1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

2868 commits

Author SHA1 Message Date
Sean Christopherson
f3ced000a2 KVM: x86: Always sync PIR to IRR prior to scanning I/O APIC routes
Sync pending posted interrupts to the IRR prior to re-scanning I/O APIC
routes, irrespective of whether the I/O APIC is emulated by userspace or
by KVM.  If a level-triggered interrupt routed through the I/O APIC is
pending or in-service for a vCPU, KVM needs to intercept EOIs on said
vCPU even if the vCPU isn't the destination for the new routing, e.g. if
servicing an interrupt using the old routing races with I/O APIC
reconfiguration.

Commit fceb3a36c2 ("KVM: x86: ioapic: Fix level-triggered EOI and
userspace I/OAPIC reconfigure race") fixed the common cases, but
kvm_apic_pending_eoi() only checks if an interrupt is in the local
APIC's IRR or ISR, i.e. misses the uncommon case where an interrupt is
pending in the PIR.

Failure to intercept EOI can manifest as guest hangs with Windows 11 if
the guest uses the RTC as its timekeeping source, e.g. if the VMM doesn't
expose a more modern form of time to the guest.

Cc: stable@vger.kernel.org
Cc: Adamos Ttofari <attofari@amazon.de>
Cc: Raghavendra Rao Ananta <rananta@google.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240611014845.82795-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-20 14:18:02 -04:00
Sean Christopherson
89a58812c4 KVM: x86: Drop support for hand tuning APIC timer advancement from userspace
Remove support for specifying a static local APIC timer advancement value,
and instead present a read-only boolean parameter to let userspace enable
or disable KVM's dynamic APIC timer advancement.  Realistically, it's all
but impossible for userspace to specify an advancement that is more
precise than what KVM's adaptive tuning can provide.  E.g. a static value
needs to be tuned for the exact hardware and kernel, and if KVM is using
hrtimers, likely requires additional tuning for the exact configuration of
the entire system.

Dropping support for a userspace provided value also fixes several flaws
in the interface.  E.g. KVM interprets a negative value other than -1 as a
large advancement, toggling between a negative and positive value yields
unpredictable behavior as vCPUs will switch from dynamic to static
advancement, changing the advancement in the middle of VM creation can
result in different values for vCPUs within a VM, etc.  Those flaws are
mostly fixable, but there's almost no justification for taking on yet more
complexity (it's minimal complexity, but still non-zero).

The only arguments against using KVM's adaptive tuning is if a setup needs
a higher maximum, or if the adjustments are too reactive, but those are
arguments for letting userspace control the absolute max advancement and
the granularity of each adjustment, e.g. similar to how KVM provides knobs
for halt polling.

Link: https://lore.kernel.org/all/20240520115334.852510-1-zhoushuling@huawei.com
Cc: Shuling Zhou <zhoushuling@huawei.com>
Cc: Marcelo Tosatti <mtosatti@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240522010304.1650603-1-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-06-03 13:08:05 -04:00
Paolo Bonzini
7d41e24da2 KVM x86 misc changes for 6.10:
- Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which
    is unused by hardware, so that KVM can communicate its inability to map GPAs
    that set bits 51:48 due to lack of 5-level paging.  Guest firmware is
    expected to use the information to safely remap BARs in the uppermost GPA
    space, i.e to avoid placing a BAR at a legal, but unmappable, GPA.
 
  - Use vfree() instead of kvfree() for allocations that always use vcalloc()
    or __vcalloc().
 
  - Don't completely ignore same-value writes to immutable feature MSRs, as
    doing so results in KVM failing to reject accesses to MSR that aren't
    supposed to exist given the vCPU model and/or KVM configuration.
 
