoring.
 
     2) Write a command to these cache lines to kick APs out of MWAIT before
        proceeding with kexec(), shutdown or reboot.
 
        The APs confirm the wakeup by writing status back and then enter a
        HLT loop.
 
     3) If the system uses INIT/INIT/STARTUP for AP bringup, park the APs
        in INIT state.
 
        HLT is not a guarantee that an AP won't wake up and resume
        execution. HLT is woken up by NMI and SMI. SMI puts the CPU back
        into HLT (+/- firmware bugs), but NMI is delivered to the CPU which
        executes the NMI handler. Same issue as the MWAIT scenario described
        above.
 
        Sending an INIT/INIT sequence to the APs puts them into wait for
        STARTUP state, which is safe against NMI.
 
     There is still an issue remaining which can't be fixed: #MCE
 
     If the AP sits in HLT and receives a broadcast #MCE it will try to
     handle it with the obvious consequences.
 
     INIT/INIT clears CR4.MCE in the AP which will cause a broadcast #MCE to
     shut down the machine.
 
     So there is a choice between fire (HLT) and frying pan (INIT). Frying
     pan has been chosen as it's at least preventing the NMI issue.
 
     On systems which are not using INIT/INIT/STARTUP there is not much
     which can be done right now, but at least the obvious and easy to
     trigger MWAIT issue has been addressed.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmSZfpQTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoeZpD/9gSJN2qtGqoOgE8bWAenEeqppmBGFE
 EAhuhsvN1qG9JosUFo4KzxsGD/aWt2P6XglBDrGti8mFNol67jutmwWklntL3/ZR
 m8D6D+Pl7/CaDgACDTDbrnVC3lOGyMhD301yJrnBigS/SEoHeHI9UtadbHukuLQj
 TlKt5KtAnap15bE6QL846cDIptB9SjYLLPULo3i4azXEis/l6eAkffwAR6dmKlBh
 2RbhLK1xPPG9nqWYjqZXnex09acKwD9xY9xHj4+GampV4UqHJRWfW0YtFs5ENi01
 r3FVCdKEcvMkUw0zh0IAviBRs2vCI/R3YSfEc7P0264yn5WzMhAT+OGCovNjByiW
 sB4Iqa+Yf6aoBWwux6W4d22xu7uYhmFk/jiLyRZJPW/gvGZCZATT/x/T2hRoaYA8
 3S0Rs7n/gbfvynQETgniifuM0bXRW0lEJAmn840GwyVQwlpDEPBJSwW4El49kbkc
 +dHxnmpMCfnBxfVLS1YDd4WOmkWBeECNcW330FShlQQ8mM3UG31+Q8Jc55Ze9SW0
 w1h+IgIOHlA0DpQUUM8DJTSuxFx2piQsZxjOtzd70+BiKZpCsHqVLIp4qfnf+/GO
 gyP0cCQLbafpABbV9uVy8A/qgUGi0Qii0GJfCTy0OdmU+JX3C2C/gsM3uN0g3qAj
 vUhkuCXEGL5k1w==
 =KgZ0
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 core updates from Thomas Gleixner:
 "A set of fixes for kexec(), reboot and shutdown issues:

   - Ensure that the WBINVD in stop_this_cpu() has been completed before
     the control CPU proceedes.

     stop_this_cpu() is used for kexec(), reboot and shutdown to park
     the APs in a HLT loop.

     The control CPU sends an IPI to the APs and waits for their CPU
     online bits to be cleared. Once they all are marked "offline" it
     proceeds.

     But stop_this_cpu() clears the CPU online bit before issuing
     WBINVD, which means there is no guarantee that the AP has reached
     the HLT loop.

     This was reported to cause intermittent reboot/shutdown failures
     due to some dubious interaction with the firmware.

     This is not only a problem of WBINVD. The code to actually "stop"
     the CPU which runs between clearing the online bit and reaching the
     HLT loop can cause large enough delays on its own (think
     virtualization). That's especially dangerous for kexec() as kexec()
     expects that all APs are in a safe state and not executing code
     while the boot CPU jumps to the new kernel. There are more issues
     vs kexec() which are addressed separately.

     Cure this by implementing an explicit synchronization point right
     before the AP reaches HLT. This guarantees that the AP has
     completed the full stop proceedure.

   - Fix the condition for WBINVD in stop_this_cpu().

     The WBINVD in stop_this_cpu() is required for ensuring that when
     switching to or from memory encryption no dirty data is left in the
     cache lines which might cause a write back in the wrong more later.

     This checks CPUID directly because the feature bit might have been
     cleared due to a command line option.

     But that CPUID check accesses leaf 0x8000001f::EAX unconditionally.
     Intel CPUs return the content of the highest supported leaf when a
     non-existing leaf is read, while AMD CPUs return all zeros for
     unsupported leafs.

     So the result of the test on Intel CPUs is lottery and on AMD its
     just correct by chance.

     While harmless it's incorrect and causes the conditional wbinvd()
     to be issued where not required, which caused the above issue to be
     unearthed.

   - Make kexec() robust against AP code execution

     Ashok observed triple faults when doing kexec() on a system which
     had been booted with "nosmt".

     It turned out that the SMT siblings which had been brought up
     partially are parked in mwait_play_dead() to enable power savings.

     mwait_play_dead() is monitoring the thread flags of the AP's idle
     task, which has been chosen as it's unlikely to be written to.

     But kexec() can overwrite the previous kernel text and data
     including page tables etc. When it overwrites the cache lines
     monitored by an AP that AP resumes execution after the MWAIT on
     eventually overwritten text, stack and page tables, which obviously
     might end up in a triple fault easily.

     Make this more robust in several steps:

      1) Use an explicit per CPU cache line for monitoring.

      2) Write a command to these cache lines to kick APs out of MWAIT
         before proceeding with kexec(), shutdown or reboot.

         The APs confirm the wakeup by writing status back and then
         enter a HLT loop.

      3) If the system uses INIT/INIT/STARTUP for AP bringup, park the
         APs in INIT state.

         HLT is not a guarantee that an AP won't wake up and resume
         execution. HLT is woken up by NMI and SMI. SMI puts the CPU
         back into HLT (+/- firmware bugs), but NMI is delivered to the
         CPU which executes the NMI handler. Same issue as the MWAIT
         scenario described above.

         Sending an INIT/INIT sequence to the APs puts them into wait
         for STARTUP state, which is safe against NMI.

     There is still an issue remaining which can't be fixed: #MCE

     If the AP sits in HLT and receives a broadcast #MCE it will try to
     handle it with the obvious consequences.

     INIT/INIT clears CR4.MCE in the AP which will cause a broadcast
     #MCE to shut down the machine.

