1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

1038 commits

Author SHA1 Message Date
Michael Roth
cf6d9d2d24 KVM: SEV-ES: Fix svm_get_msr()/svm_set_msr() for KVM_SEV_ES_INIT guests
With commit 27bd5fdc24 ("KVM: SEV-ES: Prevent MSR access post VMSA
encryption"), older VMMs like QEMU 9.0 and older will fail when booting
SEV-ES guests with something like the following error:

  qemu-system-x86_64: error: failed to get MSR 0x174
  qemu-system-x86_64: ../qemu.git/target/i386/kvm/kvm.c:3950: kvm_get_msrs: Assertion `ret == cpu->kvm_msr_buf->nmsrs' failed.

This is because older VMMs that might still call
svm_get_msr()/svm_set_msr() for SEV-ES guests after guest boot even if
those interfaces were essentially just noops because of the vCPU state
being encrypted and stored separately in the VMSA. Now those VMMs will
get an -EINVAL and generally crash.

Newer VMMs that are aware of KVM_SEV_INIT2 however are already aware of
the stricter limitations of what vCPU state can be sync'd during
guest run-time, so newer QEMU for instance will work both for legacy
KVM_SEV_ES_INIT interface as well as KVM_SEV_INIT2.

So when using KVM_SEV_INIT2 it's okay to assume userspace can deal with
-EINVAL, whereas for legacy KVM_SEV_ES_INIT the kernel might be dealing
with either an older VMM and so it needs to assume that returning
-EINVAL might break the VMM.

Address this by only returning -EINVAL if the guest was started with
KVM_SEV_INIT2. Otherwise, just silently return.

Cc: Ravi Bangoria <ravi.bangoria@amd.com>
Cc: Nikunj A Dadhania <nikunj@amd.com>
Reported-by: Srikanth Aithal <sraithal@amd.com>
Closes: https://lore.kernel.org/lkml/37usuu4yu4ok7be2hqexhmcyopluuiqj3k266z4gajc2rcj4yo@eujb23qc3zcm/
Fixes: 27bd5fdc24 ("KVM: SEV-ES: Prevent MSR access post VMSA encryption")
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240604233510.764949-1-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-21 07:11:29 -04:00
Ravi Bangoria
b7e4be0a22 KVM: SEV-ES: Delegate LBR virtualization to the processor
As documented in APM[1], LBR Virtualization must be enabled for SEV-ES
guests. Although KVM currently enforces LBRV for SEV-ES guests, there
are multiple issues with it:

o MSR_IA32_DEBUGCTLMSR is still intercepted. Since MSR_IA32_DEBUGCTLMSR
  interception is used to dynamically toggle LBRV for performance reasons,
  this can be fatal for SEV-ES guests. For ex SEV-ES guest on Zen3:

  [guest ~]# wrmsr 0x1d9 0x4
  KVM: entry failed, hardware error 0xffffffff
  EAX=00000004 EBX=00000000 ECX=000001d9 EDX=00000000

  Fix this by never intercepting MSR_IA32_DEBUGCTLMSR for SEV-ES guests.
  No additional save/restore logic is required since MSR_IA32_DEBUGCTLMSR
  is of swap type A.

o KVM will disable LBRV if userspace sets MSR_IA32_DEBUGCTLMSR before the
  VMSA is encrypted. Fix this by moving LBRV enablement code post VMSA
  encryption.

[1]: AMD64 Architecture Programmer's Manual Pub. 40332, Rev. 4.07 - June
     2023, Vol 2, 15.35.2 Enabling SEV-ES.
     https://bugzilla.kernel.org/attachment.cgi?id=304653

Fixes: 376c6d2850 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Co-developed-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Message-ID: <20240531044644.768-4-ravi.bangoria@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-03 13:07:18 -04:00
Ravi Bangoria
d922056215 KVM: SEV-ES: Disallow SEV-ES guests when X86_FEATURE_LBRV is absent
As documented in APM[1], LBR Virtualization must be enabled for SEV-ES
guests. So, prevent SEV-ES guests when LBRV support is missing.

[1]: AMD64 Architecture Programmer's Manual Pub. 40332, Rev. 4.07 - June
     2023, Vol 2, 15.35.2 Enabling SEV-ES.
     https://bugzilla.kernel.org/attachment.cgi?id=304653

Fixes: 376c6d2850 ("KVM: SVM: Provide support for SEV-ES vCPU creation/loading")
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Message-ID: <20240531044644.768-3-ravi.bangoria@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-03 13:06:48 -04:00
Nikunj A Dadhania
27bd5fdc24 KVM: SEV-ES: Prevent MSR access post VMSA encryption
KVM currently allows userspace to read/write MSRs even after the VMSA is
encrypted. This can cause unintentional issues if MSR access has side-
effects. For ex, while migrating a guest, userspace could attempt to
migrate MSR_IA32_DEBUGCTLMSR and end up unintentionally disabling LBRV on
the target. Fix this by preventing access to those MSRs which are context
switched via the VMSA, once the VMSA is encrypted.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Nikunj A Dadhania <nikunj@amd.com>
Signed-off-by: Ravi Bangoria <ravi.bangoria@amd.com>
Message-ID: <20240531044644.768-2-ravi.bangoria@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-03 13:06:48 -04:00
Sean Christopherson
b4bd556467 KVM: SVM: WARN on vNMI + NMI window iff NMIs are outright masked
When requesting an NMI window, WARN on vNMI support being enabled if and
only if NMIs are actually masked, i.e. if the vCPU is already handling an
NMI.  KVM's ABI for NMIs that arrive simultanesouly (from KVM's point of
view) is to inject one NMI and pend the other.  When using vNMI, KVM pends
the second NMI simply by setting V_NMI_PENDING, and lets the CPU do the
rest (hardware automatically sets V_NMI_BLOCKING when an NMI is injected).

However, if KVM can't immediately inject an NMI, e.g. because the vCPU is
in an STI shadow or is running with GIF=0, then KVM will request an NMI
window and trigger the WARN (but still function correctly).

Whether or not the GIF=0 case makes sense is debatable, as the intent of
KVM's behavior is to provide functionality that is as close to real
hardware as possible.  E.g. if two NMIs are sent in quick succession, the
probability of both NMIs arriving in an STI shadow is infinitesimally low
on real hardware, but significantly larger in a virtual environment, e.g.
if the vCPU is preempted in the STI shadow.  For GIF=0, the argument isn't
as clear cut, because the window where two NMIs can collide is much larger
in bare metal (though still small).

That said, KVM should not have divergent behavior for the GIF=0 case based
on whether or not vNMI support is enabled.  And KVM has allowed
simultaneous NMIs with GIF=0 for over a decade, since commit 7460fb4a34
("KVM: Fix simultaneous NMIs").  I.e. KVM's GIF=0 handling shouldn't be
modified without a *really* good reason to do so, and if KVM's behavior
were to be modified, it should be done irrespective of vNMI support.

Fixes: fa4c027a79 ("KVM: x86: Add support for SVM's Virtual NMI")
Cc: stable@vger.kernel.org
Cc: Santosh Shukla <Santosh.Shukla@amd.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240522021435.1684366-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-23 12:34:44 -04:00
Paolo Bonzini
4232da23d7 Merge tag 'loongarch-kvm-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.10

1. Add ParaVirt IPI support.
2. Add software breakpoint support.
3. Add mmio trace events support.
2024-05-10 13:20:18 -04:00
Paolo Bonzini
bbe10a5cc0 Merge branch 'kvm-sev-es-ghcbv2' into HEAD
While the main additions from GHCB protocol version 1 to version 2
revolve mostly around SEV-SNP support, there are a number of changes
applicable to SEV-ES guests as well. Pluck a handful patches from the
SNP hypervisor patchset for GHCB-related changes that are also applicable
to SEV-ES.  A KVM_SEV_INIT2 field lets userspace can control the maximum
GHCB protocol version advertised to guests and manage compatibility
across kernels/versions.
2024-05-10 13:18:59 -04:00
Michael Roth
4af663c2f6 KVM: SEV: Allow per-guest configuration of GHCB protocol version
The GHCB protocol version may be different from one guest to the next.
Add a field to track it for each KVM instance and extend KVM_SEV_INIT2
to allow it to be configured by userspace.

