Add the new PCI Device IDs to the MISC IDs list to support new
generation of AMD 1Ah family 70h Models of processors.
[ bp: Massage commit message. ]
Signed-off-by: Shyam Sundar S K <Shyam-sundar.S-k@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240510111829.969501-1-Shyam-sundar.S-k@amd.com
Kbuild conventionally uses $(obj)/ for generated files, and $(src)/ for
checked-in source files. It is merely a convention without any functional
difference. In fact, $(obj) and $(src) are exactly the same, as defined
in scripts/Makefile.build:
src := $(obj)
When the kernel is built in a separate output directory, $(src) does
not accurately reflect the source directory location. While Kbuild
resolves this discrepancy by specifying VPATH=$(srctree) to search for
source files, it does not cover all cases. For example, when adding a
header search path for local headers, -I$(srctree)/$(src) is typically
passed to the compiler.
This introduces inconsistency between upstream and downstream Makefiles
because $(src) is used instead of $(srctree)/$(src) for the latter.
To address this inconsistency, this commit changes the semantics of
$(src) so that it always points to the directory in the source tree.
Going forward, the variables used in Makefiles will have the following
meanings:
$(obj) - directory in the object tree
$(src) - directory in the source tree (changed by this commit)
$(objtree) - the top of the kernel object tree
$(srctree) - the top of the kernel source tree
Consequently, $(srctree)/$(src) in upstream Makefiles need to be replaced
with $(src).
Signed-off-by: Masahiro Yamada <masahiroy@kernel.org>
Reviewed-by: Nicolas Schier <nicolas@fjasle.eu>
With 'iommu=off' on the kernel command line and x2APIC enabled by the BIOS
the code which disables the x2APIC triggers an unchecked MSR access error:
RDMSR from 0x802 at rIP: 0xffffffff94079992 (native_apic_msr_read+0x12/0x50)
This is happens because default_acpi_madt_oem_check() selects an x2APIC
driver before the x2APIC is disabled.
When the x2APIC is disabled because interrupt remapping cannot be enabled
due to 'iommu=off' on the command line, x2apic_disable() invokes
apic_set_fixmap() which in turn tries to read the APIC ID. This triggers
the MSR warning because x2APIC is disabled, but the APIC driver is still
x2APIC based.
Prevent that by adding an argument to apic_set_fixmap() which makes the
APIC ID read out conditional and set it to false from the x2APIC disable
path. That's correct as the APIC ID has already been read out during early
discovery.
Fixes: d10a904435 ("x86/apic: Consolidate boot_cpu_physical_apicid initialization sites")
Reported-by: Adrian Huang <ahuang12@lenovo.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Tested-by: Adrian Huang <ahuang12@lenovo.com>
Cc: stable@vger.kernel.org
Link: https://lore.kernel.org/r/875xw5t6r7.ffs@tglx
Use a common function for checking pending interrupt vector in APIC IRR
instead of duplicated open coding them.
Additional checks for posted MSI vectors can then be contained in this
function.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-10-jacob.jun.pan@linux.intel.com
All MSI vectors are multiplexed into a single notification vector when
posted MSI is enabled. It is the responsibility of the notification vector
handler to demultiplex MSI vectors. In the handler the MSI vector handlers
are dispatched without IDT delivery for each pending MSI interrupt.
For example, the interrupt flow will change as follows:
(3 MSIs of different vectors arrive in a a high frequency burst)
BEFORE:
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
interrupt(MSI)
irq_enter()
handler() /* EOI */
irq_exit()
process_softirq()
AFTER:
interrupt /* Posted MSI notification vector */
irq_enter()
atomic_xchg(PIR)
handler()
handler()
handler()
pi_clear_on()
apic_eoi()
irq_exit()
process_softirq()
Except for the leading MSI, CPU notifications are skipped/coalesced.
For MSIs which arrive at a low frequency, the demultiplexing loop does not
wait for more interrupts to coalesce. Therefore, there's no additional
latency other than the processing time.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-9-jacob.jun.pan@linux.intel.com
Prepare for calling external interrupt handlers directly from the posted
MSI demultiplexing loop. Extract the common code from common_interrupt() to
avoid code duplication.
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-8-jacob.jun.pan@linux.intel.com
To support posted MSIs, create a posted interrupt descriptor (PID) for each
host CPU. Later on, when setting up interrupt affinity, the IOMMU's
interrupt remapping table entry (IRTE) will point to the physical address
of the matching CPU's PID.
Each PID is initialized with the owner CPU's physical APICID as the
destination.
