The thread flag TIF_NEED_FPU_LOAD indicates that the FPU saved state is
valid and should be reloaded when returning to userspace. However, the
kernel will skip doing this if the FPU registers are already valid as
determined by fpregs_state_valid(). The logic embedded there considers
the state valid if two cases are both true:
1: fpu_fpregs_owner_ctx points to the current tasks FPU state
2: the last CPU the registers were live in was the current CPU.
This is usually correct logic. A CPU’s fpu_fpregs_owner_ctx is set to
the current FPU during the fpregs_restore_userregs() operation, so it
indicates that the registers have been restored on this CPU. But this
alone doesn’t preclude that the task hasn’t been rescheduled to a
different CPU, where the registers were modified, and then back to the
current CPU. To verify that this was not the case the logic relies on the
second condition. So the assumption is that if the registers have been
restored, AND they haven’t had the chance to be modified (by being
loaded on another CPU), then they MUST be valid on the current CPU.
Besides the lazy FPU optimizations, the other cases where the FPU
registers might not be valid are when the kernel modifies the FPU register
state or the FPU saved buffer. In this case the operation modifying the
FPU state needs to let the kernel know the correspondence has been
broken. The comment in “arch/x86/kernel/fpu/context.h” has:
/*
...
* If the FPU register state is valid, the kernel can skip restoring the
* FPU state from memory.
*
* Any code that clobbers the FPU registers or updates the in-memory
* FPU state for a task MUST let the rest of the kernel know that the
* FPU registers are no longer valid for this task.
*
* Either one of these invalidation functions is enough. Invalidate
* a resource you control: CPU if using the CPU for something else
* (with preemption disabled), FPU for the current task, or a task that
* is prevented from running by the current task.
*/
However, this is not completely true. When the kernel modifies the
registers or saved FPU state, it can only rely on
__fpu_invalidate_fpregs_state(), which wipes the FPU’s last_cpu
tracking. The exec path instead relies on fpregs_deactivate(), which sets
the CPU’s FPU context to NULL. This was observed to fail to restore the
reset FPU state to the registers when returning to userspace in the
following scenario:
1. A task is executing in userspace on CPU0
- CPU0’s FPU context points to tasks
- fpu->last_cpu=CPU0
2. The task exec()’s
3. While in the kernel the task is preempted
- CPU0 gets a thread executing in the kernel (such that no other
FPU context is activated)
- Scheduler sets task’s fpu->last_cpu=CPU0 when scheduling out
4. Task is migrated to CPU1
5. Continuing the exec(), the task gets to
fpu_flush_thread()->fpu_reset_fpregs()
- Sets CPU1’s fpu context to NULL
- Copies the init state to the task’s FPU buffer
- Sets TIF_NEED_FPU_LOAD on the task
6. The task reschedules back to CPU0 before completing the exec() and
returning to userspace
- During the reschedule, scheduler finds TIF_NEED_FPU_LOAD is set
- Skips saving the registers and updating task’s fpu→last_cpu,
because TIF_NEED_FPU_LOAD is the canonical source.
7. Now CPU0’s FPU context is still pointing to the task’s, and
fpu->last_cpu is still CPU0. So fpregs_state_valid() returns true even
though the reset FPU state has not been restored.
So the root cause is that exec() is doing the wrong kind of invalidate. It
should reset fpu->last_cpu via __fpu_invalidate_fpregs_state(). Further,
fpu__drop() doesn't really seem appropriate as the task (and FPU) are not
going away, they are just getting reset as part of an exec. So switch to
__fpu_invalidate_fpregs_state().
Also, delete the misleading comment that says that either kind of
invalidate will be enough, because it’s not always the case.
Fixes: 33344368cb ("x86/fpu: Clean up the fpu__clear() variants")
Reported-by: Lei Wang <lei4.wang@intel.com>
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Lijun Pan <lijun.pan@intel.com>
Reviewed-by: Sohil Mehta <sohil.mehta@intel.com>
Acked-by: Lijun Pan <lijun.pan@intel.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230818170305.502891-1-rick.p.edgecombe@intel.com
When CONFIG_HYPERV is not set, arch/x86/hyperv/ivm.c is not built (see
arch/x86/Kbuild), so 'isolation_type_en_snp' in the ivm.c is not defined,
and this failure happens:
ld: arch/x86/kernel/cpu/mshyperv.o: in function `ms_hyperv_init_platform':
arch/x86/kernel/cpu/mshyperv.c:417: undefined reference to `isolation_type_en_snp'
Fix the failure by testing hv_get_isolation_type() and
ms_hyperv.paravisor_present for a fully enlightened SNP VM: when
CONFIG_HYPERV is not set, hv_get_isolation_type() is defined as a
static inline function that always returns HV_ISOLATION_TYPE_NONE
(see include/asm-generic/mshyperv.h), so the compiler won't generate any
code for the ms_hyperv.paravisor_present and static_branch_enable().