     So there is a choice between fire (HLT) and frying pan (INIT).
     Frying pan has been chosen as it's at least preventing the NMI
     issue.

     On systems which are not using INIT/INIT/STARTUP there is not much
     which can be done right now, but at least the obvious and easy to
     trigger MWAIT issue has been addressed"

* tag 'x86-core-2023-06-26' of ssh://gitolite.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/smp: Put CPUs into INIT on shutdown if possible
  x86/smp: Split sending INIT IPI out into a helper function
  x86/smp: Cure kexec() vs. mwait_play_dead() breakage
  x86/smp: Use dedicated cache-line for mwait_play_dead()
  x86/smp: Remove pointless wmb()s from native_stop_other_cpus()
  x86/smp: Dont access non-existing CPUID leaf
  x86/smp: Make stop_other_cpus() more robust
2023-06-26 14:45:53 -07:00
Thomas Gleixner
45e34c8af5 x86/smp: Put CPUs into INIT on shutdown if possible
Parking CPUs in a HLT loop is not completely safe vs. kexec() as HLT can
resume execution due to NMI, SMI and MCE, which has the same issue as the
MWAIT loop.

Kicking the secondary CPUs into INIT makes this safe against NMI and SMI.

A broadcast MCE will take the machine down, but a broadcast MCE which makes
HLT resume and execute overwritten text, pagetables or data will end up in
a disaster too.

So chose the lesser of two evils and kick the secondary CPUs into INIT
unless the system has installed special wakeup mechanisms which are not
using INIT.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230615193330.608657211@linutronix.de
2023-06-20 14:51:47 +02:00
Thomas Gleixner
d7893093a7 x86/smp: Cure kexec() vs. mwait_play_dead() breakage
TLDR: It's a mess.

When kexec() is executed on a system with offline CPUs, which are parked in
mwait_play_dead() it can end up in a triple fault during the bootup of the
kexec kernel or cause hard to diagnose data corruption.

The reason is that kexec() eventually overwrites the previous kernel's text,
page tables, data and stack. If it writes to the cache line which is
monitored by a previously offlined CPU, MWAIT resumes execution and ends
up executing the wrong text, dereferencing overwritten page tables or
corrupting the kexec kernels data.

Cure this by bringing the offlined CPUs out of MWAIT into HLT.

Write to the monitored cache line of each offline CPU, which makes MWAIT
resume execution. The written control word tells the offlined CPUs to issue
HLT, which does not have the MWAIT problem.

That does not help, if a stray NMI, MCE or SMI hits the offlined CPUs as
those make it come out of HLT.

A follow up change will put them into INIT, which protects at least against
NMI and SMI.

Fixes: ea53069231 ("x86, hotplug: Use mwait to offline a processor, fix the legacy case")
Reported-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Ashok Raj <ashok.raj@intel.com>
Reviewed-by: Ashok Raj <ashok.raj@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230615193330.492257119@linutronix.de
2023-06-20 14:51:47 +02:00
David Woodhouse
7e75178a09 x86/smpboot: Support parallel startup of secondary CPUs
In parallel startup mode the APs are kicked alive by the control CPU
quickly after each other and run through the early startup code in
parallel. The real-mode startup code is already serialized with a
bit-spinlock to protect the real-mode stack.

In parallel startup mode the smpboot_control variable obviously cannot
contain the Linux CPU number so the APs have to determine their Linux CPU
number on their own. This is required to find the CPUs per CPU offset in
order to find the idle task stack and other per CPU data.

To achieve this, export the cpuid_to_apicid[] array so that each AP can
find its own CPU number by searching therein based on its APIC ID.

Introduce a flag in the top bits of smpboot_control which indicates that
the AP should find its CPU number by reading the APIC ID from the APIC.

This is required because CPUID based APIC ID retrieval can only provide the
initial APIC ID, which might have been overruled by the firmware. Some AMD
APUs come up with APIC ID = initial APIC ID + 0x10, so the APIC ID to CPU
number lookup would fail miserably if based on CPUID. Also virtualization
can make its own APIC ID assignements. The only requirement is that the
APIC IDs are consistent with the APCI/MADT table.

For the boot CPU or in case parallel bringup is disabled the control bits
are empty and the CPU number is directly available in bit 0-23 of
smpboot_control.

[ tglx: Initial proof of concept patch with bitlock and APIC ID lookup ]
[ dwmw2: Rework and testing, commit message, CPUID 0x1 and CPU0 support ]
[ seanc: Fix stray override of initial_gs in common_cpu_up() ]
[ Oleksandr Natalenko: reported suspend/resume issue fixed in
  x86_acpi_suspend_lowlevel ]
[ tglx: Make it read the APIC ID from the APIC instead of using CPUID,
  	split the bitlock part out ]

Co-developed-by: Thomas Gleixner <tglx@linutronix.de>
Co-developed-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.411554373@linutronix.de
2023-05-15 13:45:04 +02:00
Thomas Gleixner
bea629d57d x86/apic: Save the APIC virtual base address
For parallel CPU brinugp it's required to read the APIC ID in the low level
startup code. The virtual APIC base address is a constant because its a
fix-mapped address. Exposing that constant which is composed via macros to
assembly code is non-trivial due to header inclusion hell.

Aside of that it's constant only because of the vsyscall ABI
requirement. Once vsyscall is out of the picture the fixmap can be placed
at runtime.

Avoid header hell, stay flexible and store the address in a variable which
can be exposed to the low level startup code.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.299231005@linutronix.de
2023-05-15 13:45:03 +02:00
Thomas Gleixner
8b5a0f957c x86/smpboot: Enable split CPU startup
The x86 CPU bringup state currently does AP wake-up, wait for AP to
respond and then release it for full bringup.

It is safe to be split into a wake-up and and a separate wait+release
state.

Provide the required functions and enable the split CPU bringup, which
prepares for parallel bringup, where the bringup of the non-boot CPUs takes
two iterations: One to prepare and wake all APs and the second to wait and
release them. Depending on timing this can eliminate the wait time
completely.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205257.133453992@linutronix.de
2023-05-15 13:45:01 +02:00
Thomas Gleixner
2711b8e2b7 x86/smpboot: Switch to hotplug core state synchronization
The new AP state tracking and synchronization mechanism in the CPU hotplug
core code allows to remove quite some x86 specific code:

  1) The AP alive synchronization based on cpumasks

  2) The decision whether an AP can be brought up again

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205256.529657366@linutronix.de
2023-05-15 13:44:56 +02:00
Thomas Gleixner
5475abbde7 x86/smpboot: Remove the CPU0 hotplug kludge
This was introduced with commit e1c467e690 ("x86, hotplug: Wake up CPU0
via NMI instead of INIT, SIPI, SIPI") to eventually support physical
hotplug of CPU0:

 "We'll change this code in the future to wake up hard offlined CPU0 if
  real platform and request are available."