Originally-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Jacob Pan <jacob.jun.pan@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240423174114.526704-7-jacob.jun.pan@linux.intel.com
When the BIOS configures the architectural TSC-adjust MSRs on secondary
sockets to correct a constant inter-chassis offset, after Linux brings the
cores online, the TSC sync check later resets the core-local MSR to 0,
triggering HPET fallback and leading to performance loss.
Fix this by unconditionally using the initial adjust values read from the
MSRs. Trusting the initial offsets in this architectural mechanism is a
better approach than special-casing workarounds for specific platforms.
Signed-off-by: Daniel J Blueman <daniel@quora.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Steffen Persvold <sp@numascale.com>
Reviewed-by: James Cleverdon <james.cleverdon.external@eviden.com>
Reviewed-by: Dimitri Sivanich <sivanich@hpe.com>
Reviewed-by: Prarit Bhargava <prarit@redhat.com>
Link: https://lore.kernel.org/r/20240419085146.175665-1-daniel@quora.org
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181518.41927-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181517.41907-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
[ dhansen: vertically align macro and remove stray subject / ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181516.41887-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
[ bp: Squash two resctrl patches into one. ]
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181514.41848-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181513.41829-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181511.41753-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181510.41733-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181505.41654-1-tony.luck%40intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/all/20240424181504.41634-1-tony.luck%40intel.com
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
Now that the vm_flags is passed into the arch get_unmapped_area()'s, and
vm_unmapped_area() is ready to consider it, have VM_SHADOW_STACK's get
guard gap consideration for scenario 2.
Link: https://lkml.kernel.org/r/20240326021656.202649-14-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
When memory is being placed, mmap() will take care to respect the guard
gaps of certain types of memory (VM_SHADOWSTACK, VM_GROWSUP and
VM_GROWSDOWN). In order to ensure guard gaps between mappings, mmap()
needs to consider two things:
1. That the new mapping isn't placed in an any existing mappings guard
gaps.
2. That the new mapping isn't placed such that any existing mappings
are not in *its* guard gaps.
The longstanding behavior of mmap() is to ensure 1, but not take any care
around 2. So for example, if there is a PAGE_SIZE free area, and a mmap()
with a PAGE_SIZE size, and a type that has a guard gap is being placed,
mmap() may place the shadow stack in the PAGE_SIZE free area. Then the
mapping that is supposed to have a guard gap will not have a gap to the
adjacent VMA.
Add x86 arch implementations of arch_get_unmapped_area_vmflags/_topdown()
so future changes can allow the guard gap of type of vma being placed to
be taken into account. This will be used for shadow stack memory.
Link: https://lkml.kernel.org/r/20240326021656.202649-13-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Future changes will need to add a new member to struct
vm_unmapped_area_info. This would cause trouble for any call site that
doesn't initialize the struct. Currently every caller sets each member
manually, so if new ones are added they will be uninitialized and the core
code parsing the struct will see garbage in the new member.
It could be possible to initialize the new member manually to 0 at each
call site. This and a couple other options were discussed. Having some
struct vm_unmapped_area_info instances not zero initialized will put those
sites at risk of feeding garbage into vm_unmapped_area(), if the
convention is to zero initialize the struct and any new field addition
missed a call site that initializes each field manually. So it is useful
to do things similar across the kernel.
The consensus (see links) was that in general the best way to accomplish
taking into account both code cleanliness and minimizing the chance of
introducing bugs, was to do C99 static initialization. As in: struct
vm_unmapped_area_info info = {};
With this method of initialization, the whole struct will be zero
initialized, and any statements setting fields to zero will be unneeded.
The change should not leave cleanup at the call sides.
While iterating though the possible solutions a few archs kindly acked
other variations that still zero initialized the struct. These sites have
been modified in previous changes using the pattern acked by the
respective arch.
So to be reduce the chance of bugs via uninitialized fields, perform a
tree wide change using the consensus for the best general way to do this
change. Use C99 static initializing to zero the struct and remove and
statements that simply set members to zero.
Link: https://lkml.kernel.org/r/20240326021656.202649-11-rick.p.edgecombe@intel.com
Link: https://lore.kernel.org/lkml/202402280912.33AEE7A9CF@keescook/#t
Link: https://lore.kernel.org/lkml/j7bfvig3gew3qruouxrh7z7ehjjafrgkbcmg6tcghhfh3rhmzi@wzlcoecgy5rs/
Link: https://lore.kernel.org/lkml/ec3e377a-c0a0-4dd3-9cb9-96517e54d17e@csgroup.eu/
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Liam R. Howlett <Liam.Howlett@oracle.com>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
The mm_struct contains a function pointer *get_unmapped_area(), which is
set to either arch_get_unmapped_area() or arch_get_unmapped_area_topdown()
during the initialization of the mm.