Now that all SEV-ES support for GHCB protocol version 2 is in place, go
ahead and default to it when creating SEV-ES guests through the new
KVM_SEV_INIT2 interface. Keep the older KVM_SEV_ES_INIT interface
restricted to GHCB protocol version 1.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-5-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:28:05 -04:00
Michael Roth
8d1a36e42b KVM: SEV: Add GHCB handling for termination requests
GHCB version 2 adds support for a GHCB-based termination request that
a guest can issue when it reaches an error state and wishes to inform
the hypervisor that it should be terminated. Implement support for that
similarly to GHCB MSR-based termination requests that are already
available to SEV-ES guests via earlier versions of the GHCB protocol.

See 'Termination Request' in the 'Invoking VMGEXIT' section of the GHCB
specification for more details.

Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-4-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:28:04 -04:00
Brijesh Singh
ae01818398 KVM: SEV: Add GHCB handling for Hypervisor Feature Support requests
Version 2 of the GHCB specification introduced advertisement of features
that are supported by the Hypervisor.

Now that KVM supports version 2 of the GHCB specification, bump the
maximum supported protocol version.

Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-3-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:28:04 -04:00
Tom Lendacky
d916f00316 KVM: SEV: Add support to handle AP reset MSR protocol
Add support for AP Reset Hold being invoked using the GHCB MSR protocol,
available in version 2 of the GHCB specification.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Signed-off-by: Michael Roth <michael.roth@amd.com>
Message-ID: <20240501071048.2208265-2-michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:28:03 -04:00
Sean Christopherson
dee281e4b4 KVM: x86: Move synthetic PFERR_* sanity checks to SVM's #NPF handler
Move the sanity check that hardware never sets bits that collide with KVM-
define synthetic bits from kvm_mmu_page_fault() to npf_interception(),
i.e. make the sanity check #NPF specific.  The legacy #PF path already
WARNs if _any_ of bits 63:32 are set, and the error code that comes from
VMX's EPT Violatation and Misconfig is 100% synthesized (KVM morphs VMX's
EXIT_QUALIFICATION into error code flags).

Add a compile-time assert in the legacy #PF handler to make sure that KVM-
define flags are covered by its existing sanity check on the upper bits.

Opportunistically add a description of PFERR_IMPLICIT_ACCESS, since we
are removing the comment that defined it.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Kai Huang <kai.huang@intel.com>
Reviewed-by: Binbin Wu <binbin.wu@linux.intel.com>
Message-ID: <20240228024147.41573-8-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 11:59:18 -04:00
Paolo Bonzini
a96cb3bf39 Merge x86 bugfixes from Linux 6.9-rc3
Pull fix for SEV-SNP late disable bugs.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-19 09:02:22 -04:00
Paolo Bonzini
1ab157ce57 KVM: SEV: use u64_to_user_ptr throughout
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-12 04:42:25 -04:00
Paolo Bonzini
4dd5ecacb9 KVM: SEV: allow SEV-ES DebugSwap again
The DebugSwap feature of SEV-ES provides a way for confidential guests
to use data breakpoints.  Its status is record in VMSA, and therefore
attestation signatures depend on whether it is enabled or not.  In order
to avoid invalidating the signatures depending on the host machine, it
was disabled by default (see commit 5abf6dceb0, "SEV: disable SEV-ES
DebugSwap by default", 2024-03-09).

However, we now have a new API to create SEV VMs that allows enabling
DebugSwap based on what the user tells KVM to do, and we also changed the
legacy KVM_SEV_ES_INIT API to never enable DebugSwap.  It is therefore
possible to re-enable the feature without breaking compatibility with
kernels that pre-date the introduction of DebugSwap, so go ahead.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-14-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:26 -04:00
Paolo Bonzini
4f5defae70 KVM: SEV: introduce KVM_SEV_INIT2 operation
The idea that no parameter would ever be necessary when enabling SEV or
SEV-ES for a VM was decidedly optimistic.  In fact, in some sense it's
already a parameter whether SEV or SEV-ES is desired.  Another possible
source of variability is the desired set of VMSA features, as that affects
the measurement of the VM's initial state and cannot be changed
arbitrarily by the hypervisor.

Create a new sub-operation for KVM_MEMORY_ENCRYPT_OP that can take a struct,
and put the new op to work by including the VMSA features as a field of the
struct.  The existing KVM_SEV_INIT and KVM_SEV_ES_INIT use the full set of
supported VMSA features for backwards compatibility.

The struct also includes the usual bells and whistles for future
extensibility: a flags field that must be zero for now, and some padding
at the end.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-13-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:25 -04:00
Paolo Bonzini
eb4441864e KVM: SEV: sync FPU and AVX state at LAUNCH_UPDATE_VMSA time
SEV-ES allows passing custom contents for x87, SSE and AVX state into the VMSA.
Allow userspace to do that with the usual KVM_SET_XSAVE API and only mark
FPU contents as confidential after it has been copied and encrypted into
the VMSA.

Since the XSAVE state for AVX is the first, it does not need the
compacted-state handling of get_xsave_addr().  However, there are other
parts of XSAVE state in the VMSA that currently are not handled, and
the validation logic of get_xsave_addr() is pointless to duplicate
in KVM, so move get_xsave_addr() to public FPU API; it is really just
a facility to operate on XSAVE state and does not expose any internal
details of arch/x86/kernel/fpu.

Acked-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-12-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:25 -04:00
Paolo Bonzini
26c44aa9e0 KVM: SEV: define VM types for SEV and SEV-ES
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-11-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:25 -04:00
Paolo Bonzini
4ebb105e6c KVM: SEV: introduce to_kvm_sev_info
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-10-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:24 -04:00
Paolo Bonzini
605bbdc12b KVM: SEV: store VMSA features in kvm_sev_info
Right now, the set of features that are stored in the VMSA upon
initialization is fixed and depends on the module parameters for
kvm-amd.ko.  However, the hypervisor cannot really change it at will
because the feature word has to match between the hypervisor and whatever
computes a measurement of the VMSA for attestation purposes.

Add a field to kvm_sev_info that holds the set of features to be stored
in the VMSA; and query it instead of referring to the module parameters.

Because KVM_SEV_INIT and KVM_SEV_ES_INIT accept no parameters, this
does not yet introduce any functional change, but it paves the way for
an API that allows customization of the features per-VM.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20240209183743.22030-6-pbonzini@redhat.com>
Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:23 -04:00
Paolo Bonzini
ac5c48027b KVM: SEV: publish supported VMSA features
Compute the set of features to be stored in the VMSA when KVM is
initialized; move it from there into kvm_sev_info when SEV is initialized,
and then into the initial VMSA.

The new variable can then be used to return the set of supported features
to userspace, via the KVM_GET_DEVICE_ATTR ioctl.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:22 -04:00
Paolo Bonzini
0d7bf5e5b0 KVM: SVM: Compile sev.c if and only if CONFIG_KVM_AMD_SEV=y
Stop compiling sev.c when CONFIG_KVM_AMD_SEV=n, as the number of #ifdefs
in sev.c is getting ridiculous, and having #ifdefs inside of SEV helpers
is quite confusing.

To minimize #ifdefs in code flows, #ifdef away only the kvm_x86_ops hooks
and the #VMGEXIT handler. Stubs are also restricted to functions that
check sev_enabled and to the destruction functions sev_free_cpu() and
sev_vm_destroy(), where the style of their callers is to leave checks
to the callers.  Most call sites instead rely on dead code elimination
to take care of functions that are guarded with sev_guest() or
sev_es_guest().