11 years later this has not happened and physical hotplug is not officially
supported. Remove the cruft.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Oleksandr Natalenko <oleksandr@natalenko.name>
Tested-by: Helge Deller <deller@gmx.de> # parisc
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com> # Steam Deck
Link: https://lore.kernel.org/r/20230512205255.768845190@linutronix.de
2023-05-15 13:44:49 +02:00
Linus Torvalds
f20730efbd SMP cross-CPU function-call updates for v6.4:
- Remove diagnostics and adjust config for CSD lock diagnostics
 
  - Add a generic IPI-sending tracepoint, as currently there's no easy
    way to instrument IPI origins: it's arch dependent and for some
    major architectures it's not even consistently available.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK438RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jJ5Q/5AZ0HGpyqwdFK8GmGznyu5qjP5HwV9pPq
 gZQScqSy4tZEeza4TFMi83CoXSg9uJ7GlYJqqQMKm78LGEPomnZtXXC7oWvTA9M5
 M/jAvzytmvZloSCXV6kK7jzSejMHhag97J/BjTYhZYQpJ9T+hNC87XO6J6COsKr9
 lPIYqkFrIkQNr6B0U11AQfFejRYP1ics2fnbnZL86G/zZAc6x8EveM3KgSer2iHl
 KbrO+xcYyGY8Ef9P2F72HhEGFfM3WslpT1yzqR3sm4Y+fuMG0oW3qOQuMJx0ZhxT
 AloterY0uo6gJwI0P9k/K4klWgz81Tf/zLb0eBAtY2uJV9Fo3YhPHuZC7jGPGAy3
 JusW2yNYqc8erHVEMAKDUsl/1KN4TE2uKlkZy98wno+KOoMufK5MA2e2kPPqXvUi
 Jk9RvFolnWUsexaPmCftti0OCv3YFiviVAJ/t0pchfmvvJA2da0VC9hzmEXpLJVF
 25nBTV/1uAOrWvOpCyo3ElrC2CkQVkFmK5rXMDdvf6ib0Nid4vFcCkCSLVfu+ePB
 11mi7QYro+CcnOug1K+yKogUDmsZgV/u1kUwgQzTIpZ05Kkb49gUiXw9L2RGcBJh
 yoDoiI66KPR7PWQ2qBdQoXug4zfEEtWG0O9HNLB0FFRC3hu7I+HHyiUkBWs9jasK
 PA5+V7HcQRk=
 =Wp7f
 -----END PGP SIGNATURE-----

Merge tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull SMP cross-CPU function-call updates from Ingo Molnar:

 - Remove diagnostics and adjust config for CSD lock diagnostics

 - Add a generic IPI-sending tracepoint, as currently there's no easy
   way to instrument IPI origins: it's arch dependent and for some major
   architectures it's not even consistently available.

* tag 'smp-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  trace,smp: Trace all smp_function_call*() invocations
  trace: Add trace_ipi_send_cpu()
  sched, smp: Trace smp callback causing an IPI
  smp: reword smp call IPI comment
  treewide: Trace IPIs sent via smp_send_reschedule()
  irq_work: Trace self-IPIs sent via arch_irq_work_raise()
  smp: Trace IPIs sent via arch_send_call_function_ipi_mask()
  sched, smp: Trace IPIs sent via send_call_function_single_ipi()
  trace: Add trace_ipi_send_cpumask()
  kernel/smp: Make csdlock_debug= resettable
  locking/csd_lock: Remove per-CPU data indirection from CSD lock debugging
  locking/csd_lock: Remove added data from CSD lock debugging
  locking/csd_lock: Add Kconfig option for csd_debug default
2023-04-28 15:03:43 -07:00
Linus Torvalds
2aff7c706c Objtool changes for v6.4:
- Mark arch_cpu_idle_dead() __noreturn, make all architectures & drivers that did
    this inconsistently follow this new, common convention, and fix all the fallout
    that objtool can now detect statically.
 
  - Fix/improve the ORC unwinder becoming unreliable due to UNWIND_HINT_EMPTY ambiguity,
    split it into UNWIND_HINT_END_OF_STACK and UNWIND_HINT_UNDEFINED to resolve it.
 
  - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code.
 
  - Generate ORC data for __pfx code
 
  - Add more __noreturn annotations to various kernel startup/shutdown/panic functions.
 
  - Misc improvements & fixes.
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmRK1x0RHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1ghxQ/+IkCynMYtdF5OG9YwbcGJqsPSfOPMEcEM
 pUSFYg+gGPBDT/fJfcVSqvUtdnWbLC2kXt9yiswXz3X3J2nmNkBk5YKQftsNDcul
 TmKeqIIAK51XTncpegKH0EGnOX63oZ9Vxa8CTPdDlb+YF23Km2FoudGRI9F5qbUd
 LoraXqGYeiaeySkGyWmZVl6Uc8dIxnMkTN3H/oI9aB6TOrsi059hAtFcSaFfyemP
 c4LqXXCH7k2baiQt+qaLZ8cuZVG/+K5r2N2cmjO5kmJc6ynIaFnfMe4XxZLjp5LT
 /PulYI15bXkvSARKx5CRh/CDHMOx5Blw+ASO0RhWbdy0WH4ZhhcaVF5AeIpPW86a
 1LBcz97rMp72WmvKgrJeVO1r9+ll4SI6/YKGJRsxsCMdP3hgFpqntXyVjTFNdTM1
 0gH6H5v55x06vJHvhtTk8SR3PfMTEM2fRU5jXEOrGowoGifx+wNUwORiwj6LE3KQ
 SKUdT19RNzoW3VkFxhgk65ThK1S7YsJUKRoac3YdhttpqqqtFV//erenrZoR4k/p
 vzvKy68EQ7RCNyD5wNWNFe0YjeJl5G8gQ8bUm4Xmab7djjgz+pn4WpQB8yYKJLAo
 x9dqQ+6eUbw3Hcgk6qQ9E+r/svbulnAL0AeALAWK/91DwnZ2mCzKroFkLN7napKi
 fRho4CqzrtM=
 =NwEV
 -----END PGP SIGNATURE-----

Merge tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull objtool updates from Ingo Molnar:

 - Mark arch_cpu_idle_dead() __noreturn, make all architectures &
   drivers that did this inconsistently follow this new, common
   convention, and fix all the fallout that objtool can now detect
   statically