Since the function pointer only ever points to two functions that are
named the same across all arch's, a function pointer is not really
required. In addition future changes will want to add versions of the
functions that take additional arguments. So to save a pointers worth of
bytes in mm_struct, and prevent adding additional function pointers to
mm_struct in future changes, remove it and keep the information about
which get_unmapped_area() to use in a flag.
Add the new flag to MMF_INIT_MASK so it doesn't get clobbered on fork by
mmf_init_flags(). Most MM flags get clobbered on fork. In the
pre-existing behavior mm->get_unmapped_area() would get copied to the new
mm in dup_mm(), so not clobbering the flag preserves the existing behavior
around inheriting the topdown-ness.
Introduce a helper, mm_get_unmapped_area(), to easily convert code that
refers to the old function pointer to instead select and call either
arch_get_unmapped_area() or arch_get_unmapped_area_topdown() based on the
flag. Then drop the mm->get_unmapped_area() function pointer. Leave the
get_unmapped_area() pointer in struct file_operations alone. The main
purpose of this change is to reorganize in preparation for future changes,
but it also converts the calls of mm->get_unmapped_area() from indirect
branches into a direct ones.
The stress-ng bigheap benchmark calls realloc a lot, which calls through
get_unmapped_area() in the kernel. On x86, the change yielded a ~1%
improvement there on a retpoline config.
In testing a few x86 configs, removing the pointer unfortunately didn't
result in any actual size reductions in the compiled layout of mm_struct.
But depending on compiler or arch alignment requirements, the change could
shrink the size of mm_struct.
Link: https://lkml.kernel.org/r/20240326021656.202649-3-rick.p.edgecombe@intel.com
Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Acked-by: Liam R. Howlett <Liam.Howlett@oracle.com>
Reviewed-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Acked-by: Alexei Starovoitov <ast@kernel.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Aneesh Kumar K.V <aneesh.kumar@kernel.org>
Cc: Borislav Petkov (AMD) <bp@alien8.de>
Cc: Christophe Leroy <christophe.leroy@csgroup.eu>
Cc: Deepak Gupta <debug@rivosinc.com>
Cc: Guo Ren <guoren@kernel.org>
Cc: Helge Deller <deller@gmx.de>
Cc: H. Peter Anvin (Intel) <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mark Brown <broonie@kernel.org>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Naveen N. Rao <naveen.n.rao@linux.ibm.com>
Cc: Nicholas Piggin <npiggin@gmail.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Patch series "mm/mm_init.c: refactor free_area_init_core()".
In function free_area_init_core(), the code calculating
zone->managed_pages and the subtracting dma_reserve from DMA zone looks
very confusing.
From git history, the code calculating zone->managed_pages was for
zone->present_pages originally. The early rough assignment is for
optimize zone's pcp and water mark setting. Later, managed_pages was
introduced into zone to represent the number of managed pages by buddy.
Now, zone->managed_pages is zeroed out and reset in mem_init() when
calling memblock_free_all(). zone's pcp and wmark setting relying on
actual zone->managed_pages are done later than mem_init() invocation. So
we don't need rush to early calculate and set zone->managed_pages, just
set it as zone->present_pages, will adjust it in mem_init().
And also add a new function calc_nr_kernel_pages() to count up free but
not reserved pages in memblock, then assign it to nr_all_pages and
nr_kernel_pages after memmap pages are allocated.
This patch (of 6):
Variable dma_reserve and its usage was introduced in commit 0e0b864e06
("[PATCH] Account for memmap and optionally the kernel image as holes").
Its original purpose was to accounting for the reserved pages in DMA zone
to make DMA zone's watermarks calculation more accurate on x86.
However, currently there's zone->managed_pages to account for all
available pages for buddy, zone->present_pages to account for all present
physical pages in zone. What is more important, on x86, calculating and
setting the zone->managed_pages is a temporary move, all zone's
managed_pages will be zeroed out and reset to the actual value according
to how many pages are added to buddy allocator in mem_init(). Before
mem_init(), no buddy alloction is requested. And zone's pcp and watermark
setting are all done after mem_init(). So, no need to worry about the DMA
zone's setting accuracy during free_area_init().