Signed-off-by: Sean Christopherson <seanjc@google.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-3-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:21 -04:00
Sean Christopherson
1ff3c89032 KVM: SVM: Invert handling of SEV and SEV_ES feature flags
Leave SEV and SEV_ES '0' in kvm_cpu_caps by default, and instead set them
in sev_set_cpu_caps() if SEV and SEV-ES support are fully enabled.  Aside
from the fact that sev_set_cpu_caps() is wildly misleading when it *clears*
capabilities, this will allow compiling out sev.c without falsely
advertising SEV/SEV-ES support in KVM_GET_SUPPORTED_CPUID.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-2-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:21 -04:00
Sean Christopherson
4367a75887 KVM: SVM: Create a stack frame in __svm_sev_es_vcpu_run()
Now that KVM uses the host save area to context switch RBP, i.e.
preserves RBP for the entirety of __svm_sev_es_vcpu_run(), create a stack
frame using the standared FRAME_{BEGIN,END} macros.

Note, __svm_sev_es_vcpu_run() is subtly not a leaf function as it can call
into ibpb_feature() via UNTRAIN_RET_VM.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:21:10 -07:00
Sean Christopherson
adac42bf42 KVM: SVM: Save/restore args across SEV-ES VMRUN via host save area
Use the host save area to preserve volatile registers that are used in
__svm_sev_es_vcpu_run() to access function parameters after #VMEXIT.
Like saving/restoring non-volatile registers, there's no reason not to
take advantage of hardware restoring registers on #VMEXIT, as doing so
shaves a few instructions and the save area is going to be accessed no
matter what.

Converting all register save/restore code to use the host save area also
make it easier to follow the SEV-ES VMRUN flow in its entirety, as
opposed to having a mix of stack-based versus host save area save/restore.

Add a parameter to RESTORE_HOST_SPEC_CTRL_BODY so that the SEV-ES path
doesn't need to write @spec_ctrl_intercepted to memory just to play nice
with the common macro.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:21:10 -07:00
Sean Christopherson
c92be2fd8e KVM: SVM: Save/restore non-volatile GPRs in SEV-ES VMRUN via host save area
Use the host save area to save/restore non-volatile (callee-saved)
registers in __svm_sev_es_vcpu_run() to take advantage of hardware loading
all registers from the save area on #VMEXIT.  KVM still needs to save the
registers it wants restored, but the loads are handled automatically by
hardware.

Aside from less assembly code, letting hardware do the restoration means
stack frames are preserved for the entirety of __svm_sev_es_vcpu_run().

Opportunistically add a comment to call out why @svm needs to be saved
across VMRUN->#VMEXIT, as it's not easy to decipher that from the macro
hell.

Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Michael Roth <michael.roth@amd.com>
Cc: Alexey Kardashevskiy <aik@amd.com>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:20:29 -07:00
Sean Christopherson
87e8e360a0 KVM: SVM: Clobber RAX instead of RBX when discarding spec_ctrl_intercepted
POP @spec_ctrl_intercepted into RAX instead of RBX when discarding it from
the stack so that __svm_sev_es_vcpu_run() doesn't modify any non-volatile
registers.  __svm_sev_es_vcpu_run() doesn't return a value, and RAX is
already are clobbered multiple times in the #VMEXIT path.

This will allowing using the host save area to save/restore non-volatile
registers in __svm_sev_es_vcpu_run().

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:20:29 -07:00
Sean Christopherson
331282fdb1 KVM: SVM: Drop 32-bit "support" from __svm_sev_es_vcpu_run()
Drop 32-bit "support" from __svm_sev_es_vcpu_run(), as SEV/SEV-ES firmly
64-bit only.  The "support" was purely the result of bad copy+paste from
__svm_vcpu_run(), which in turn was slightly less bad copy+paste from
__vmx_vcpu_run().

Opportunistically convert to unadulterated register accesses so that it's
easier (but still not easy) to follow which registers hold what arguments,
and when.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:20:29 -07:00
Sean Christopherson
7774c8f32e KVM: SVM: Wrap __svm_sev_es_vcpu_run() with #ifdef CONFIG_KVM_AMD_SEV
Compile (and link) __svm_sev_es_vcpu_run() if and only if SEV support is
actually enabled.  This will allow dropping non-existent 32-bit "support"
from __svm_sev_es_vcpu_run() without causing undue confusion.

Intentionally don't provide a stub (but keep the declaration), as any sane
compiler, even with things like KASAN enabled, should eliminate the call
to __svm_sev_es_vcpu_run() since sev_es_guest() unconditionally returns
"false" if CONFIG_KVM_AMD_SEV=n.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:20:28 -07:00
Sean Christopherson
19597a71a0 KVM: SVM: Create a stack frame in __svm_vcpu_run() for unwinding
Unconditionally create a stack frame in __svm_vcpu_run() to play nice with
unwinding via frame pointers, at least until the point where RBP is loaded
with the guest's value.  Don't bother conditioning the code on
CONFIG_FRAME_POINTER=y, as RBP needs to be saved and restored anyways (due
to it being clobbered with the guest's value); omitting the "MOV RSP, RBP"
is not worth the extra #ifdef.

Creating a stack frame will allow removing the OBJECT_FILES_NON_STANDARD
tag from vmenter.S once __svm_sev_es_vcpu_run() is fixed to not stomp all
over RBP for no reason.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240223204233.3337324-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:20:28 -07:00
Christophe JAILLET
4710e4fc3e KVM: SVM: Remove a useless zeroing of allocated memory
Remove KVM's unnecessary zeroing of memory when allocating the pages array
in sev_pin_memory() via __vmalloc(), as the array is only used to hold
kernel pointers.  The kmalloc() path for "small" regions doesn't zero the
array, and if KVM leaks state and/or accesses uninitialized data, then the
kernel has bigger problems.

Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr>
Link: https://lore.kernel.org/r/c7619a3d3cbb36463531a7c73ccbde9db587986c.1710004509.git.christophe.jaillet@wanadoo.fr
[sean: massage changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 10:15:30 -07:00
Ingo Molnar
5f2ca44ed2 Merge branch 'linus' into x86/urgent, to pick up dependent commit
We want to fix:

  0e11073247 ("x86/retpoline: Do the necessary fixup to the Zen3/4 srso return thunk for !SRSO")

So merge in Linus's latest into x86/urgent to have it available.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-04-06 13:00:32 +02:00
Borislav Petkov (AMD)
0ecaefb303 x86/CPU/AMD: Track SNP host status with cc_platform_*()
The host SNP worthiness can determined later, after alternatives have
been patched, in snp_rmptable_init() depending on cmdline options like
iommu=pt which is incompatible with SNP, for example.

Which means that one cannot use X86_FEATURE_SEV_SNP and will need to
have a special flag for that control.

Use that newly added CC_ATTR_HOST_SEV_SNP in the appropriate places.

Move kdump_sev_callback() to its rightful place, while at it.

Fixes: 216d106c7f ("x86/sev: Add SEV-SNP host initialization support")
Signed-off-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Tested-by: Srikanth Aithal <sraithal@amd.com>
Link: https://lore.kernel.org/r/20240327154317.29909-6-bp@alien8.de
2024-04-04 10:40:30 +02:00
Paolo Bonzini
1d55934ed5 KVM SVM changes for 6.9:
- Add support for systems that are configured with SEV and SEV-ES+ enabled,
    but have all ASIDs assigned to SEV-ES+ guests, which effectively makes SEV
    unusuable.  Cleanup ASID handling to make supporting this scenario less
    brittle/ugly.
 