 - Fix/improve the ORC unwinder becoming unreliable due to
   UNWIND_HINT_EMPTY ambiguity, split it into UNWIND_HINT_END_OF_STACK
   and UNWIND_HINT_UNDEFINED to resolve it

 - Fix noinstr violations in the KCSAN code and the lkdtm/stackleak code

 - Generate ORC data for __pfx code

 - Add more __noreturn annotations to various kernel startup/shutdown
   and panic functions

 - Misc improvements & fixes

* tag 'objtool-core-2023-04-27' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  x86/hyperv: Mark hv_ghcb_terminate() as noreturn
  scsi: message: fusion: Mark mpt_halt_firmware() __noreturn
  x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
  btrfs: Mark btrfs_assertfail() __noreturn
  objtool: Include weak functions in global_noreturns check
  cpu: Mark nmi_panic_self_stop() __noreturn
  cpu: Mark panic_smp_self_stop() __noreturn
  arm64/cpu: Mark cpu_park_loop() and friends __noreturn
  x86/head: Mark *_start_kernel() __noreturn
  init: Mark start_kernel() __noreturn
  init: Mark [arch_call_]rest_init() __noreturn
  objtool: Generate ORC data for __pfx code
  x86/linkage: Fix padding for typed functions
  objtool: Separate prefix code from stack validation code
  objtool: Remove superfluous dead_end_function() check
  objtool: Add symbol iteration helpers
  objtool: Add WARN_INSN()
  scripts/objdump-func: Support multiple functions
  context_tracking: Fix KCSAN noinstr violation
  objtool: Add stackleak instrumentation to uaccess safe list
  ...
2023-04-28 14:02:54 -07:00
Josh Poimboeuf
52668badd3 x86/cpu: Mark {hlt,resume}_play_dead() __noreturn
Fixes the following warning:

  vmlinux.o: warning: objtool: resume_play_dead+0x21: unreachable instruction

Reported-by: kernel test robot <lkp@intel.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/ce1407c4bf88b1334fe40413126343792a77ca50.1681342859.git.jpoimboe@kernel.org
2023-04-14 17:31:27 +02:00
Valentin Schneider
4c8c3c7f70 treewide: Trace IPIs sent via smp_send_reschedule()
To be able to trace invocations of smp_send_reschedule(), rename the
arch-specific definitions of it to arch_smp_send_reschedule() and wrap it
into an smp_send_reschedule() that contains a tracepoint.

Changes to include the declaration of the tracepoint were driven by the
following coccinelle script:

  @func_use@
  @@
  smp_send_reschedule(...);

  @include@
  @@
  #include <trace/events/ipi.h>

  @no_include depends on func_use && !include@
  @@
    #include <...>
  +
  + #include <trace/events/ipi.h>

[csky bits]
[riscv bits]
Signed-off-by: Valentin Schneider <vschneid@redhat.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Guo Ren <guoren@kernel.org>
Acked-by: Palmer Dabbelt <palmer@rivosinc.com>
Link: https://lore.kernel.org/r/20230307143558.294354-6-vschneid@redhat.com
2023-03-24 11:01:28 +01:00
Brian Gerst
3adee777ad x86/smpboot: Remove initial_stack on 64-bit
In order to facilitate parallel startup, start to eliminate some of the
global variables passing information to CPUs in the startup path.

However, start by introducing one more: smpboot_control. For now this
merely holds the CPU# of the CPU which is coming up. Each CPU can then
find its own per-cpu data, and everything else it needs can be found
from there, allowing the other global variables to be removed.

First to be removed is initial_stack. Each CPU can load %rsp from its
current_task->thread.sp instead. That is already set up with the correct
idle thread for APs. Set up the .sp field in INIT_THREAD on x86 so that
the BSP also finds a suitable stack pointer in the static per-cpu data
when coming up on first boot.

On resume from S3, the CPU needs a temporary stack because its idle task
is already active. Instead of setting initial_stack, the sleep code can
simply set its own current->thread.sp to point to the temporary stack.
Nobody else cares about ->thread.sp for a thread which is currently on
a CPU, because the true value is actually in the %rsp register. Which
is restored with the rest of the CPU context in do_suspend_lowlevel().

Signed-off-by: Brian Gerst <brgerst@gmail.com>
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Signed-off-by: Usama Arif <usama.arif@bytedance.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Usama Arif <usama.arif@bytedance.com>
Tested-by: Guilherme G. Piccoli <gpiccoli@igalia.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20230316222109.1940300-7-usama.arif@bytedance.com
2023-03-21 13:35:53 +01:00
Josh Poimboeuf
eab89405b6 x86/cpu: Mark play_dead() __noreturn
play_dead() doesn't return.  Annotate it as such.  By extension this
also makes arch_cpu_idle_dead() noreturn.

Link: https://lore.kernel.org/r/f3a069e6869c51ccfdda656b76882363bc9fcfa4.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-03-08 08:44:26 -08:00
Josh Poimboeuf
a02f50b573 x86/cpu: Make sure play_dead() doesn't return
After commit 076cbf5d2163 ("x86/xen: don't let xen_pv_play_dead()
return"), play_dead() never returns.  Make that more explicit with a
BUG().

BUG() is preferable to unreachable() because BUG() is a more explicit
failure mode and avoids undefined behavior like falling off the edge of
the function into whatever code happens to be next.

Link: https://lore.kernel.org/r/11e6ac1cf10f92967882926e3ac16287b50642f2.1676358308.git.jpoimboe@kernel.org
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
2023-03-08 08:44:26 -08:00
Thomas Gleixner
7443b296e6 x86/percpu: Move cpu_number next to current_task
Also add cpu_number to the pcpu_hot structure, it is often referenced
and this cacheline is there.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20220915111145.387678283@infradead.org
2022-10-17 16:41:04 +02:00
Borislav Petkov
df5b035b56 x86/cacheinfo: Add a cpu_llc_shared_mask() UP variant
On a CONFIG_SMP=n kernel, the LLC shared mask is 0, which prevents
__cache_amd_cpumap_setup() from doing the L3 masks setup, and more
specifically from setting up the shared_cpu_map and shared_cpu_list
files in sysfs, leading to lscpu from util-linux getting confused and
segfaulting.

Add a cpu_llc_shared_mask() UP variant which returns a mask with a
single bit set, i.e., for CPU0.