Reported-by: Tom Lendacky <thomas.lendacky@amd.com>
Closes: https://lore.kernel.org/lkml/b4979997-23b9-0c43-574e-e4a3506500ff@amd.com/
Fixes: d6e2d65244 ("x86/hyperv: Add sev-snp enlightened guest static key")
Signed-off-by: Dexuan Cui <decui@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230823032008.18186-1-decui@microsoft.com
Add Hyperv-specific handling for faults caused by VMMCALL
instructions.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-9-ltykernel@gmail.com
In the AMD SEV-SNP guest, AP needs to be started up via sev es
save area and Hyper-V requires to call HVCALL_START_VP hypercall
to pass the gpa of sev es save area with AP's vp index and VTL(Virtual
trust level) parameters. Override wakeup_secondary_cpu_64 callback
with hv_snp_boot_ap.
Reviewed-by: Dexuan Cui <decui@microsoft.com>
Reviewed-by: Michael Kelley <mikelley@microsoft.com>
Signed-off-by: Tianyu Lan <tiala@microsoft.com>
Signed-off-by: Wei Liu <wei.liu@kernel.org>
Link: https://lore.kernel.org/r/20230818102919.1318039-8-ltykernel@gmail.com
Currently kcov instrument is disabled for object files under
arch/x86/kernel folder.
For object files under arch/x86/kernel, actually just disabling the kcov
instrument of files:"head32.o or head64.o and sev.o" could achieve
successful booting and provide kcov coverage for object files that do not
disable kcov instrument. The additional kcov coverage collected from
arch/x86/kernel folder helps kernel fuzzing efforts to find bugs.
Link to related improvement discussion is below:
https://groups.google.com/g/syzkaller/c/Dsl-RYGCqs8/m/x-tfpTyFBAAJ Related
ticket is as follow: https://bugzilla.kernel.org/show_bug.cgi?id=198443
Link: https://lkml.kernel.org/r/06c0bb7b5f61e5884bf31180e8c122648c752010.1690771380.git.pengfei.xu@intel.com
Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Tested-by: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: Pengfei Xu <pengfei.xu@intel.com>
Cc: Aleksandr Nogikh <nogikh@google.com>
Cc: <heng.su@intel.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Kees Cook <keescook@google.com>,
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Sohil Mehta <sohil.mehta@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The APIs that allow backtracing across CPUs have always had a way to
exclude the current CPU. This convenience means callers didn't need to
find a place to allocate a CPU mask just to handle the common case.
Let's extend the API to take a CPU ID to exclude instead of just a
boolean. This isn't any more complex for the API to handle and allows the
hardlockup detector to exclude a different CPU (the one it already did a
trace for) without needing to find space for a CPU mask.
Arguably, this new API also encourages safer behavior. Specifically if
the caller wants to avoid tracing the current CPU (maybe because they
already traced the current CPU) this makes it more obvious to the caller
that they need to make sure that the current CPU ID can't change.
[akpm@linux-foundation.org: fix trigger_allbutcpu_cpu_backtrace() stub]
Link: https://lkml.kernel.org/r/20230804065935.v4.1.Ia35521b91fc781368945161d7b28538f9996c182@changeid
Signed-off-by: Douglas Anderson <dianders@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: kernel test robot <lkp@intel.com>
Cc: Lecopzer Chen <lecopzer.chen@mediatek.com>
Cc: Petr Mladek <pmladek@suse.com>
Cc: Pingfan Liu <kernelfans@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The Instruction Fetch (IF) units on current AMD Zen-based systems do not
guarantee a synchronous #MC is delivered for poison consumption errors.
Therefore, MCG_STATUS[EIPV|RIPV] will not be set. However, the
microarchitecture does guarantee that the exception is delivered within
the same context. In other words, the exact rIP is not known, but the
context is known to not have changed.