Hence, remove memblock_find_dma_reserve() to stop calculating and
setting dma_reserve.
Link: https://lkml.kernel.org/r/20240325145646.1044760-1-bhe@redhat.com
Link: https://lkml.kernel.org/r/20240325145646.1044760-2-bhe@redhat.com
Signed-off-by: Baoquan He <bhe@redhat.com>
Reviewed-by: Mike Rapoport (IBM) <rppt@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
After redefining alloc_pages, all uses of that name are being replaced.
Change the conflicting names to prevent preprocessor from replacing them
when it's not intended.
Link: https://lkml.kernel.org/r/20240321163705.3067592-18-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Kent Overstreet <kent.overstreet@linux.dev>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Ending a struct name with "layout" is a little redundant, so shorten the
snp_secrets_page_layout name to just snp_secrets_page.
No functional change.
[ bp: Rename the local pointer to "secrets" too for more clarity. ]
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/bc8d58302c6ab66c3beeab50cce3ec2c6bd72d6c.1713974291.git.thomas.lendacky@amd.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240424181507.41693-1-tony.luck@intel.com
New CPU #defines encode vendor and family as well as model.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
Link: https://lore.kernel.org/r/20240424181506.41673-1-tony.luck@intel.com
cpu_feature_enabled(X86_FEATURE_OSPKE) does not necessarily reflect
whether CR4.PKE is set on the CPU. In particular, they may differ on
non-BSP CPUs before setup_pku() is executed. In this scenario, RDPKRU
will #UD causing the system to hang.
Fix by checking CR4 for PKE enablement which is always correct for the
current CPU.
The scenario happens by inserting a WARN* before setup_pku() in
identiy_cpu() or some other diagnostic which would lead to calling
__show_regs().
[ bp: Massage commit message. ]
Signed-off-by: David Kaplan <david.kaplan@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/20240421191728.32239-1-bp@kernel.org
In our production environment, after removing monitor groups, those
unused RMIDs get stuck in the limbo list forever because their
llc_occupancy is always larger than the threshold. But the unused RMIDs
can be successfully freed by turning up the threshold.
In order to know how much the threshold should be, perf can be used to
acquire the llc_occupancy of RMIDs in each rdt domain.
Instead of using perf tool to track llc_occupancy and filter the log
manually, it is more convenient for users to use tracepoint to do this
work. So add a new tracepoint that shows the llc_occupancy of busy RMIDs
when scanning the limbo list.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240408092303.26413-3-haifeng.xu@shopee.com
Now only the pseudo-locking part uses tracepoints to do event tracking,
but other parts of resctrl may need new tracepoints. It is unnecessary
to create separate header files and define CREATE_TRACE_POINTS in
different c files which fragments the resctrl tracing.
Therefore, give the resctrl tracepoint header file a generic name to
support its use for tracepoints that are not specific to pseudo-locking.
No functional change.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Haifeng Xu <haifeng.xu@shopee.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Link: https://lore.kernel.org/r/20240408092303.26413-2-haifeng.xu@shopee.com
The per-resource MSR update functions cat_wrmsr(), mba_wrmsr_intel(),
and mba_wrmsr_amd() all take three arguments:
(struct rdt_domain *d, struct msr_param *m, struct rdt_resource *r)
struct msr_param contains pointers to both struct rdt_resource and struct
rdt_domain, thus only struct msr_param is necessary.
Pass struct msr_param as a single parameter. Clean up formatting and
fix some fir tree declaration ordering.
No functional change.
Suggested-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Link: https://lore.kernel.org/r/20240308213846.77075-3-tony.luck@intel.com
reset_all_ctrls() and resctrl_arch_update_domains() use on_each_cpu_mask()
to call rdt_ctrl_update() on potentially one CPU from each domain.
But this means rdt_ctrl_update() needs to figure out which domain to
apply changes to. Doing so requires a search of all domains in a resource,
which can only be done safely if cpus_lock is held. Both callers do hold
this lock, but there isn't a way for a function called on another CPU
via IPI to verify this.
Commit
c0d848fcb0 ("x86/resctrl: Remove lockdep annotation that triggers
false positive")
removed the incorrect assertions.