Fixes: 2b83809a5e ("x86/cpu/amd: Derive L3 shared_cpu_map from cpu_llc_shared_mask")
Reported-by: Saurabh Sengar <ssengar@linux.microsoft.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: <stable@vger.kernel.org>
Link: https://lore.kernel.org/r/1660148115-302-1-git-send-email-ssengar@linux.microsoft.com
2022-09-28 18:35:37 +02:00
Boris Ostrovsky
ce2612b670 x86/smp: Factor out parts of native_smp_prepare_cpus()
Commit 66558b730f ("sched: Add cluster scheduler level for x86")
introduced cpu_l2c_shared_map mask which is expected to be initialized
by smp_op.smp_prepare_cpus(). That commit only updated
native_smp_prepare_cpus() version but not xen_pv_smp_prepare_cpus().
As result Xen PV guests crash in set_cpu_sibling_map().

While the new mask can be allocated in xen_pv_smp_prepare_cpus() one can
see that both versions of smp_prepare_cpus ops share a number of common
operations that can be factored out. So do that instead.

Fixes: 66558b730f ("sched: Add cluster scheduler level for x86")
Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Juergen Gross <jgross@suse.com>
Link: https://lkml.kernel.org/r/1635896196-18961-1-git-send-email-boris.ostrovsky@oracle.com
2021-11-11 13:09:32 +01:00
Tim Chen
66558b730f sched: Add cluster scheduler level for x86
There are x86 CPU architectures (e.g. Jacobsville) where L2 cahce is
shared among a cluster of cores instead of being exclusive to one
single core.

To prevent oversubscription of L2 cache, load should be balanced
between such L2 clusters, especially for tasks with no shared data.
On benchmark such as SPECrate mcf test, this change provides a boost
to performance especially on medium load system on Jacobsville.  on a
Jacobsville that has 24 Atom cores, arranged into 6 clusters of 4
cores each, the benchmark number is as follow:

 Improvement over baseline kernel for mcf_r
 copies		run time	base rate
 1		-0.1%		-0.2%
 6		25.1%		25.1%
 12		18.8%		19.0%
 24		0.3%		0.3%

So this looks pretty good. In terms of the system's task distribution,
some pretty bad clumping can be seen for the vanilla kernel without
the L2 cluster domain for the 6 and 12 copies case. With the extra
domain for cluster, the load does get evened out between the clusters.

Note this patch isn't an universal win as spreading isn't necessarily
a win, particually for those workload who can benefit from packing.

Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Barry Song <song.bao.hua@hisilicon.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lore.kernel.org/r/20210924085104.44806-4-21cnbao@gmail.com
2021-10-15 11:25:16 +02:00
Vitaly Kuznetsov
fa26d0c778 ACPI: processor: Fix build when CONFIG_ACPI_PROCESSOR=m
Commit 8cdddd182b ("ACPI: processor: Fix CPU0 wakeup in
acpi_idle_play_dead()") tried to fix CPU0 hotplug breakage by copying
wakeup_cpu0() + start_cpu0() logic from hlt_play_dead()//mwait_play_dead()
into acpi_idle_play_dead(). The problem is that these functions are not
exported to modules so when CONFIG_ACPI_PROCESSOR=m build fails.

The issue could've been fixed by exporting both wakeup_cpu0()/start_cpu0()
(the later from assembly) but it seems putting the whole pattern into a
new function and exporting it instead is better.

Reported-by: kernel test robot <lkp@intel.com>
Fixes: 8cdddd182b ("CPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()")
Cc: <stable@vger.kernel.org> # 5.10+
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-04-07 19:02:43 +02:00
Vitaly Kuznetsov
8cdddd182b ACPI: processor: Fix CPU0 wakeup in acpi_idle_play_dead()
Commit 496121c021 ("ACPI: processor: idle: Allow probing on platforms
with one ACPI C-state") broke CPU0 hotplug on certain systems, e.g.
I'm observing the following on AWS Nitro (e.g r5b.xlarge but other
instance types are affected as well):

 # echo 0 > /sys/devices/system/cpu/cpu0/online
 # echo 1 > /sys/devices/system/cpu/cpu0/online
 <10 seconds delay>
 -bash: echo: write error: Input/output error

In fact, the above mentioned commit only revealed the problem and did
not introduce it. On x86, to wakeup CPU an NMI is being used and
hlt_play_dead()/mwait_play_dead() loops are prepared to handle it:

	/*
	 * If NMI wants to wake up CPU0, start CPU0.
	 */
	if (wakeup_cpu0())
		start_cpu0();

cpuidle_play_dead() -> acpi_idle_play_dead() (which is now being called on
systems where it wasn't called before the above mentioned commit) serves
the same purpose but it doesn't have a path for CPU0. What happens now on
wakeup is:
 - NMI is sent to CPU0
 - wakeup_cpu0_nmi() works as expected
 - we get back to while (1) loop in acpi_idle_play_dead()
 - safe_halt() puts CPU0 to sleep again.

The straightforward/minimal fix is add the special handling for CPU0 on x86
and that's what the patch is doing.

Fixes: 496121c021 ("ACPI: processor: idle: Allow probing on platforms with one ACPI C-state")
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: 5.10+ <stable@vger.kernel.org> # 5.10+
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2021-04-01 13:37:55 +02:00
Ingo Molnar
13c01139b1 x86/headers: Remove APIC headers from <asm/smp.h>
The APIC headers are relatively complex and bring in additional
header dependencies - while smp.h is a relatively simple header
included from high level headers.

Remove the dependency and add in the missing #include's in .c
files where they gained it indirectly before.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2020-08-06 16:13:09 +02:00
Thomas Gleixner
d0a7166bc7 x86/smp: Move smp_function_call implementations into IPI code
Move it where it belongs. That allows to keep all the shorthand logic in
one place.

No functional change.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/20190722105220.677835995@linutronix.de
2019-07-25 16:12:01 +02:00
Linus Torvalds
222a21d295 Merge branch 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 topology updates from Ingo Molnar:
 "Implement multi-die topology support on Intel CPUs and expose the die
  topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui.

  These changes should have no effect on the kernel's existing
  understanding of topologies, i.e. there should be no behavioral impact
  on cache, NUMA, scheduler, perf and other topologies and overall
  system performance"

* 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support
  perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support
  hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages
  thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages
  perf/x86/intel/cstate: Support multi-die/package
  perf/x86/intel/rapl: Support multi-die/package
  perf/x86/intel/uncore: Support multi-die/package
  topology: Create core_cpus and die_cpus sysfs attributes
  topology: Create package_cpus sysfs attribute
  hwmon/coretemp: Support multi-die/package
  powercap/intel_rapl: Update RAPL domain name and debug messages
  thermal/x86_pkg_temp_thermal: Support multi-die/package
  powercap/intel_rapl: Support multi-die/package
  powercap/intel_rapl: Simplify rapl_find_package()
  x86/topology: Define topology_logical_die_id()
  x86/topology: Define topology_die_id()
  cpu/topology: Export die_id
  x86/topology: Create topology_max_die_per_package()
  x86/topology: Add CPUID.1F multi-die/package support
2019-07-08 18:28:44 -07:00
Peter Zijlstra
9ed7d75b2f x86/percpu: Relax smp_processor_id()
Nadav reported that since this_cpu_read() became asm-volatile, many
smp_processor_id() users generated worse code due to the extra
constraints.