There is no architecturally-defined method to determine this behavior.
The Code Segment (CS) register is always valid on such IF unit poison
errors regardless of the value of MCG_STATUS[EIPV|RIPV].
Add a quirk to save the CS register for poison consumption from the IF
unit banks.
This is needed to properly determine the context of the error.
Otherwise, the severity grading function will assume the context is
IN_KERNEL due to the m->cs value being 0 (the initialized value). This
leads to unnecessary kernel panics on data poison errors due to the
kernel believing the poison consumption occurred in kernel context.
Signed-off-by: Yazen Ghannam <yazen.ghannam@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230814200853.29258-1-yazen.ghannam@amd.com
Specify how is SRSO mitigated when SMT is disabled. Also, correct the
SMT check for that.
Fixes: e9fbc47b81 ("x86/srso: Disable the mitigation on unaffected configurations")
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20230814200813.p5czl47zssuej7nv@treble
The following warning is reported when frame pointers and kernel IBT are
enabled:
vmlinux.o: warning: objtool: ibt_selftest+0x11: sibling call from callable instruction with modified stack frame
The problem is that objtool interprets the indirect branch in
ibt_selftest() as a sibling call, and GCC inserts a (partial) frame
pointer prologue before it:
0000 000000000003f550 <ibt_selftest>:
0000 3f550: f3 0f 1e fa endbr64
0004 3f554: e8 00 00 00 00 call 3f559 <ibt_selftest+0x9> 3f555: R_X86_64_PLT32 __fentry__-0x4
0009 3f559: 55 push %rbp
000a 3f55a: 48 8d 05 02 00 00 00 lea 0x2(%rip),%rax # 3f563 <ibt_selftest_ip>
0011 3f561: ff e0 jmp *%rax
Note the inline asm is missing ASM_CALL_CONSTRAINT, so the 'push %rbp'
happens before the indirect branch and the 'mov %rsp, %rbp' happens
afterwards.
Simplify the generated code and make it easier to understand for both
tools and humans by moving the selftest to proper asm.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/99a7e16b97bda97bf0a04aa141d6241cd8a839a2.1680912949.git.jpoimboe@kernel.org
Christian reported spurious module load crashes after some of Song's
module memory layout patches.
Turns out that if the very last instruction on the very last page of the
module is a 'JMP __x86_return_thunk' then __static_call_fixup() will
trip a fault and die.
And while the module rework made this slightly more likely to happen,
it's always been possible.
Fixes: ee88d363d1 ("x86,static_call: Use alternative RET encoding")
Reported-by: Christian Bricart <christian@bricart.de>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lkml.kernel.org/r/20230816104419.GA982867@hirez.programming.kicks-ass.net
Similar to how it doesn't make sense to have UNTRAIN_RET have two
untrain calls, it also doesn't make sense for VMEXIT to have an extra
IBPB call.
This cures VMEXIT doing potentially unret+IBPB or double IBPB.
Also, the (SEV) VMEXIT case seems to have been overlooked.
Redefine the meaning of the synthetic IBPB flags to:
- ENTRY_IBPB -- issue IBPB on entry (was: entry + VMEXIT)
- IBPB_ON_VMEXIT -- issue IBPB on VMEXIT
And have 'retbleed=ibpb' set *BOTH* feature flags to ensure it retains
the previous behaviour and issues IBPB on entry+VMEXIT.
The new 'srso=ibpb_vmexit' option only sets IBPB_ON_VMEXIT.
Create UNTRAIN_RET_VM specifically for the VMEXIT case, and have that
check IBPB_ON_VMEXIT.
All this avoids having the VMEXIT case having to check both ENTRY_IBPB
and IBPB_ON_VMEXIT and simplifies the alternatives.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.109557833@infradead.org
Since there can only be one active return_thunk, there only needs be
one (matching) untrain_ret. It fundamentally doesn't make sense to
allow multiple untrain_ret at the same time.
Fold all the 3 different untrain methods into a single (temporary)
helper stub.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121149.042774962@infradead.org
Rename the original retbleed return thunk and untrain_ret to
retbleed_return_thunk() and retbleed_untrain_ret().
No functional changes.
Suggested-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.909378169@infradead.org
Use the existing configurable return thunk. There is absolute no
justification for having created this __x86_return_thunk alternative.