  - Return -EINVAL instead of -EBUSY if userspace attempts to invoke
    KVM_SEV{,ES}_INIT on an SEV+ guest.  The operation is simply invalid, and
    not related to resource contention in any way.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXeMssACgkQOlYIJqCj
 N/3UQg/8D5J0N1jqE6cnPsN3OA733Q+fRkfJd6zLUn5qJ8jqssxeNUiRCCUYIP8b
 ijuUB1/SCphQoIlAmy73+lmLOs2AMtW5Qaephekv4YZlSlsqIbIq12LJ88PGv/Gd
 WO6zxeWnIPh1jLvaHA5bqEg6VC/vyl0enCXaw6o0ll3UubAQ5wcHaYoW0SM28bT3
 mHJJBjElgvV9845y3sZkWYYP4AYAbrhNWVJLYgxZjByCYPHo5h0bffZKzniWxAZQ
 kANkotYJ2mMXAnagmuUvxOBxzSSVn7dYijR6u7eAx5PPodv9mptrFyY0XdGl0o8O
 MexEF4IQRpJN4JhFmC0Wm0Zw42TDq+CSBv2YqHEfnpgN7BYjIqiefx3+DdaQ3fwp
 czd+EVHHqDOklyCpBmOtZAtqSrSNAJn7OJk36Q/SCaEMbmgyE1nCNAZ7CubHpwET
 9jGumcQ2gd+fcw8Ju8ehxD9su7tQun93gIZ5DGGcw3/x0P85V5eWvafjqv5lNnZ+
 5uwHFqt9Bir1Pdk59MyWpIH1YZ//Us3KYe+yApRwyjxMpiilrkYYowvQbu0/3BKo
 0WcIDnTezYlF1EdHBruok/lgmIKm04FrlbxwAGFUFD0ClBSwZCr9K59gczX3v4sq
 giI4lWoHwRN79hM6QioeJcFDzSaxos9hppgcAw0+1fL8RsOPedA=
 =9jK/
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-svm-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM SVM changes for 6.9:

 - Add support for systems that are configured with SEV and SEV-ES+ enabled,
   but have all ASIDs assigned to SEV-ES+ guests, which effectively makes SEV
   unusuable.  Cleanup ASID handling to make supporting this scenario less
   brittle/ugly.

 - Return -EINVAL instead of -EBUSY if userspace attempts to invoke
   KVM_SEV{,ES}_INIT on an SEV+ guest.  The operation is simply invalid, and
   not related to resource contention in any way.
2024-03-18 19:03:26 -04:00
Linus Torvalds
4f712ee0cb S390:
* Changes to FPU handling came in via the main s390 pull request
 
 * Only deliver to the guest the SCLP events that userspace has
   requested.
 
 * More virtual vs physical address fixes (only a cleanup since
   virtual and physical address spaces are currently the same).
 
 * Fix selftests undefined behavior.
 
 x86:
 
 * Fix a restriction that the guest can't program a PMU event whose
   encoding matches an architectural event that isn't included in the
   guest CPUID.  The enumeration of an architectural event only says
   that if a CPU supports an architectural event, then the event can be
   programmed *using the architectural encoding*.  The enumeration does
   NOT say anything about the encoding when the CPU doesn't report support
   the event *in general*.  It might support it, and it might support it
   using the same encoding that made it into the architectural PMU spec.
 
 * Fix a variety of bugs in KVM's emulation of RDPMC (more details on
   individual commits) and add a selftest to verify KVM correctly emulates
   RDMPC, counter availability, and a variety of other PMC-related
   behaviors that depend on guest CPUID and therefore are easier to
   validate with selftests than with custom guests (aka kvm-unit-tests).
 
 * Zero out PMU state on AMD if the virtual PMU is disabled, it does not
   cause any bug but it wastes time in various cases where KVM would check
   if a PMC event needs to be synthesized.
 
 * Optimize triggering of emulated events, with a nice ~10% performance
   improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
   guest.
 
 * Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
 
 * Fix a bug where KVM would report stale/bogus exit qualification information
   when exiting to userspace with an internal error exit code.
 
 * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
 
 * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
 * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB).  KVM
   doesn't support yielding in the middle of processing a zap, and 1GiB
   granularity resulted in multi-millisecond lags that are quite impolite
   for CONFIG_PREEMPT kernels.
 
 * Allocate write-tracking metadata on-demand to avoid the memory overhead when
   a kernel is built with i915 virtualization support but the workloads use
   neither shadow paging nor i915 virtualization.
 
 * Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives.
 
 * Fix the debugregs ABI for 32-bit KVM.
 
 * Rework the "force immediate exit" code so that vendor code ultimately decides
   how and when to force the exit, which allowed some optimization for both
   Intel and AMD.
 
 * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, causing extra unnecessary work.
 
 * Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
 
 * Harden against underflowing the active mmu_notifier invalidation
   count, so that "bad" invalidations (usually due to bugs elsehwere in the
   kernel) are detected earlier and are less likely to hang the kernel.
 
 x86 Xen emulation:
 
 * Overlay pages can now be cached based on host virtual address,
   instead of guest physical addresses.  This removes the need to
   reconfigure and invalidate the cache if the guest changes the
   gpa but the underlying host virtual address remains the same.
 
 * When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.
 
 * Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).
 
 * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.
 
 RISC-V:
 
 * Support exception and interrupt handling in selftests
 
 * New self test for RISC-V architectural timer (Sstc extension)
 
 * New extension support (Ztso, Zacas)
 
 * Support userspace emulation of random number seed CSRs.
 
 ARM:
 
 * Infrastructure for building KVM's trap configuration based on the
   architectural features (or lack thereof) advertised in the VM's ID
   registers
 
 * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
   x86's WC) at stage-2, improving the performance of interacting with
   assigned devices that can tolerate it
 
 * Conversion of KVM's representation of LPIs to an xarray, utilized to
   address serialization some of the serialization on the LPI injection
   path
 
 * Support for _architectural_ VHE-only systems, advertised through the
   absence of FEAT_E2H0 in the CPU's ID register
 
 * Miscellaneous cleanups, fixes, and spelling corrections to KVM and
   selftests
 
 LoongArch:
 
 * Set reserved bits as zero in CPUCFG.
 
 * Start SW timer only when vcpu is blocking.
 
 * Do not restart SW timer when it is expired.
 
 * Remove unnecessary CSR register saving during enter guest.
 
 * Misc cleanups and fixes as usual.
 
 Generic:
 
 * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
   true on all architectures except MIPS (where Kconfig determines the
   available depending on CPU capabilities).  It is replaced either by
   an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
   everywhere else.
 
 * Factor common "select" statements in common code instead of requiring
   each architecture to specify it
 
 * Remove thoroughly obsolete APIs from the uapi headers.
 
 * Move architecture-dependent stuff to uapi/asm/kvm.h
 
 * Always flush the async page fault workqueue when a work item is being
   removed, especially during vCPU destruction, to ensure that there are no
   workers running in KVM code when all references to KVM-the-module are gone,
   i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
 
 * Grab a reference to the VM's mm_struct in the async #PF worker itself instead
   of gifting the worker a reference, so that there's no need to remember
   to *conditionally* clean up after the worker.
 
 Selftests:
 
 * Reduce boilerplate especially when utilize selftest TAP infrastructure.
 
 * Add basic smoke tests for SEV and SEV-ES, along with a pile of library
   support for handling private/encrypted/protected memory.
 
 * Fix benign bugs where tests neglect to close() guest_memfd files.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
 eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
 j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
 Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
 =mqOV
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "S390:

   - Changes to FPU handling came in via the main s390 pull request

   - Only deliver to the guest the SCLP events that userspace has
     requested

   - More virtual vs physical address fixes (only a cleanup since
     virtual and physical address spaces are currently the same)

   - Fix selftests undefined behavior

  x86:

   - Fix a restriction that the guest can't program a PMU event whose
     encoding matches an architectural event that isn't included in the
     guest CPUID. The enumeration of an architectural event only says
     that if a CPU supports an architectural event, then the event can
     be programmed *using the architectural encoding*. The enumeration
     does NOT say anything about the encoding when the CPU doesn't
     report support the event *in general*. It might support it, and it
     might support it using the same encoding that made it into the
     architectural PMU spec

   - Fix a variety of bugs in KVM's emulation of RDPMC (more details on
     individual commits) and add a selftest to verify KVM correctly
     emulates RDMPC, counter availability, and a variety of other
     PMC-related behaviors that depend on guest CPUID and therefore are
     easier to validate with selftests than with custom guests (aka
     kvm-unit-tests)