Add the target domain to the msr_param structure and call
rdt_ctrl_update() for each domain separately using
smp_call_function_single(). This means that rdt_ctrl_update() doesn't
need to search for the domain and get_domain_from_cpu() can safely
assert that the cpus_lock is held since the remaining callers do not use
IPI.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Reinette Chatre <reinette.chatre@intel.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Babu Moger <babu.moger@amd.com>
Tested-by: Maciej Wieczor-Retman <maciej.wieczor-retman@intel.com>
Link: https://lore.kernel.org/r/20240308213846.77075-2-tony.luck@intel.com
Commit a72bbec70d ("crash: hotplug support for kexec_load()")
introduced a new kexec flag, `KEXEC_UPDATE_ELFCOREHDR`. Kexec tool uses
this flag to indicate to the kernel that it is safe to modify the
elfcorehdr of the kdump image loaded using the kexec_load system call.
However, it is possible that architectures may need to update kexec
segments other then elfcorehdr. For example, FDT (Flatten Device Tree)
on PowerPC. Introducing a new kexec flag for every new kexec segment
may not be a good solution. Hence, a generic kexec flag bit,
`KEXEC_CRASH_HOTPLUG_SUPPORT`, is introduced to share the CPU/Memory
hotplug support intent between the kexec tool and the kernel for the
kexec_load system call.
Now we have two kexec flags that enables crash hotplug support for
kexec_load system call. First is KEXEC_UPDATE_ELFCOREHDR (only used in
x86), and second is KEXEC_CRASH_HOTPLUG_SUPPORT (for all architectures).
To simplify the process of finding and reporting the crash hotplug
support the following changes are introduced.
1. Define arch specific function to process the kexec flags and
determine crash hotplug support
2. Rename the @update_elfcorehdr member of struct kimage to
@hotplug_support and populate it for both kexec_load and
kexec_file_load syscalls, because architecture can update more than
one kexec segment
3. Let generic function crash_check_hotplug_support report hotplug
support for loaded kdump image based on value of @hotplug_support
To bring the x86 crash hotplug support in line with the above points,
the following changes have been made:
- Introduce the arch_crash_hotplug_support function to process kexec
flags and determine crash hotplug support
- Remove the arch_crash_hotplug_[cpu|memory]_support functions
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240326055413.186534-3-sourabhjain@linux.ibm.com
In the event of memory hotplug or online/offline events, the crash
memory hotplug notifier `crash_memhp_notifier()` receives a
`memory_notify` object but doesn't forward that object to the
generic and architecture-specific crash hotplug handler.
The `memory_notify` object contains the starting PFN (Page Frame Number)
and the number of pages in the hot-removed memory. This information is
necessary for architectures like PowerPC to update/recreate the kdump
image, specifically `elfcorehdr`.
So update the function signature of `crash_handle_hotplug_event()` and
`arch_crash_handle_hotplug_event()` to accept the `memory_notify` object
as an argument from crash memory hotplug notifier.
Since no such object is available in the case of CPU hotplug event, the
crash CPU hotplug notifier `crash_cpuhp_online()` passes NULL to the
crash hotplug handler.
Signed-off-by: Sourabh Jain <sourabhjain@linux.ibm.com>
Acked-by: Baoquan He <bhe@redhat.com>
Acked-by: Hari Bathini <hbathini@linux.ibm.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
Link: https://msgid.link/20240326055413.186534-2-sourabhjain@linux.ibm.com
The MWAITX and MONITORX instructions generate the same #VC error code as
the MWAIT and MONITOR instructions, respectively. Update the #VC handler
opcode checking to also support the MWAITX and MONITORX opcodes.
Fixes: e3ef461af3 ("x86/sev: Harden #VC instruction emulation somewhat")
Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Link: https://lore.kernel.org/r/453d5a7cfb4b9fe818b6fb67f93ae25468bc9e23.1713793161.git.thomas.lendacky@amd.com
New CPU #defines encode vendor and family as well as model.
Update the example usage comment in arch/x86/kernel/cpu/match.c
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20240416211941.9369-4-tony.luck@intel.com
Fix cpuid_deps[] to list the correct dependencies for GFNI, VAES, and
VPCLMULQDQ. These features don't depend on AVX512, and there exist CPUs
that support these features but not AVX512. GFNI actually doesn't even
depend on AVX.
This prevents GFNI from being unnecessarily disabled if AVX is disabled
to mitigate the GDS vulnerability.
This also prevents all three features from being unnecessarily disabled
if AVX512VL (or its dependency AVX512F) were to be disabled, but it
looks like there isn't any case where this happens anyway.
Fixes: c128dbfa0f ("x86/cpufeatures: Enable new SSE/AVX/AVX512 CPU features")
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/r/20240417060434.47101-1-ebiggers@kernel.org
Confusingly, X86_FEATURE_RETPOLINE doesn't mean retpolines are enabled,
as it also includes the original "AMD retpoline" which isn't a retpoline
at all.