To clarify, the whole thing looks like:
Zen3/4 does:
srso_alias_untrain_ret:
nop2
lfence
jmp srso_alias_return_thunk
int3
srso_alias_safe_ret: // aliasses srso_alias_untrain_ret just so
add $8, %rsp
ret
int3
srso_alias_return_thunk:
call srso_alias_safe_ret
ud2
While Zen1/2 does:
srso_untrain_ret:
movabs $foo, %rax
lfence
call srso_safe_ret (jmp srso_return_thunk ?)
int3
srso_safe_ret: // embedded in movabs instruction
add $8,%rsp
ret
int3
srso_return_thunk:
call srso_safe_ret
ud2
While retbleed does:
zen_untrain_ret:
test $0xcc, %bl
lfence
jmp zen_return_thunk
int3
zen_return_thunk: // embedded in the test instruction
ret
int3
Where Zen1/2 flush the BTB entry using the instruction decoder trick
(test,movabs) Zen3/4 use BTB aliasing. SRSO adds a return sequence
(srso_safe_ret()) which forces the function return instruction to
speculate into a trap (UD2). This RET will then mispredict and
execution will continue at the return site read from the top of the
stack.
Pick one of three options at boot (evey function can only ever return
once).
[ bp: Fixup commit message uarch details and add them in a comment in
the code too. Add a comment about the srso_select_mitigation()
dependency on retbleed_select_mitigation(). Add moar ifdeffery for
32-bit builds. Add a dummy srso_untrain_ret_alias() definition for
32-bit alternatives needing the symbol. ]
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.842775684@infradead.org
With MSR_AMD64_SEV_DEBUG_SWAP enabled, the guest is not expected to
receive a #VC for reads or writes of DR7.
Update the SNP_FEATURES_PRESENT mask with MSR_AMD64_SNP_DEBUG_SWAP so
an SNP guest doesn't gracefully terminate during SNP feature negotiation
if MSR_AMD64_SEV_DEBUG_SWAP is enabled.
Since a guest is not expected to receive a #VC on DR7 accesses when
MSR_AMD64_SEV_DEBUG_SWAP is enabled, return an error from the #VC
handler in this situation.
Signed-off-by: Alexey Kardashevskiy <aik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Carlos Bilbao <carlos.bilbao@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Pankaj Gupta <pankaj.gupta@amd.com>
Link: https://lore.kernel.org/r/20230816022122.981998-1-aik@amd.com
There is infrastructure to rewrite return thunks to point to any
random thunk one desires, unwrap that from CALL_THUNKS, which up to
now was the sole user of that.
[ bp: Make the thunks visible on 32-bit and add ifdeffery for the
32-bit builds. ]
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230814121148.775293785@infradead.org
The kprobes optimization check can_optimize() calls
insn_is_indirect_jump() to detect indirect jump instructions in
a target function. If any is found, creating an optprobe is disallowed
in the function because the jump could be from a jump table and could
potentially land in the middle of the target optprobe.
With retpolines, insn_is_indirect_jump() additionally looks for calls to
indirect thunks which the compiler potentially used to replace original
jumps. This extra check is however unnecessary because jump tables are
disabled when the kernel is built with retpolines. The same is currently
the case with IBT.
Based on this observation, remove the logic to look for calls to
indirect thunks and skip the check for indirect jumps altogether if the
kernel is built with retpolines or IBT. Remove subsequently the symbols
__indirect_thunk_start and __indirect_thunk_end which are no longer
needed.
Dropping this logic indirectly fixes a problem where the range
[__indirect_thunk_start, __indirect_thunk_end] wrongly included also the
return thunk. It caused that machines which used the return thunk as
a mitigation and didn't have it patched by any alternative ended up not
being able to use optprobes in any regular function.
Fixes: 0b53c374b9 ("x86/retpoline: Use -mfunction-return")
Suggested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Suggested-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
Link: https://lore.kernel.org/r/20230711091952.27944-3-petr.pavlu@suse.com
The linker script arch/x86/kernel/vmlinux.lds.S matches the thunk
sections ".text.__x86.*" from arch/x86/lib/retpoline.S as follows:
.text {
[...]
TEXT_TEXT
[...]
__indirect_thunk_start = .;
*(.text.__x86.*)
__indirect_thunk_end = .;
[...]