However since smp_processor_id() is reading a stable value, we can use
__this_cpu_read().

While this does reduce text size somewhat, this mostly results in code
movement to .text.unlikely as a result of more/larger .cold.
subfunctions. Less text on the hotpath is good for I$.

  $ ./compare.sh defconfig-build1 defconfig-build2 vmlinux.o
  setup_APIC_ibs                                             90         98   -12,+20
  force_ibs_eilvt_setup                                     400        413   -57,+70
  pci_serr_error                                            109        104   -54,+49
  pci_serr_error                                            109        104   -54,+49
  unknown_nmi_error                                         125        120   -76,+71
  unknown_nmi_error                                         125        120   -76,+71
  io_check_error                                            125        132   -97,+104
  intel_thermal_interrupt                                   730        822   +92,+0
  intel_init_thermal                                        951        945   -6,+0
  generic_get_mtrr                                          301        294   -7,+0
  generic_get_mtrr                                          301        294   -7,+0
  generic_set_all                                           749        754   -44,+49
  get_fixed_ranges                                          352        360   -41,+49
  x86_acpi_suspend_lowlevel                                 369        363   -6,+0
  check_tsc_sync_source                                     412        412   -71,+71
  irq_migrate_all_off_this_cpu                              662        674   -14,+26
  clocksource_watchdog                                      748        748   -113,+113
  __perf_event_account_interrupt                            204        197   -7,+0
  attempt_merge                                            1748       1741   -7,+0
  intel_guc_send_ct                                        1424       1409   -15,+0
  __fini_doorbell                                           235        231   -4,+0
  bdw_set_cdclk                                             928        923   -5,+0
  gen11_dsi_disable                                        1571       1556   -15,+0
  gmbus_wait                                                493        488   -5,+0
  md_make_request                                           376        369   -7,+0
  __split_and_process_bio                                   543        536   -7,+0
  delay_tsc                                                  96         89   -7,+0
  hsw_disable_pc8                                           696        691   -5,+0
  tsc_verify_tsc_adjust                                     215        228   -22,+35
  cpuidle_driver_unref                                       56         49   -7,+0
  blk_account_io_completion                                 159        148   -11,+0
  mtrr_wrmsr                                                 95         99   -29,+33
  __intel_wait_for_register_fw                              401        419   +18,+0
  cpuidle_driver_ref                                         43         36   -7,+0
  cpuidle_get_driver                                         15          8   -7,+0
  blk_account_io_done                                       535        528   -7,+0
  irq_migrate_all_off_this_cpu                              662        674   -14,+26
  check_tsc_sync_source                                     412        412   -71,+71
  irq_wait_for_poll                                         170        163   -7,+0
  generic_end_io_acct                                       329        322   -7,+0
  x86_acpi_suspend_lowlevel                                 369        363   -6,+0
  nohz_balance_enter_idle                                   198        191   -7,+0
  generic_start_io_acct                                     254        247   -7,+0
  blk_account_io_start                                      341        334   -7,+0
  perf_event_task_tick                                      682        675   -7,+0
  intel_init_thermal                                        951        945   -6,+0
  amd_e400_c1e_apic_setup                                    47         51   -28,+32
  setup_APIC_eilvt                                          350        328   -22,+0
  hsw_enable_pc8                                           1611       1605   -6,+0
                                               total   12985947   12985892   -994,+939

Reported-by: Nadav Amit <nadav.amit@gmail.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-17 12:43:41 +02:00
Len Brown
2e4c54dac7 topology: Create core_cpus and die_cpus sysfs attributes
Create CPU topology sysfs attributes: "core_cpus" and "core_cpus_list"

These attributes represent all of the logical CPUs that share the
same core.

These attriutes is synonymous with the existing "thread_siblings" and
"thread_siblings_list" attribute, which will be deprecated.

Create CPU topology sysfs attributes: "die_cpus" and "die_cpus_list".
These attributes represent all of the logical CPUs that share the
same die.

Suggested-by: Brice Goglin <Brice.Goglin@inria.fr>
Signed-off-by: Len Brown <len.brown@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Ingo Molnar <mingo@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/071c23a298cd27ede6ed0b6460cae190d193364f.1557769318.git.len.brown@intel.com
2019-05-23 10:08:34 +02:00
Thomas Gleixner
66c7ceb47f x86/irq/32: Handle irq stack allocation failure proper
irq_ctx_init() crashes hard on page allocation failures. While that's ok
during early boot, it's just wrong in the CPU hotplug bringup code.

Check the page allocation failure and return -ENOMEM and handle it at the
call sites. On early boot the only way out is to BUG(), but on CPU hotplug
there is no reason to crash, so just abort the operation.

Rename the function to something more sensible while at it.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Cc: Alison Schofield <alison.schofield@intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Josh Poimboeuf <jpoimboe@redhat.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Cc: Nicolai Stange <nstange@suse.de>
Cc: Pu Wen <puwen@hygon.cn>
Cc: Sean Christopherson <sean.j.christopherson@intel.com>
Cc: Shaokun Zhang <zhangshaokun@hisilicon.com>
Cc: Stefano Stabellini <sstabellini@kernel.org>
Cc: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Cc: x86-ml <x86@kernel.org>
Cc: xen-devel@lists.xenproject.org
Cc: Yazen Ghannam <yazen.ghannam@amd.com>
Cc: Yi Wang <wang.yi59@zte.com.cn>
Cc: Zhenzhong Duan <zhenzhong.duan@oracle.com>
Link: https://lkml.kernel.org/r/20190414160146.089060584@linutronix.de
2019-04-17 15:31:42 +02:00
Yi Wang
89f579ce99 x86/headers: Fix -Wmissing-prototypes warning
When building the kernel with W=1 we get a lot of -Wmissing-prototypes
warnings, which are trivial in nature and easy to fix - and which may
mask some real future bugs if the prototypes get out of sync with
the function definition.

This patch fixes most of -Wmissing-prototypes warnings which
are in the root directory of arch/x86/kernel, not including
the subdirectories.