Also replace cpu_feature_enabled() with boot_cpu_has() because this is
before alternatives are patched and cpu_feature_enabled()'s fallback
path is slower than plain old boot_cpu_has().
Fixes: ec9404e40e ("x86/bhi: Add BHI mitigation knob")
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/ad3807424a3953f0323c011a643405619f2a4927.1712944776.git.jpoimboe@kernel.org
per-CPU SEV data is dominantly accessed from their own local CPUs,
so allocate them node-local to improve performance.
Signed-off-by: Li RongQing <lirongqing@baidu.com>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Nikunj A Dadhania <nikunj@amd.com>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Link: https://lore.kernel.org/r/20240412030130.49704-1-lirongqing@baidu.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
There's a new conflict between this commit pending in x86/cpu:
63edbaa48a x86/cpu/topology: Add support for the AMD 0x80000026 leaf
And these fixes in x86/urgent:
c064b536a8 x86/cpu/amd: Make the NODEID_MSR union actually work
1b3108f689 x86/cpu/amd: Make the CPUID 0x80000008 parser correct
Resolve them.
Conflicts:
arch/x86/kernel/cpu/topology_amd.c
Signed-off-by: Ingo Molnar <mingo@kernel.org>
The topology rework missed that early_init_amd() tries to re-enable the
Topology Extensions when the BIOS disabled them.
The new parser is invoked before early_init_amd() so the re-enable attempt
happens too late.
Move it into the AMD specific topology parser code where it belongs.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Link: https://lore.kernel.org/r/878r1j260l.ffs@tglx
A system with NODEID_MSR was reported to crash during early boot without
any output.
The reason is that the union which is used for accessing the bitfields in
the MSR is written wrongly and the resulting executable code accesses the
wrong part of the MSR data.
As a consequence a later division by that value results in 0 and that
result is used for another division as divisor, which obviously does not
work well.
The magic world of C, unions and bitfields:
union {
u64 bita : 3,
bitb : 3;
u64 all;
} x;
x.all = foo();
a = x.bita;
b = x.bitb;
results in the effective executable code of:
a = b = x.bita;
because bita and bitb are treated as union members and therefore both end
up at bit offset 0.
Wrapping the bitfield into an anonymous struct:
union {
struct {
u64 bita : 3,
bitb : 3;
};
u64 all;
} x;
works like expected.
Rework the NODEID_MSR union in exactly that way to cure the problem.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reported-by: Laura Nao <laura.nao@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Laura Nao <laura.nao@collabora.com>
Link: https://lore.kernel.org/r/20240410194311.596282919@linutronix.de
Closes: https://lore.kernel.org/all/20240322175210.124416-1-laura.nao@collabora.com/
CPUID 0x80000008 ECX.cpu_nthreads describes the number of threads in the
package. The parser uses this value to initialize the SMT domain level.
That's wrong because cpu_nthreads does not describe the number of threads
per physical core. So this needs to set the CORE domain level and let the
later parsers set the SMT shift if available.
Preset the SMT domain level with the assumption of one thread per core,
which is correct ifrt here are no other CPUID leafs to parse, and propagate
cpu_nthreads and the core level APIC bitwidth into the CORE domain.
Fixes: f7fb3b2dd9 ("x86/cpu: Provide an AMD/HYGON specific topology parser")
Reported-by: "kernelci.org bot" <bot@kernelci.org>
Reported-by: Laura Nao <laura.nao@collabora.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Laura Nao <laura.nao@collabora.com>
Link: https://lore.kernel.org/r/20240410194311.535206450@linutronix.de
For consistency with the other CONFIG_MITIGATION_* options, replace the
CONFIG_SPECTRE_BHI_{ON,OFF} options with a single
CONFIG_MITIGATION_SPECTRE_BHI option.
[ mingo: Fix ]
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Nikolay Borisov <nik.borisov@suse.com>
Link: https://lore.kernel.org/r/3833812ea63e7fdbe36bf8b932e63f70d18e2a2a.1712813475.git.jpoimboe@kernel.org
Unlike most other mitigations' "auto" options, spectre_bhi=auto only
mitigates newer systems, which is confusing and not particularly useful.
Remove it.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Reviewed-by: Nikolay Borisov <nik.borisov@suse.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Link: https://lore.kernel.org/r/412e9dc87971b622bbbaf64740ebc1f140bff343.1712813475.git.jpoimboe@kernel.org