}
Macro TEXT_TEXT references TEXT_MAIN which normally expands to only
".text". However, with CONFIG_LTO_CLANG, TEXT_MAIN becomes
".text .text.[0-9a-zA-Z_]*" which wrongly matches also the thunk
sections. The output layout is then different than expected. For
instance, the currently defined range [__indirect_thunk_start,
__indirect_thunk_end] becomes empty.
Prevent the problem by using ".." as the first separator, for example,
".text..__x86.indirect_thunk". This pattern is utilized by other
explicit section names which start with one of the standard prefixes,
such as ".text" or ".data", and that need to be individually selected in
the linker script.
[ nathan: Fix conflicts with SRSO and fold in fix issue brought up by
Andrew Cooper in post-review:
https://lore.kernel.org/20230803230323.1478869-1-andrew.cooper3@citrix.com ]
Fixes: dc5723b02e ("kbuild: add support for Clang LTO")
Signed-off-by: Petr Pavlu <petr.pavlu@suse.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Nathan Chancellor <nathan@kernel.org>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230711091952.27944-2-petr.pavlu@suse.com
Skip the srso cmd line parsing which is not needed on Zen1/2 with SMT
disabled and with the proper microcode applied (latter should be the
case anyway) as those are not affected.
Fixes: 5a15d83488 ("x86/srso: Tie SBPB bit setting to microcode patch detection")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230813104517.3346-1-bp@alien8.de
Initially, it was thought that doing an innocuous division in the #DE
handler would take care to prevent any leaking of old data from the
divider but by the time the fault is raised, the speculation has already
advanced too far and such data could already have been used by younger
operations.
Therefore, do the innocuous division on every exit to userspace so that
userspace doesn't see any potentially old data from integer divisions in
kernel space.
Do the same before VMRUN too, to protect host data from leaking into the
guest too.
Fixes: 77245f1c3c ("x86/CPU/AMD: Do not leak quotient data after a division by 0")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: <stable@kernel.org>
Link: https://lore.kernel.org/r/20230811213824.10025-1-bp@alien8.de
There is no reason to expose all of this globally. Move everything which is
not required outside of the microcode specific code to local header files
and into the respective source files.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.952876381@linutronix.de
Rename get_datasize() to intel_microcode_get_datasize() and make it an inline.
[ tglx: Make the argument typed and fix up the IFS code ]
Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.894165745@linutronix.de
fe055896c0 ("x86/microcode: Merge the early microcode loader") left this
needlessly public. Git archaeology provided by Borislav.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.834943153@linutronix.de
Currently vendor specific headers are included explicitly when used in
common code. Instead, include the vendor specific headers in
microcode.h, and include that in all usages.
No functional change.
Suggested-by: Boris Petkov <bp@alien8.de>
Signed-off-by: Ashok Raj <ashok.raj@intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.776541545@linutronix.de
There is really no point to have that in the CPUID evaluation code. Move it
into the Intel-specific microcode handling along with the data
structures, defines and helpers required by it. The exports need to stay
for IFS.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.719202319@linutronix.de
In reality CONFIG_MICROCODE is enabled in any reasonable configuration when
Intel or AMD support is enabled. Accommodate to reality.
Suggested-by: Borislav Petkov <bp@alien8.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230812195727.660453052@linutronix.de
leads to an EFI config table ending up unmapped
- Use the correct segment selector in the 32-bit version of getcpu() in
the vDSO