   - Zero out PMU state on AMD if the virtual PMU is disabled, it does
     not cause any bug but it wastes time in various cases where KVM
     would check if a PMC event needs to be synthesized

   - Optimize triggering of emulated events, with a nice ~10%
     performance improvement in VM-Exit microbenchmarks when a vPMU is
     exposed to the guest

   - Tighten the check for "PMI in guest" to reduce false positives if
     an NMI arrives in the host while KVM is handling an IRQ VM-Exit

   - Fix a bug where KVM would report stale/bogus exit qualification
     information when exiting to userspace with an internal error exit
     code

   - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support

   - Rework TDP MMU root unload, free, and alloc to run with mmu_lock
     held for read, e.g. to avoid serializing vCPUs when userspace
     deletes a memslot

   - Tear down TDP MMU page tables at 4KiB granularity (used to be
     1GiB). KVM doesn't support yielding in the middle of processing a
     zap, and 1GiB granularity resulted in multi-millisecond lags that
     are quite impolite for CONFIG_PREEMPT kernels

   - Allocate write-tracking metadata on-demand to avoid the memory
     overhead when a kernel is built with i915 virtualization support
     but the workloads use neither shadow paging nor i915 virtualization

   - Explicitly initialize a variety of on-stack variables in the
     emulator that triggered KMSAN false positives

   - Fix the debugregs ABI for 32-bit KVM

   - Rework the "force immediate exit" code so that vendor code
     ultimately decides how and when to force the exit, which allowed
     some optimization for both Intel and AMD

   - Fix a long-standing bug where kvm_has_noapic_vcpu could be left
     elevated if vCPU creation ultimately failed, causing extra
     unnecessary work

   - Cleanup the logic for checking if the currently loaded vCPU is
     in-kernel

   - Harden against underflowing the active mmu_notifier invalidation
     count, so that "bad" invalidations (usually due to bugs elsehwere
     in the kernel) are detected earlier and are less likely to hang the
     kernel

  x86 Xen emulation:

   - Overlay pages can now be cached based on host virtual address,
     instead of guest physical addresses. This removes the need to
     reconfigure and invalidate the cache if the guest changes the gpa
     but the underlying host virtual address remains the same

   - When possible, use a single host TSC value when computing the
     deadline for Xen timers in order to improve the accuracy of the
     timer emulation

   - Inject pending upcall events when the vCPU software-enables its
     APIC to fix a bug where an upcall can be lost (and to follow Xen's
     behavior)

   - Fall back to the slow path instead of warning if "fast" IRQ
     delivery of Xen events fails, e.g. if the guest has aliased xAPIC
     IDs

  RISC-V:

   - Support exception and interrupt handling in selftests

   - New self test for RISC-V architectural timer (Sstc extension)

   - New extension support (Ztso, Zacas)

   - Support userspace emulation of random number seed CSRs

  ARM:

   - Infrastructure for building KVM's trap configuration based on the
     architectural features (or lack thereof) advertised in the VM's ID
     registers

   - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
     x86's WC) at stage-2, improving the performance of interacting with
     assigned devices that can tolerate it

   - Conversion of KVM's representation of LPIs to an xarray, utilized
     to address serialization some of the serialization on the LPI
     injection path

   - Support for _architectural_ VHE-only systems, advertised through
     the absence of FEAT_E2H0 in the CPU's ID register

   - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
     selftests

  LoongArch:

   - Set reserved bits as zero in CPUCFG

   - Start SW timer only when vcpu is blocking

   - Do not restart SW timer when it is expired

   - Remove unnecessary CSR register saving during enter guest

   - Misc cleanups and fixes as usual

  Generic:

   - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
     always true on all architectures except MIPS (where Kconfig
     determines the available depending on CPU capabilities). It is
     replaced either by an architecture-dependent symbol for MIPS, and
     IS_ENABLED(CONFIG_KVM) everywhere else

   - Factor common "select" statements in common code instead of
     requiring each architecture to specify it

   - Remove thoroughly obsolete APIs from the uapi headers

   - Move architecture-dependent stuff to uapi/asm/kvm.h

   - Always flush the async page fault workqueue when a work item is
     being removed, especially during vCPU destruction, to ensure that
     there are no workers running in KVM code when all references to
     KVM-the-module are gone, i.e. to prevent a very unlikely
     use-after-free if kvm.ko is unloaded

   - Grab a reference to the VM's mm_struct in the async #PF worker
     itself instead of gifting the worker a reference, so that there's
     no need to remember to *conditionally* clean up after the worker

  Selftests:

   - Reduce boilerplate especially when utilize selftest TAP
     infrastructure

   - Add basic smoke tests for SEV and SEV-ES, along with a pile of
     library support for handling private/encrypted/protected memory

   - Fix benign bugs where tests neglect to close() guest_memfd files"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
  selftests: kvm: remove meaningless assignments in Makefiles
  KVM: riscv: selftests: Add Zacas extension to get-reg-list test
  RISC-V: KVM: Allow Zacas extension for Guest/VM
  KVM: riscv: selftests: Add Ztso extension to get-reg-list test
  RISC-V: KVM: Allow Ztso extension for Guest/VM
  RISC-V: KVM: Forward SEED CSR access to user space
  KVM: riscv: selftests: Add sstc timer test
  KVM: riscv: selftests: Change vcpu_has_ext to a common function
  KVM: riscv: selftests: Add guest helper to get vcpu id
  KVM: riscv: selftests: Add exception handling support
  LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
  LoongArch: KVM: Do not restart SW timer when it is expired
  LoongArch: KVM: Start SW timer only when vcpu is blocking
  LoongArch: KVM: Set reserved bits as zero in CPUCFG
  KVM: selftests: Explicitly close guest_memfd files in some gmem tests
  KVM: x86/xen: fix recursive deadlock in timer injection
  KVM: pfncache: simplify locking and make more self-contained
  KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
  KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
  KVM: x86/xen: improve accuracy of Xen timers
  ...
2024-03-15 13:03:13 -07:00
Linus Torvalds
685d982112 Core x86 changes for v6.9:
- The biggest change is the rework of the percpu code,
   to support the 'Named Address Spaces' GCC feature,
   by Uros Bizjak:
 
    - This allows C code to access GS and FS segment relative
      memory via variables declared with such attributes,
      which allows the compiler to better optimize those accesses
      than the previous inline assembly code.
 
    - The series also includes a number of micro-optimizations
      for various percpu access methods, plus a number of
      cleanups of %gs accesses in assembly code.
 
    - These changes have been exposed to linux-next testing for
      the last ~5 months, with no known regressions in this area.
 
 - Fix/clean up __switch_to()'s broken but accidentally
   working handling of FPU switching - which also generates
   better code.
 
 - Propagate more RIP-relative addressing in assembly code,
   to generate slightly better code.
 
 - Rework the CPU mitigations Kconfig space to be less idiosyncratic,
   to make it easier for distros to follow & maintain these options.
 
 - Rework the x86 idle code to cure RCU violations and
   to clean up the logic.
 
 - Clean up the vDSO Makefile logic.
 
 - Misc cleanups and fixes.
 