These are the warnings fixed in this patch:

  arch/x86/kernel/signal.c:865:17: warning: no previous prototype for ‘sys32_x32_rt_sigreturn’ [-Wmissing-prototypes]
  arch/x86/kernel/signal_compat.c:164:6: warning: no previous prototype for ‘sigaction_compat_abi’ [-Wmissing-prototypes]
  arch/x86/kernel/traps.c:625:46: warning: no previous prototype for ‘sync_regs’ [-Wmissing-prototypes]
  arch/x86/kernel/traps.c:640:24: warning: no previous prototype for ‘fixup_bad_iret’ [-Wmissing-prototypes]
  arch/x86/kernel/traps.c:929:13: warning: no previous prototype for ‘trap_init’ [-Wmissing-prototypes]
  arch/x86/kernel/irq.c:270:28: warning: no previous prototype for ‘smp_x86_platform_ipi’ [-Wmissing-prototypes]
  arch/x86/kernel/irq.c:301:16: warning: no previous prototype for ‘smp_kvm_posted_intr_ipi’ [-Wmissing-prototypes]
  arch/x86/kernel/irq.c:314:16: warning: no previous prototype for ‘smp_kvm_posted_intr_wakeup_ipi’ [-Wmissing-prototypes]
  arch/x86/kernel/irq.c:328:16: warning: no previous prototype for ‘smp_kvm_posted_intr_nested_ipi’ [-Wmissing-prototypes]
  arch/x86/kernel/irq_work.c:16:28: warning: no previous prototype for ‘smp_irq_work_interrupt’ [-Wmissing-prototypes]
  arch/x86/kernel/irqinit.c:79:13: warning: no previous prototype for ‘init_IRQ’ [-Wmissing-prototypes]
  arch/x86/kernel/quirks.c:672:13: warning: no previous prototype for ‘early_platform_quirks’ [-Wmissing-prototypes]
  arch/x86/kernel/tsc.c:1499:15: warning: no previous prototype for ‘calibrate_delay_is_known’ [-Wmissing-prototypes]
  arch/x86/kernel/process.c:653:13: warning: no previous prototype for ‘arch_post_acpi_subsys_init’ [-Wmissing-prototypes]
  arch/x86/kernel/process.c:717:15: warning: no previous prototype for ‘arch_randomize_brk’ [-Wmissing-prototypes]
  arch/x86/kernel/process.c:784:6: warning: no previous prototype for ‘do_arch_prctl_common’ [-Wmissing-prototypes]
  arch/x86/kernel/reboot.c:869:6: warning: no previous prototype for ‘nmi_panic_self_stop’ [-Wmissing-prototypes]
  arch/x86/kernel/smp.c:176:27: warning: no previous prototype for ‘smp_reboot_interrupt’ [-Wmissing-prototypes]
  arch/x86/kernel/smp.c:260:28: warning: no previous prototype for ‘smp_reschedule_interrupt’ [-Wmissing-prototypes]
  arch/x86/kernel/smp.c:281:28: warning: no previous prototype for ‘smp_call_function_interrupt’ [-Wmissing-prototypes]
  arch/x86/kernel/smp.c:291:28: warning: no previous prototype for ‘smp_call_function_single_interrupt’ [-Wmissing-prototypes]
  arch/x86/kernel/ftrace.c:840:6: warning: no previous prototype for ‘arch_ftrace_update_trampoline’ [-Wmissing-prototypes]
  arch/x86/kernel/ftrace.c:934:7: warning: no previous prototype for ‘arch_ftrace_trampoline_func’ [-Wmissing-prototypes]
  arch/x86/kernel/ftrace.c:946:6: warning: no previous prototype for ‘arch_ftrace_trampoline_free’ [-Wmissing-prototypes]
  arch/x86/kernel/crash.c:114:6: warning: no previous prototype for ‘crash_smp_send_stop’ [-Wmissing-prototypes]
  arch/x86/kernel/crash.c:351:5: warning: no previous prototype for ‘crash_setup_memmap_entries’ [-Wmissing-prototypes]
  arch/x86/kernel/crash.c:424:5: warning: no previous prototype for ‘crash_load_segments’ [-Wmissing-prototypes]
  arch/x86/kernel/machine_kexec_64.c:372:7: warning: no previous prototype for ‘arch_kexec_kernel_image_load’ [-Wmissing-prototypes]
  arch/x86/kernel/paravirt-spinlocks.c:12:16: warning: no previous prototype for ‘__native_queued_spin_unlock’ [-Wmissing-prototypes]
  arch/x86/kernel/paravirt-spinlocks.c:18:6: warning: no previous prototype for ‘pv_is_native_spin_unlock’ [-Wmissing-prototypes]
  arch/x86/kernel/paravirt-spinlocks.c:24:16: warning: no previous prototype for ‘__native_vcpu_is_preempted’ [-Wmissing-prototypes]
  arch/x86/kernel/paravirt-spinlocks.c:30:6: warning: no previous prototype for ‘pv_is_native_vcpu_is_preempted’ [-Wmissing-prototypes]
  arch/x86/kernel/kvm.c:258:1: warning: no previous prototype for ‘do_async_page_fault’ [-Wmissing-prototypes]
  arch/x86/kernel/jailhouse.c:200:6: warning: no previous prototype for ‘jailhouse_paravirt’ [-Wmissing-prototypes]
  arch/x86/kernel/check.c:91:13: warning: no previous prototype for ‘setup_bios_corruption_check’ [-Wmissing-prototypes]
  arch/x86/kernel/check.c:139:6: warning: no previous prototype for ‘check_for_bios_corruption’ [-Wmissing-prototypes]
  arch/x86/kernel/devicetree.c:32:13: warning: no previous prototype for ‘early_init_dt_scan_chosen_arch’ [-Wmissing-prototypes]
  arch/x86/kernel/devicetree.c:42:13: warning: no previous prototype for ‘add_dtb’ [-Wmissing-prototypes]
  arch/x86/kernel/devicetree.c:108:6: warning: no previous prototype for ‘x86_of_pci_init’ [-Wmissing-prototypes]
  arch/x86/kernel/devicetree.c:314:13: warning: no previous prototype for ‘x86_dtb_init’ [-Wmissing-prototypes]
  arch/x86/kernel/tracepoint.c:16:5: warning: no previous prototype for ‘trace_pagefault_reg’ [-Wmissing-prototypes]
  arch/x86/kernel/tracepoint.c:22:6: warning: no previous prototype for ‘trace_pagefault_unreg’ [-Wmissing-prototypes]
  arch/x86/kernel/head64.c:113:22: warning: no previous prototype for ‘__startup_64’ [-Wmissing-prototypes]
  arch/x86/kernel/head64.c:262:15: warning: no previous prototype for ‘__startup_secondary_64’ [-Wmissing-prototypes]
  arch/x86/kernel/head64.c:350:12: warning: no previous prototype for ‘early_make_pgtable’ [-Wmissing-prototypes]

[ mingo: rewrote the changelog, fixed build errors. ]