- Make sure vDSO and VVAR regions are placed in the 47-bit VA range even
on 5-level paging systems
- Add models 0x90-0x91 to the range of AMD Zenbleed-affected CPUs
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTXVWMACgkQEsHwGGHe
VUrrpg//f0BFZV4dbANuYAX47A/hhrm8n5KwV9Mjq8JDeG/TumUN/vAK9+n8outO
pLpPOoXRSCSPybXBSmI1ryVwLaDq6BJy0fYyq4kHOvBFXYKodfTNdO8Oec+le3V/
DBGnY6TQ5x1PgWuAUE9WoeGQuTN1d3Dxm0V/pG2LU/qW3mr+GlBXsSKUVjwp9/OW
JPNw1XQDFVuxT+heRLxQONPkdTxkwwKxZBDRwnSSj7chbJ/jSbnX9a5xinwBvMZY
Q6nelt/AMwAgfO2oz38y1tnR0bfd8fM08SUUgoajWWghKemZK5uNAgZZJd4tPNq6
lBonNc6jF9UGohzgQbNOAjfmDomtyxe4JYGl2SnyWcfwFzGANpcSKSbM9H91LMaI
Sh7hKykZQNGmDctbLsxvlPFgIoxWFLK1DfNeM2yQRzlayqDF8CRlDIcWXHEtYOXf
AOZFMJtOJBZjLbSeWIBW278atNG3ONWEb75kqiKRYxsX9QzvwAZYCYZH+NGe6sLO
kkCm7g3NcAItf1qrPNGZd/k9fA/+3RXEWNdjYsmegMvU8vQBPY0w4NVwGtU9LCkq
jspQxnNlVy1ayqr/TQXRhzn5+d7CQ1PLNwVsGh4S+diCEFu2aEdOhrBhS1uaujLv
5iLpmyyh0yO9aHebK/u4cciAvwVB7WuzQqWYIGzdsolrc+lbY54=
=zPFr
-----END PGP SIGNATURE-----
Merge tag 'x86_urgent_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Borislav Petkov:
- Do not parse the confidential computing blob on non-AMD hardware as
it leads to an EFI config table ending up unmapped
- Use the correct segment selector in the 32-bit version of getcpu() in
the vDSO
- Make sure vDSO and VVAR regions are placed in the 47-bit VA range
even on 5-level paging systems
- Add models 0x90-0x91 to the range of AMD Zenbleed-affected CPUs
* tag 'x86_urgent_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/cpu/amd: Enable Zenbleed fix for AMD Custom APU 0405
x86/mm: Fix VDSO and VVAR placement on 5-level paging machines
x86/linkage: Fix typo of BUILD_VDSO in asm/linkage.h
x86/vdso: Choose the right GDT_ENTRY_CPUNODE for 32-bit getcpu() on 64-bit kernel
x86/sev: Do not try to parse for the CC blob on non-AMD hardware
to the SRSO and GDS mitigations code which got postponed to after the
embargo date
- Fix the SRSO aliasing addresses assertion so that the LLVM linker can
parse it too
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmTXULMACgkQEsHwGGHe
VUqAKxAAlGm4YodsbEX+SQTVDLsECBw9lpJ3wU8lD0fBmIAmGiWFy9jqn4FYyAi8
YlKNI8Ru/mME5cM5BBV5ZZ5PNIZPD8OmqbbaHkSjcjLJfdNg03D/RDUPELSyY7T5
HviLaknJFjn6HwvLkSLdBIsAAkVqF5lYitP8x5OgBp6Lc9PO7/xWjSZoVhOUkrFe
Pjc8sT0DgtC2PWkxbB66/uxhdUnFqpioWL+06akeSWuHweIQDQ+P7sxfCB8NZO0u
YV4hmd/JfjoVc0DtvS3HOm14Ruhmru/oiKg/XcJO7uGPBKxuVK8xsHqeUyGMdTeS
+sNXA0XjbvaUV9IihuvVHrX8nMirkW7u0NWMNlJCO9QF5eJPfc0I07VLpKJGEsph
wKSNCN7F64GfjkRGl4jPo26tX+fXGMm32+gGgpqsCYnTBu+nrqprXck4DJQZBNl4
6Le7sfUky2PSllbFh5MnKaylfeWKcqlOzfko7tjWtFm7raOHEGy31m92igKms0hM
IlCyEe6mJUcMJ60QzYwaB9FJ+50jIZXeckRnud/mExgaAGQqe7RcVbwurQCCDtYq
vd4sb9TV9vU07Uqz1NBxmzl6GbYM1ORV9hnlpj/eDnh/ArBzj44UwiGB1bVQ31Iy
OMBJZ+RQtspa12xq7Zu++mjc+9XTeX9JK81PYg6UU+5ogQapdx4=
=P0vQ
-----END PGP SIGNATURE-----
Merge tag 'x86_bugs_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 mitigation fixes from Borislav Petkov:
"The first set of fallout fixes after the embargo madness. There will
be another set next week too.
- A first series of cleanups/unifications and documentation
improvements to the SRSO and GDS mitigations code which got
postponed to after the embargo date
- Fix the SRSO aliasing addresses assertion so that the LLVM linker
can parse it too"
* tag 'x86_bugs_for_v6.5_rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
driver core: cpu: Fix the fallback cpu_show_gds() name
x86: Move gds_ucode_mitigated() declaration to header
x86/speculation: Add cpu_show_gds() prototype
driver core: cpu: Make cpu_show_not_affected() static
x86/srso: Fix build breakage with the LLVM linker
Documentation/srso: Document IBPB aspect and fix formatting
driver core: cpu: Unify redundant silly stubs
Documentation/hw-vuln: Unify filename specification in index
Commit
522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
provided a fix for the Zen2 VZEROUPPER data corruption bug affecting
a range of CPU models, but the AMD Custom APU 0405 found on SteamDeck
was not listed, although it is clearly affected by the vulnerability.