  - Don't mark APICv as being inhibited due to ABSENT if APICv is disabled
    KVM-wide to avoid confusing debuggers (KVM will never bother clearing the
    ABSENT inhibit, even if userspace enables in-kernel local APIC).
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmY+rlEACgkQOlYIJqCj
 N/3/xQ/7BvNl1aCJSIQy+yanCKK4wV0wWoY/hD+1wVge3zoaLZqLNHeR7fEa3vo+
 OSS/pOz+PT6DbkokZYjjVaGs6+pFqaYg5YvRE7SPbj903phm81H7v5ZLtwgOBcXx
 dG9cSLTaRhos0PxqoiLfmiGK5IDKmWuZyJzhw+nPh2YmxoRDO/4exsLA9xWWhQSh
 BjPf32cq69fn39Mo/KeANdLR1FEjvKItEty7St5r/OZFxejP8VPe1xuFxHPJn4U+
 FBbDe0DMXAPfoAQImBBhHUpm5Rp7Hwbh90tM8xY6rf3hvRZWmMCAX/Hx8C562M2b
 k6jB13gsoVesatT6lgKs2I0KGL7TSC0jLYG8aeREdBz6AEo5bkBegB5965MZYfGv
 T43i/zk+Ha5VIEURqE/CtocKF8AEjnUWLaIyL7VsDqaMslmaMdWzr8RouaO1snMT
 N/mfilzx9/rzltTV67TI8FSykPNxehwNoc9P8l+ulbW1KKIzpZCWxtIpQnT2TGdn
 89zAJ7LUbEAOnO+jMsJjld0fcNEmUqiqu9tezHuu0rVYErYqtfVhrWIf52r0AHDK
 HRY5FNcZzCE+8FFAVDNl92Of+mPeF47RELXNMLAT+1lm91ug4k62GF4UDw7hsbFo
 6+ductlj2DZlwxZVGKxKhBDxFg+AfsNCC1fZvYq+D/6ZE51eABo=
 =9RXP
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.10' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.10:

 - Advertise the max mappable GPA in the "guest MAXPHYADDR" CPUID field, which
   is unused by hardware, so that KVM can communicate its inability to map GPAs
   that set bits 51:48 due to lack of 5-level paging.  Guest firmware is
   expected to use the information to safely remap BARs in the uppermost GPA
   space, i.e to avoid placing a BAR at a legal, but unmappable, GPA.

 - Use vfree() instead of kvfree() for allocations that always use vcalloc()
   or __vcalloc().

 - Don't completely ignore same-value writes to immutable feature MSRs, as
   doing so results in KVM failing to reject accesses to MSR that aren't
   supposed to exist given the vCPU model and/or KVM configuration.

 - Don't mark APICv as being inhibited due to ABSENT if APICv is disabled
   KVM-wide to avoid confusing debuggers (KVM will never bother clearing the
   ABSENT inhibit, even if userspace enables in-kernel local APIC).
2024-05-12 03:18:44 -04:00
Paolo Bonzini
4232da23d7 Merge tag 'loongarch-kvm-6.10' of git://git.kernel.org/pub/scm/linux/kernel/git/chenhuacai/linux-loongson into HEAD
LoongArch KVM changes for v6.10

1. Add ParaVirt IPI support.
2. Add software breakpoint support.
3. Add mmio trace events support.
2024-05-10 13:20:18 -04:00
Sean Christopherson
40269c03fd KVM: x86: Explicitly zero kvm_caps during vendor module load
Zero out all of kvm_caps when loading a new vendor module to ensure that
KVM can't inadvertently rely on global initialization of a field, and add
a comment above the definition of kvm_caps to call out that all fields
needs to be explicitly computed during vendor module load.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240423165328.2853870-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:07:35 -04:00
Sean Christopherson
555485bd86 KVM: x86: Fully re-initialize supported_mce_cap on vendor module load
Effectively reset supported_mce_cap on vendor module load to ensure that
capabilities aren't unintentionally preserved across module reload, e.g.
if kvm-intel.ko added a module param to control LMCE support, or if
someone somehow managed to load a vendor module that doesn't support LMCE
after loading and unloading kvm-intel.ko.

Practically speaking, this bug is a non-issue as kvm-intel.ko doesn't have
a module param for LMCE, and there is no system in the world that supports
both kvm-intel.ko and kvm-amd.ko.

Fixes: c45dcc71b7 ("KVM: VMX: enable guest access to LMCE related MSRs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240423165328.2853870-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:07:34 -04:00
Sean Christopherson
c43ad19045 KVM: x86: Fully re-initialize supported_vm_types on vendor module load
Recompute the entire set of supported VM types when a vendor module is
loaded, as preserving supported_vm_types across vendor module unload and
reload can result in VM types being incorrectly treated as supported.

E.g. if a vendor module is loaded with TDP enabled, unloaded, and then
reloaded with TDP disabled, KVM_X86_SW_PROTECTED_VM will be incorrectly
retained.  Ditto for SEV_VM and SEV_ES_VM and their respective module
params in kvm-amd.ko.

Fixes: 2a955c4db1 ("KVM: x86: Add supported_vm_types to kvm_caps")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Message-ID: <20240423165328.2853870-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-05-07 13:07:34 -04:00
Alejandro Jimenez
6982b34c21 KVM: x86: Only set APICV_INHIBIT_REASON_ABSENT if APICv is enabled
Use the APICv enablement status to determine if APICV_INHIBIT_REASON_ABSENT
needs to be set, instead of unconditionally setting the reason during
initialization.