 [ Please note that there's a higher number of merge commits in
   this branch (three) than is usual in x86 topic trees. This happened
   due to the long testing lifecycle of the percpu changes that
   involved 3 merge windows, which generated a longer history
   and various interactions with other core x86 changes that we
   felt better about to carry in a single branch. ]
 
 Signed-off-by: Ingo Molnar <mingo@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmXvB0gRHG1pbmdvQGtl
 cm5lbC5vcmcACgkQEnMQ0APhK1jUqRAAqnEQPiabF5acQlHrwviX+cjSobDlqtH5
 9q2AQy9qaEHapzD0XMOxvFye6XIvehGOGxSPvk6CoviSxBND8rb56lvnsEZuLeBV
 Bo5QSIL2x42Zrvo11iPHwgXZfTIusU90sBuKDRFkYBAxY3HK2naMDZe8MAsYCUE9
 nwgHF8DDc/NYiSOXV8kosWoWpNIkoK/STyH5bvTQZMqZcwyZ49AIeP1jGZb/prbC
 e/rbnlrq5Eu6brpM7xo9kELO0Vhd34urV14KrrIpdkmUKytW2KIsyvW8D6fqgDBj
 NSaQLLcz0pCXbhF+8Nqvdh/1coR4L7Ymt08P1rfEjCsQgb/2WnSAGUQuC5JoGzaj
 ngkbFcZllIbD9gNzMQ1n4Aw5TiO+l9zxCqPC/r58Uuvstr+K9QKlwnp2+B3Q73Ft
 rojIJ04NJL6lCHdDgwAjTTks+TD2PT/eBWsDfJ/1pnUWttmv9IjMpnXD5sbHxoiU
 2RGGKnYbxXczYdq/ALYDWM6JXpfnJZcXL3jJi0IDcCSsb92xRvTANYFHnTfyzGfw
 EHkhbF4e4Vy9f6QOkSP3CvW5H26BmZS9DKG0J9Il5R3u2lKdfbb5vmtUmVTqHmAD
 Ulo5cWZjEznlWCAYSI/aIidmBsp9OAEvYd+X7Z5SBIgTfSqV7VWHGt0BfA1heiVv
 F/mednG0gGc=
 =3v4F
 -----END PGP SIGNATURE-----

Merge tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull core x86 updates from Ingo Molnar:

 - The biggest change is the rework of the percpu code, to support the
   'Named Address Spaces' GCC feature, by Uros Bizjak:

      - This allows C code to access GS and FS segment relative memory
        via variables declared with such attributes, which allows the
        compiler to better optimize those accesses than the previous
        inline assembly code.

      - The series also includes a number of micro-optimizations for
        various percpu access methods, plus a number of cleanups of %gs
        accesses in assembly code.

      - These changes have been exposed to linux-next testing for the
        last ~5 months, with no known regressions in this area.

 - Fix/clean up __switch_to()'s broken but accidentally working handling
   of FPU switching - which also generates better code

 - Propagate more RIP-relative addressing in assembly code, to generate
   slightly better code

 - Rework the CPU mitigations Kconfig space to be less idiosyncratic, to
   make it easier for distros to follow & maintain these options

 - Rework the x86 idle code to cure RCU violations and to clean up the
   logic

 - Clean up the vDSO Makefile logic

 - Misc cleanups and fixes

* tag 'x86-core-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (52 commits)
  x86/idle: Select idle routine only once
  x86/idle: Let prefer_mwait_c1_over_halt() return bool
  x86/idle: Cleanup idle_setup()
  x86/idle: Clean up idle selection
  x86/idle: Sanitize X86_BUG_AMD_E400 handling
  sched/idle: Conditionally handle tick broadcast in default_idle_call()
  x86: Increase brk randomness entropy for 64-bit systems
  x86/vdso: Move vDSO to mmap region
  x86/vdso/kbuild: Group non-standard build attributes and primary object file rules together
  x86/vdso: Fix rethunk patching for vdso-image-{32,64}.o
  x86/retpoline: Ensure default return thunk isn't used at runtime
  x86/vdso: Use CONFIG_COMPAT_32 to specify vdso32
  x86/vdso: Use $(addprefix ) instead of $(foreach )
  x86/vdso: Simplify obj-y addition
  x86/vdso: Consolidate targets and clean-files
  x86/bugs: Rename CONFIG_RETHUNK              => CONFIG_MITIGATION_RETHUNK
  x86/bugs: Rename CONFIG_CPU_SRSO             => CONFIG_MITIGATION_SRSO
  x86/bugs: Rename CONFIG_CPU_IBRS_ENTRY       => CONFIG_MITIGATION_IBRS_ENTRY
  x86/bugs: Rename CONFIG_CPU_UNRET_ENTRY      => CONFIG_MITIGATION_UNRET_ENTRY
  x86/bugs: Rename CONFIG_SLS                  => CONFIG_MITIGATION_SLS
  ...
2024-03-11 19:53:15 -07:00
Linus Torvalds
38b334fc76 - Add the x86 part of the SEV-SNP host support. This will allow the
kernel to be used as a KVM hypervisor capable of running SNP (Secure
   Nested Paging) guests. Roughly speaking, SEV-SNP is the ultimate goal
   of the AMD confidential computing side, providing the most
   comprehensive confidential computing environment up to date.
 
   This is the x86 part and there is a KVM part which did not get ready
   in time for the merge window so latter will be forthcoming in the next
   cycle.
 
 - Rework the early code's position-dependent SEV variable references in
   order to allow building the kernel with clang and -fPIE/-fPIC and
   -mcmodel=kernel
 
 - The usual set of fixes, cleanups and improvements all over the place
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmXvH0wACgkQEsHwGGHe
 VUrzmA//VS/n6dhHRnm/nAGngr4PeegkgV1OhyKYFfiZ272rT6P9QvblQrgcY0dc
 Ij1DOhEKlke51pTHvMOQ33B3P4Fuc0mx3dpCLY0up5V26kzQiKCjRKEkC4U1bcw8
 W4GqMejaR89bE14bYibmwpSib9T/uVsV65eM3xf1iF5UvsnoUaTziymDoy+nb43a
 B1pdd5vcl4mBNqXeEvt0qjg+xkMLpWUI9tJDB8mbMl/cnIFGgMZzBaY8oktHSROK
 QpuUnKegOgp1RXpfLbNjmZ2Q4Rkk4MNazzDzWq3EIxaRjXL3Qp507ePK7yeA2qa0
 J3jCBQc9E2j7lfrIkUgNIzOWhMAXM2YH5bvH6UrIcMi1qsWJYDmkp2MF1nUedjdf
 Wj16/pJbeEw1aKKIywJGwsmViSQju158vY3SzXG83U/A/Iz7zZRHFmC/ALoxZptY
 Bi7VhfcOSpz98PE3axnG8CvvxRDWMfzBr2FY1VmQbg6VBNo1Xl1aP/IH1I8iQNKg
 /laBYl/qP+1286TygF1lthYROb1lfEIJprgi2xfO6jVYUqPb7/zq2sm78qZRfm7l
 25PN/oHnuidfVfI/H3hzcGubjOG9Zwra8WWYBB2EEmelf21rT0OLqq+eS4T6pxFb
 GNVfc0AzG77UmqbrpkAMuPqL7LrGaSee4NdU3hkEdSphlx1/YTo=
 =c1ps
 -----END PGP SIGNATURE-----

Merge tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 SEV updates from Borislav Petkov:

 - Add the x86 part of the SEV-SNP host support.

   This will allow the kernel to be used as a KVM hypervisor capable of
   running SNP (Secure Nested Paging) guests. Roughly speaking, SEV-SNP
   is the ultimate goal of the AMD confidential computing side,
   providing the most comprehensive confidential computing environment
   up to date.

   This is the x86 part and there is a KVM part which did not get ready
   in time for the merge window so latter will be forthcoming in the
   next cycle.

 - Rework the early code's position-dependent SEV variable references in
   order to allow building the kernel with clang and -fPIE/-fPIC and
   -mcmodel=kernel

 - The usual set of fixes, cleanups and improvements all over the place

* tag 'x86_sev_for_v6.9_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (36 commits)
  x86/sev: Disable KMSAN for memory encryption TUs
  x86/sev: Dump SEV_STATUS
  crypto: ccp - Have it depend on AMD_IOMMU
  iommu/amd: Fix failure return from snp_lookup_rmpentry()
  x86/sev: Fix position dependent variable references in startup code
  crypto: ccp: Make snp_range_list static
  x86/Kconfig: Remove CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT
  Documentation: virt: Fix up pre-formatted text block for SEV ioctls
  crypto: ccp: Add the SNP_SET_CONFIG command
  crypto: ccp: Add the SNP_COMMIT command
  crypto: ccp: Add the SNP_PLATFORM_STATUS command
  x86/cpufeatures: Enable/unmask SEV-SNP CPU feature
  KVM: SEV: Make AVIC backing, VMSA and VMCB memory allocation SNP safe
  crypto: ccp: Add panic notifier for SEV/SNP firmware shutdown on kdump
  iommu/amd: Clean up RMP entries for IOMMU pages during SNP shutdown
  crypto: ccp: Handle legacy SEV commands when SNP is enabled
  crypto: ccp: Handle non-volatile INIT_EX data when SNP is enabled
  crypto: ccp: Handle the legacy TMR allocation when SNP is enabled
  x86/sev: Introduce an SNP leaked pages list
  crypto: ccp: Provide an API to issue SEV and SNP commands
  ...
2024-03-11 17:44:11 -07:00
Paolo Bonzini
e9025cdd8c KVM x86 PMU changes for 6.9:
- Fix several bugs where KVM speciously prevents the guest from utilizing
    fixed counters and architectural event encodings based on whether or not
    guest CPUID reports support for the _architectural_ encoding.
 
  - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
    priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
 
  - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
    and a variety of other PMC-related behaviors that depend on guest CPUID,
    i.e. are difficult to validate via KVM-Unit-Tests.
 
  - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
    cycles, e.g. when checking if a PMC event needs to be synthesized when
    skipping an instruction.
 
  - Optimize triggering of emulated events, e.g. for "count instructions" events
    when skipping an instruction, which yields a ~10% performance improvement in
    VM-Exit microbenchmarks when a vPMU is exposed to the guest.
 
  - Tighten the check for "PMI in guest" to reduce false positives if an NMI
    arrives in the host while KVM is handling an IRQ VM-Exit.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUFQACgkQOlYIJqCj
 N/11dhAAnr9e6mPmXvaH4YKcvOGgTmwIQdi5W4IBzGm27ErEb0Vyskx3UATRhRm+
 gZyp3wNgEA9LeifICDNu4ypn7HZcl2VtRql6FYcB8Bcu8OiHfU8PhWL0/qrpY20e
 zffUj2tDweq2ft9Iks1SQJD0sxFkcXIcSKOffP7pRZJHFTKLltGORXwxzd9HJHPY
 nc4nERKegK2yH4A4gY6nZ0oV5L3OMUNHx815db5Y+HxXOIjBCjTQiNNd6mUdyX1N
 C5sIiElXLdvRTSDvirHfA32LqNwnajDGox4QKZkB3wszCxJ3kRd4OCkTEKMYKHxd
 KoKCJQnAdJFFW9xqbT8nNKXZ+hg2+ZQuoSaBuwKryf7jWi0e6a7jcV0OH+cQSZw7
 UNudKhs3r4ambfvnFp2IVZlZREMDB+LAjo2So48Jn/JGCAzqte3XqwVKskn9pS9S
 qeauXCdOLioZALYtTBl8RM1rEY5mbwQrpPv9CzbeU09qQ/hpXV14W9GmbyeOZcI1
 T1cYgEqlLuifRluwT/hxrY321+4noF116gSK1yb07x/sJU8/lhRooEk9V562066E
 qo6nIvc7Bv9gTGLwo6VReKSPcTT/6t3HwgPsRjqe+evso3EFN9f9hG+uPxtO6TUj
 pdPm3mkj2KfxDdJLf+Ys16gyGdiwI0ZImIkA0uLdM0zftNsrb4Y=
 =vayI
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-pmu-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 PMU changes for 6.9:

 - Fix several bugs where KVM speciously prevents the guest from utilizing
   fixed counters and architectural event encodings based on whether or not
   guest CPUID reports support for the _architectural_ encoding.

 - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
   priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.

 - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
   and a variety of other PMC-related behaviors that depend on guest CPUID,
   i.e. are difficult to validate via KVM-Unit-Tests.

 - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
   cycles, e.g. when checking if a PMC event needs to be synthesized when
   skipping an instruction.

 - Optimize triggering of emulated events, e.g. for "count instructions" events
   when skipping an instruction, which yields a ~10% performance improvement in
   VM-Exit microbenchmarks when a vPMU is exposed to the guest.

 - Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
2024-03-11 10:41:09 -04:00
Paolo Bonzini
c9cd0beae9 KVM x86 misc changes for 6.9:
- Explicitly initialize a variety of on-stack variables in the emulator that
    triggered KMSAN false positives (though in fairness in KMSAN, it's comically
    difficult to see that the uninitialized memory is never truly consumed).
 
  - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
    DR6 and DR7.
 
  - Rework the "force immediate exit" code so that vendor code ultimately
    decides how and when to force the exit.  This allows VMX to further optimize
    handling preemption timer exits, and allows SVM to avoid sending a duplicate
    IPI (SVM also has a need to force an exit).
 
  - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
    vCPU creation ultimately failed, and add WARN to guard against similar bugs.
 
  - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
    (for directed yield), and simplify the logic for checking if the currently
    loaded vCPU is in-kernel.
 
  - Misc cleanups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrRjQACgkQOlYIJqCj
 N/2Dzw//b+ptSBAl1kGBRmk/DqsX7J9ZkQYCQOTeh1vXiUM+XRTSQoArN0Oo1roy
 3wcEnQ0beVw7jMuzZ8UUuTfU8WUMja/kwltnqXYNHwLnb6yH0I/BIengXWdUdAMc
 FmgPZ4qJR2IzKYzvDsc3eEQ515O8UHWakyVDnmLBtiakAeBcUTYceHpEEPpzE5y5
 ODASTQKM9o/h8R8JwKFTJ8/mrOLNcsu5SycwFdnmubLJCrNWtJWTijA6y1lh6shn
 hbEJex+ESoC2v8p7IP53u1SGJubVlPajt+RkYJtlEI3WVsevp024eYcF4nb1OjXi
 qS2Y3W7DQGWvyCBoSzoMY+9nRMgyOOpHYetdiz+9oZOmnjiYWY0ku59U7Gv+Aotj
 AUbCn4Ry/OpqsuZ7Oo7i3IT8R7uzsTeNNdxhYBn1OQquBEZ0KBYXlZkGfTk9K0t0
 Fhka/5Zu6fBlg5J+zCyaXUGmsGWBo/9HxsC5z1JuKo8fatro5qyqYE5KiM01dkqc
 6FET6gL+fFprC5c67JGRPdEtk6F9Emb+6oiTTA8/8q8JQQAKiJKk95Nlq7KzPfVS
 A5RQPTuTJ7acE/5CY4zB1DdxCjqgnonBEA2ULnA/J10Rk8orHJRnGJcEwKEyDrZh
 HpsxIIqt++i8KffORpCym6zSAVYuQjn1mu7MGth+zuCqhcEpBfc=
 =GX0O
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.9:

 - Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives (though in fairness in KMSAN, it's comically
   difficult to see that the uninitialized memory is never truly consumed).

 - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
   DR6 and DR7.

 - Rework the "force immediate exit" code so that vendor code ultimately
   decides how and when to force the exit.  This allows VMX to further optimize
   handling preemption timer exits, and allows SVM to avoid sending a duplicate
   IPI (SVM also has a need to force an exit).

 - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, and add WARN to guard against similar bugs.

 - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
   (for directed yield), and simplify the logic for checking if the currently
   loaded vCPU is in-kernel.

 - Misc cleanups and fixes.
2024-03-11 10:24:56 -04:00
Paolo Bonzini
5abf6dceb0 SEV: disable SEV-ES DebugSwap by default
The DebugSwap feature of SEV-ES provides a way for confidential guests to use
data breakpoints.  However, because the status of the DebugSwap feature is
recorded in the VMSA, enabling it by default invalidates the attestation
signatures.  In 6.10 we will introduce a new API to create SEV VMs that
will allow enabling DebugSwap based on what the user tells KVM to do.
Contextually, we will change the legacy KVM_SEV_ES_INIT API to never
enable DebugSwap.

For compatibility with kernels that pre-date the introduction of DebugSwap,
as well as with those where KVM_SEV_ES_INIT will never enable it, do not enable
the feature by default.  If anybody wants to use it, for now they can enable
the sev_es_debug_swap_enabled module parameter, but this will result in a
warning.