Add this CPU variant to the Zenbleed erratum list, in order to
unconditionally enable the fallback fix until a proper microcode update
is available.
Fixes: 522b1d6921 ("x86/cpu/amd: Add a Zenbleed fix")
Signed-off-by: Cristian Ciocaltea <cristian.ciocaltea@collabora.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/20230811203705.1699914-1-cristian.ciocaltea@collabora.com
Rework the handling of interrupt overrides on AMD Zen-based machines to
avoid recently introduced regressions (Hans de Goede).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmTWgQMSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxaggP/iYft7/0saIW/gQEWUngTdwwYpDdL5c6
cnym9fO7dNvZ7svGgv1oQj3Nge79hWWWKTOVB5F3ZKPEmYHlhAekSYb+SI+/YUcp
fpIyVKO/y8nO+Cnw5t9EoTteJ65WJaadBNTuRUw28j4ETs/4AewWFFXSogzO2IIU
x4UoWPHEXhhjYTnYL+ivRAKJG5iTIbfQS16muO7p2z630FneUYGDvUxx0XuIvbf0
dXVjKi/rxgfozNyL8HmyeDE3LSjG1b7h7h6MS/ZrdM2LoE4V2pp/Z7qtxs53sIeG
Y+dsBZEp8G/YReuMPush31Sgepf6l4OQpjKkq54vRMD6su36IMojMYXayLWHmWK7
RP7n896takZ80tC7GH/pDJUUCoiyvE08/RUxnwg8QPCj5PCMmp2w0/DhhYi1FeFD
4QxYx7UBYGGFy94Bx97LvBVZXM484F8CJnQreXm7csniy0BME5MeV6S6YNjXsXJH
M+O0uwdlk24g4SH7E21jUQl6Ch+YtbcH0LRtivGnC6YkcItWkcNRccph3H27wNHH
jMR43tJsWp6yjXeyWw+vrML9VZ0aK3yyUKPAqcXhC4aIp8DSgVaVuLdRwXHmBqK5
Phx5+7zuxJ4UpOAQb1RtFOCgRAtfNN57QaXJ0hPuOuzopVOWPHjmcuw4fUdW5YCG
esjxuO9VAyQZ
=4kD6
-----END PGP SIGNATURE-----
Merge tag 'acpi-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI fixes from Rafael Wysocki:
"Rework the handling of interrupt overrides on AMD Zen-based machines
to avoid recently introduced regressions (Hans de Goede).
Note that this is intended as a short-term mitigation for 6.5 and the
long-term approach will be to attempt to use the configuration left by
the BIOS, but it requires more investigation"
* tag 'acpi-6.5-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm:
ACPI: resource: Add IRQ override quirk for PCSpecialist Elimina Pro 16 M
ACPI: resource: Honor MADT INT_SRC_OVR settings for IRQ1 on AMD Zen
ACPI: resource: Always use MADT override IRQ settings for all legacy non i8042 IRQs
ACPI: resource: revert "Remove "Zen" specific match and quirks"
Add new PCI Device IDs required to support AMD's new Family 1Ah-based
models 00h-1Fh, 20h and 40h-4Fh.
[ bp: Zap a useless sentence. ]
Co-developed-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Mario Limonciello <mario.limonciello@amd.com>
Signed-off-by: Avadhut Naik <Avadhut.Naik@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20230809035244.2722455-2-avadhut.naik@amd.com
The assertion added to verify the difference in bits set of the
addresses of srso_untrain_ret_alias() and srso_safe_ret_alias() would fail
to link in LLVM's ld.lld linker with the following error:
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:210: at least one side of
the expression must be absolute
ld.lld: error: ./arch/x86/kernel/vmlinux.lds:211: at least one side of
the expression must be absolute
Use ABSOLUTE to evaluate the expression referring to at least one of the
symbols so that LLD can evaluate the linker script.
Also, add linker version info to the comment about XOR being unsupported
in either ld.bfd or ld.lld until somewhat recently.