Signed-off-by: Yi Wang <wang.yi59@zte.com.cn>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: akataria@vmware.com
Cc: akpm@linux-foundation.org
Cc: andy.shevchenko@gmail.com
Cc: anton@enomsg.org
Cc: ard.biesheuvel@linaro.org
Cc: bhe@redhat.com
Cc: bhelgaas@google.com
Cc: bp@alien8.de
Cc: ccross@android.com
Cc: devicetree@vger.kernel.org
Cc: douly.fnst@cn.fujitsu.com
Cc: dwmw@amazon.co.uk
Cc: dyoung@redhat.com
Cc: ebiederm@xmission.com
Cc: frank.rowand@sony.com
Cc: frowand.list@gmail.com
Cc: ivan.gorinov@intel.com
Cc: jailhouse-dev@googlegroups.com
Cc: jan.kiszka@siemens.com
Cc: jgross@suse.com
Cc: jroedel@suse.de
Cc: keescook@chromium.org
Cc: kexec@lists.infradead.org
Cc: konrad.wilk@oracle.com
Cc: kvm@vger.kernel.org
Cc: linux-efi@vger.kernel.org
Cc: linux-pci@vger.kernel.org
Cc: luto@kernel.org
Cc: m.mizuma@jp.fujitsu.com
Cc: namit@vmware.com
Cc: oleg@redhat.com
Cc: pasha.tatashin@oracle.com
Cc: pbonzini@redhat.com
Cc: prarit@redhat.com
Cc: pravin.shedge4linux@gmail.com
Cc: rajvi.jingar@intel.com
Cc: rkrcmar@redhat.com
Cc: robh+dt@kernel.org
Cc: robh@kernel.org
Cc: rostedt@goodmis.org
Cc: takahiro.akashi@linaro.org
Cc: thomas.lendacky@amd.com
Cc: tony.luck@intel.com
Cc: up2wing@gmail.com
Cc: virtualization@lists.linux-foundation.org
Cc: zhe.he@windriver.com
Cc: zhong.weidong@zte.com.cn
Link: http://lkml.kernel.org/r/1542852249-19820-1-git-send-email-wang.yi59@zte.com.cn
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-11-23 07:59:59 +01:00
Borislav Petkov
f8b64d08dd x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be present
Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're
always present as symbols and not only in the CONFIG_SMP case. Then,
other code using them doesn't need ugly ifdeffery anymore. Get rid of
some ifdeffery.

Signed-off-by: Borislav Petkov <bpetkov@suse.de>
Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com
2018-05-06 12:49:14 +02:00
Linus Torvalds
2451d1e59d Merge branch 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 apic updates from Ingo Molnar:
 "The main x86 APIC/IOAPIC changes in this cycle were:

   - Robustify kexec support to more carefully restore IRQ hardware
     state before calling into kexec/kdump kernels. (Baoquan He)

   - Clean up the local APIC code a bit (Dou Liyang)

   - Remove unused callbacks (David Rientjes)"

* 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  x86/apic: Finish removing unused callbacks
  x86/apic: Drop logical_smp_processor_id() inline
  x86/apic: Modernize the pending interrupt code
  x86/apic: Move pending interrupt check code into it's own function
  x86/apic: Set up through-local-APIC mode on the boot CPU if 'noapic' specified
  x86/apic: Rename variables and functions related to x86_io_apic_ops
  x86/apic: Remove the (now) unused disable_IO_APIC() function
  x86/apic: Fix restoring boot IRQ mode in reboot and kexec/kdump
  x86/apic: Split disable_IO_APIC() into two functions to fix CONFIG_KEXEC_JUMP=y
  x86/apic: Split out restore_boot_irq_mode() from disable_IO_APIC()
  x86/apic: Make setup_local_APIC() static
  x86/apic: Simplify init_bsp_APIC() usage
  x86/x2apic: Mark set_x2apic_phys_mode() as __init
2018-04-02 13:38:43 -07:00
Dou Liyang
8f1561680f x86/apic: Drop logical_smp_processor_id() inline
The logical_smp_processor_id() inline which is only called in
setup_local_APIC() on x86_32 systems has no real value.

Drop it and directly use GET_APIC_LOGICAL_ID() at the call site and use a
more suitable variable name for readability

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Cc: andy.shevchenko@gmail.com
Cc: bhe@redhat.com
Cc: ebiederm@xmission.com
Link: https://lkml.kernel.org/r/20180301055930.2396-4-douly.fnst@cn.fujitsu.com
2018-03-01 10:12:21 +01:00
Prarit Bhargava
63e708f826 x86/xen: Calculate __max_logical_packages on PV domains
The kernel panics on PV domains because native_smp_cpus_done() is
only called for HVM domains.

Calculate __max_logical_packages for PV domains.

Fixes: b4c0a7326f ("x86/smpboot: Fix __max_logical_packages estimate")
Signed-off-by: Prarit Bhargava <prarit@redhat.com>
Tested-and-reported-by: Simon Gaiser <simon@invisiblethingslab.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: x86@kernel.org
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: Juergen Gross <jgross@suse.com>
Cc: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: Prarit Bhargava <prarit@redhat.com>
Cc: Kate Stewart <kstewart@linuxfoundation.org>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: xen-devel@lists.xenproject.org
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Signed-off-by: Juergen Gross <jgross@suse.com>
2018-02-17 09:40:45 +01:00
Greg Kroah-Hartman
b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00
Dou Liyang
7b6e106276 x86/smp: Remove the redundant #ifdef CONFIG_SMP directive
The !CONFIG_X86_LOCAL_APIC section in smp.h wraps the define of
hard_smp_processor_id() into #ifndef CONFIG_SMP. But Kconfig has:

  config X86_LOCAL_APIC
    def_bool y
    depends on X86_64 || SMP || X86_32_NON_STANDARD ...

Therefore SMP can't be 'y' when X86_LOCAL_APIC == 'n'.

Remove the redundant #ifndef CONFIG_SMP.

[ tglx: Massaged changelog ]

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: jaswinder@infradead.org
Link: http://lkml.kernel.org/r/1491734806-15413-2-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-14 22:43:00 +02:00
Dou Liyang
0f08c3b229 x86/smp: Reduce code duplication
The CONFIG_X86_32_SMP and CONFIG_X86_64_SMP sections in smp.h contain
duplicate defines.

Merge them and only put the difference into an #ifdeff'ed section.

[ tglx: Massaged changelog ]

Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com>
Cc: jaswinder@infradead.org
Link: http://lkml.kernel.org/r/1491734806-15413-1-git-send-email-douly.fnst@cn.fujitsu.com
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2017-04-14 22:43:00 +02:00