Fixes: d1f85fbe83 ("KVM: SEV: Enable data breakpoints in SEV-ES")
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-03-09 11:42:25 -05:00
Sean Christopherson
5ef1d8c1dd KVM: SVM: Flush pages under kvm->lock to fix UAF in svm_register_enc_region()
Do the cache flush of converted pages in svm_register_enc_region() before
dropping kvm->lock to fix use-after-free issues where region and/or its
array of pages could be freed by a different task, e.g. if userspace has
__unregister_enc_region_locked() already queued up for the region.

Note, the "obvious" alternative of using local variables doesn't fully
resolve the bug, as region->pages is also dynamically allocated.  I.e. the
region structure itself would be fine, but region->pages could be freed.

Flushing multiple pages under kvm->lock is unfortunate, but the entire
flow is a rare slow path, and the manual flush is only needed on CPUs that
lack coherency for encrypted memory.

Fixes: 19a23da539 ("Fix unsynchronized access to sev members through svm_register_enc_region")
Reported-by: Gabe Kirkpatrick <gkirkpatrick@google.com>
Cc: Josh Eads <josheads@google.com>
Cc: Peter Gonda <pgonda@google.com>
Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20240217013430.2079561-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-02-23 03:55:59 -05:00
Sean Christopherson
0ec3d6d1f1 KVM: x86: Fully defer to vendor code to decide how to force immediate exit
Now that vmx->req_immediate_exit is used only in the scope of
vmx_vcpu_run(), use force_immediate_exit to detect that KVM should usurp
the VMX preemption to force a VM-Exit and let vendor code fully handle
forcing a VM-Exit.

Opportunsitically drop __kvm_request_immediate_exit() and just have
vendor code call smp_send_reschedule() directly.  SVM already does this
when injecting an event while also trying to single-step an IRET, i.e.
it's not exactly secret knowledge that KVM uses a reschedule IPI to force
an exit.

Link: https://lore.kernel.org/r/20240110012705.506918-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:22:41 -08:00
Sean Christopherson
bf1a49436e KVM: x86: Move handling of is_guest_mode() into fastpath exit handlers
Let the fastpath code decide which exits can/can't be handled in the
fastpath when L2 is active, e.g. when KVM generates a VMX preemption
timer exit to forcefully regain control, there is no "work" to be done and
so such exits can be handled in the fastpath regardless of whether L1 or
L2 is active.

Moving the is_guest_mode() check into the fastpath code also makes it
easier to see that L2 isn't allowed to use the fastpath in most cases,
e.g. it's not immediately obvious why handle_fastpath_preemption_timer()
is called from the fastpath and the normal path.

Link: https://lore.kernel.org/r/20240110012705.506918-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:22:36 -08:00
Sean Christopherson
9c9025ea00 KVM: x86: Plumb "force_immediate_exit" into kvm_entry() tracepoint
Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is
forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to
inject an event but needs to first complete some other operation.
Knowing that KVM is (or isn't) forcing an exit is useful information when
debugging issues related to event injection.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:22:36 -08:00
Sean Christopherson
fc5375dd8c KVM: x86: Make kvm_get_dr() return a value, not use an out parameter
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.

No functional change intended.

Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:14:47 -08:00
Ingo Molnar
4589f199eb Merge branch 'x86/bugs' into x86/core, to pick up pending changes before dependent patches
Merge in pending alternatives patching infrastructure changes, before
applying more patches.

Signed-off-by: Ingo Molnar <mingo@kernel.org>
2024-02-14 10:49:37 +01:00
Linus Torvalds
4356e9f841 work around gcc bugs with 'asm goto' with outputs
We've had issues with gcc and 'asm goto' before, and we created a
'asm_volatile_goto()' macro for that in the past: see commits
3f0116c323 ("compiler/gcc4: Add quirk for 'asm goto' miscompilation
bug") and a9f180345f ("compiler/gcc4: Make quirk for
asm_volatile_goto() unconditional").

Then, much later, we ended up removing the workaround in commit
43c249ea0b ("compiler-gcc.h: remove ancient workaround for gcc PR
58670") because we no longer supported building the kernel with the
affected gcc versions, but we left the macro uses around.

Now, Sean Christopherson reports a new version of a very similar
problem, which is fixed by re-applying that ancient workaround.  But the
problem in question is limited to only the 'asm goto with outputs'
cases, so instead of re-introducing the old workaround as-is, let's
rename and limit the workaround to just that much less common case.

It looks like there are at least two separate issues that all hit in
this area:

 (a) some versions of gcc don't mark the asm goto as 'volatile' when it
     has outputs:

        https://gcc.gnu.org/bugzilla/show_bug.cgi?id=98619
        https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110420

     which is easy to work around by just adding the 'volatile' by hand.

 (b) Internal compiler errors:

        https://gcc.gnu.org/bugzilla/show_bug.cgi?id=110422

     which are worked around by adding the extra empty 'asm' as a
     barrier, as in the original workaround.

but the problem Sean sees may be a third thing since it involves bad
code generation (not an ICE) even with the manually added 'volatile'.

but the same old workaround works for this case, even if this feels a
bit like voodoo programming and may only be hiding the issue.

Reported-and-tested-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/all/20240208220604.140859-1-seanjc@google.com/
Cc: Nick Desaulniers <ndesaulniers@google.com>
Cc: Uros Bizjak <ubizjak@gmail.com>
Cc: Jakub Jelinek <jakub@redhat.com>
Cc: Andrew Pinski <quic_apinski@quicinc.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-02-09 15:57:48 -08:00
Sean Christopherson
fdd58834d1 KVM: SVM: Return -EINVAL instead of -EBUSY on attempt to re-init SEV/SEV-ES
Return -EINVAL instead of -EBUSY if userspace attempts KVM_SEV{,ES}_INIT
on a VM that already has SEV active.  Returning -EBUSY is nonsencial as
it's impossible to deactivate SEV without destroying the VM, i.e. the VM
isn't "busy" in any sane sense of the word, and the odds of any userspace
wanting exactly -EBUSY on a userspace bug are minuscule.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240131235609.4161407-5-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-06 11:10:12 -08:00
Ashish Kalra
0aa6b90ef9 KVM: SVM: Add support for allowing zero SEV ASIDs
Some BIOSes allow the end user to set the minimum SEV ASID value
(CPUID 0x8000001F_EDX) to be greater than the maximum number of
encrypted guests, or maximum SEV ASID value (CPUID 0x8000001F_ECX)
in order to dedicate all the SEV ASIDs to SEV-ES or SEV-SNP.

The SEV support, as coded, does not handle the case where the minimum
SEV ASID value can be greater than the maximum SEV ASID value.
As a result, the following confusing message is issued:

[   30.715724] kvm_amd: SEV enabled (ASIDs 1007 - 1006)

Fix the support to properly handle this case.

Fixes: 916391a2d1 ("KVM: SVM: Add support for SEV-ES capability in KVM")
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Ashish Kalra <ashish.kalra@amd.com>
Cc: stable@vger.kernel.org
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240104190520.62510-1-Ashish.Kalra@amd.com
Link: https://lore.kernel.org/r/20240131235609.4161407-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-06 11:10:11 -08:00
Sean Christopherson
466eec4a22 KVM: SVM: Use unsigned integers when dealing with ASIDs
Convert all local ASID variables and parameters throughout the SEV code
from signed integers to unsigned integers.  As ASIDs are fundamentally
unsigned values, and the global min/max variables are appropriately
unsigned integers, too.

Functionally, this is a glorified nop as KVM guarantees min_sev_asid is
non-zero, and no CPU supports -1u as the _only_ asid, i.e. the signed vs.
unsigned goof won't cause problems in practice.

Opportunistically use sev_get_asid() in sev_flush_encrypted_page() instead
of open coding an equivalent.

Reviewed-by: Tom Lendacky <thomas.lendacky@amd.com>
Link: https://lore.kernel.org/r/20240131235609.4161407-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-06 11:09:34 -08:00