Fixes: fb3bd914b3 ("x86/srso: Add a Speculative RAS Overflow mitigation")
Closes: https://lore.kernel.org/llvm/CA+G9fYsdUeNu-gwbs0+T6XHi4hYYk=Y9725-wFhZ7gJMspLDRA@mail.gmail.com/
Reported-by: Nathan Chancellor <nathan@kernel.org>
Reported-by: Daniel Kolesa <daniel@octaforge.org>
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Suggested-by: Sven Volkinsfeld <thyrc@gmx.net>
Signed-off-by: Nick Desaulniers <ndesaulniers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://github.com/ClangBuiltLinux/linux/issues/1907
Link: https://lore.kernel.org/r/20230809-gds-v1-1-eaac90b0cbcc@google.com
Alderlake N is an E-core only product using Gracemont
micro-architecture. It fits the pre-existing naming scheme perfectly
fine, adhere to it.
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20230807150405.686834933@infradead.org
On AMD Zen acpi_dev_irq_override() by default prefers the DSDT IRQ 1
settings over the MADT settings.
This causes the keyboard to malfunction on some laptop models
(see Links), all models from the Links have an INT_SRC_OVR MADT entry
for IRQ 1.
Fixes: a9c4a912b7 ("ACPI: resource: Remove "Zen" specific match and quirks")
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217336
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217394
Link: https://bugzilla.kernel.org/show_bug.cgi?id=217406
Cc: All applicable <stable@vger.kernel.org>
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Declare and define the static calls for the hotpath APIC callbacks. Note
this deliberately uses STATIC_CALL_NULL() because otherwise it would be
required to have the definitions in the 32bit and the 64bit default APIC
implementations and it's hard to keep the calls in sync. The other option
would be to have stub functions for each callback type. Not pretty either
So the NULL capable calls are used and filled in during early boot after
the static key infrastructure has been initialized. The calls will be
static_call() except for the wait_irc_idle() callback which is valid to be
NULL for X2APIC systems.
Update the calls when a new APIC driver is installed and when a callback
override is invoked.
Export the trampolines for the two calls which are used in KVM and MCE
error inject modules.
Test the setup and let the next step convert the inline wrappers to make it
effective.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Move them to one place so the static call conversion gets simpler.
No functional change.
[ dhansen: merge against recent x86/apic changes ]
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Convert all places which just assign a new function directly to the apic
callback to use apic_update_callback() which prepares for using static
calls.
Mark snp_set_wakeup_secondary_cpu() and kvm_setup_pv_ipi() __init, as they
are only invoked from init code and otherwise trigger a section mismatch as
they are now invoking a __init function.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Switch them over to apic_update_callback() and remove the code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
There are already two variants of update mechanism for particular callbacks
and virtualization just writes into the data structure.
Provide an interface and use a shadow data structure to preserve callbacks
so they can be reapplied when the APIC driver is replaced.
The extra data structure is intentional as any new callback needs to be
also updated in the core code. This also prepares for static calls.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
In preparation for converting the hotpath APIC callbacks to static keys,
provide common initialization infrastructure.
Lift apic_install_drivers() from probe_64.c and convert all places which
switch the apic instance by storing the pointer to use apic_install_driver()
as a first step.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Yet another wrapper of a wrapper gone along with the outdated comment
that this compiles to a single instruction.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Every callsite hands in the same constants which is a pointless exercise
and cannot be optimized by the compiler due to the indirect calls.
Use the constants in the eoi() callbacks and remove the arguments.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Wei Liu <wei.liu@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
First of all apic_noop can't be probed because it's not registered. So
there is no point for implementing a probe callback. The machine is
rightfully to die when that is invoked.
Remove the gunk and tidy up the other space consuming dummy callbacks.
This gunk should simply die. Nothing should ever invoke APIC callbacks once
this is installed, But that's a differrent story for another round of
cleanups. The comment on top of this file which was intentionally left in
place tells exactly why this is needed: voodoo programming.
In fact the kernel of today should just outright refuse to boot on a system
with no (functional) local APIC. That would spare tons of #ifdeffery and
other nonsense.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)
Wasted space for no value.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Michael Kelley <mikelley@microsoft.com>
Tested-by: Sohil Mehta <sohil.mehta@intel.com>
Tested-by: Juergen Gross <jgross@suse.com> # Xen PV (dom0 and unpriv. guest)