Specifically, in cases where AVIC is disabled via module parameter or lack
of hardware support, unconditionally setting an inhibit reason due to the
absence of an in-kernel local APIC can lead to a scenario where the reason
incorrectly remains set after a local APIC has been created by either
KVM_CREATE_IRQCHIP or the enabling of KVM_CAP_IRQCHIP_SPLIT. This is
because the helpers in charge of removing the inhibit return early if
enable_apicv is not true, and therefore the bit remains set.

This leads to confusion as to the cause why APICv is not active, since an
incorrect reason will be reported by tracepoints and/or a debugging tool
that examines the currently set inhibit reasons.

Fixes: ef8b4b7203 ("KVM: ensure APICv is considered inactive if there is no APIC")
Signed-off-by: Alejandro Jimenez <alejandro.j.jimenez@oracle.com>
Link: https://lore.kernel.org/r/20240418021823.1275276-2-alejandro.j.jimenez@oracle.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-05-02 07:53:46 -07:00
Sean Christopherson
1d294dfaba KVM: x86: Allow, don't ignore, same-value writes to immutable MSRs
When handling userspace writes to immutable feature MSRs for a vCPU that
has already run, fall through into the normal code to set the MSR instead
of immediately returning '0'.  I.e. allow such writes, instead of ignoring
such writes.  This fixes a bug where KVM incorrectly allows writes to the
VMX MSRs that enumerate which CR{0,4} can be set, but only if the vCPU has
already run.

The intent of returning '0' and thus ignoring the write, was to avoid any
side effects, e.g. refreshing the PMU and thus doing weird things with
perf events while the vCPU is running.  That approach sounds nice in
theory, but in practice it makes it all but impossible to maintain a sane
ABI, e.g. all VMX MSRs return -EBUSY if the CPU is post-VMXON, and the VMX
MSRs for fixed-1 CR bits are never writable, etc.

As for refreshing the PMU, kvm_set_msr_common() explicitly skips the PMU
refresh if MSR_IA32_PERF_CAPABILITIES is being written with the current
value, specifically to avoid unwanted side effects.  And if necessary,
adding similar logic for other MSRs is not difficult.

Fixes: 0094f62c7e ("KVM: x86: Disallow writes to immutable feature MSRs after KVM_RUN")
Reported-by: Jim Mattson <jmattson@google.com>
Cc: Raghavendra Rao Ananta <rananta@google.com>
Link: https://lore.kernel.org/r/20240408231500.1388122-1-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-05-02 07:19:46 -07:00
Linus Torvalds
817772266d * Clean up SVM's enter/exit assembly code so that it can be compiled
without OBJECT_FILES_NON_STANDARD.  This fixes a warning
   "Unpatched return thunk in use. This should not happen!" when running
   KVM selftests.
 
 * Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure where KVM
   would allow userspace to refresh the cache with a bogus GPA.  The bug has
   existed for quite some time, but was exposed by a new sanity check added in
   6.9 (to ensure a cache is either GPA-based or HVA-based).
 
 * Drop an unused param from gfn_to_pfn_cache_invalidate_start() that got left
   behind during a 6.9 cleanup.
 
 * Fix a math goof in x86's hugepage logic for KVM_SET_MEMORY_ATTRIBUTES that
   results in an array overflow (detected by KASAN).
 
 * Fix a bug where KVM incorrectly clears root_role.direct when userspace sets
   guest CPUID.
 
 * Fix a dirty logging bug in the where KVM fails to write-protect SPTEs used
   by a nested guest, if KVM is using Page-Modification Logging and the nested
   hypervisor is NOT using EPT.
 
 x86 PMU:
 
 * Drop support for virtualizing adaptive PEBS, as KVM's implementation is
   architecturally broken without an obvious/easy path forward, and because
   exposing adaptive PEBS can leak host LBRs to the guest, i.e. can leak
   host kernel addresses to the guest.
 
 * Set the enable bits for general purpose counters in PERF_GLOBAL_CTRL at
   RESET time, as done by both Intel and AMD processors.
 
 * Disable LBR virtualization on CPUs that don't support LBR callstacks, as
   KVM unconditionally uses PERF_SAMPLE_BRANCH_CALL_STACK when creating the
   perf event, and would fail on such CPUs.
 
 Tests:
 
 * Fix a flaw in the max_guest_memory selftest that results in it exhausting
   the supply of ucall structures when run with more than 256 vCPUs.
 
 * Mark KVM_MEM_READONLY as supported for RISC-V in set_memory_region_test.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmYjdqcUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroPNRAgAh1AdKBAWnq9bFN2Np1kSAcRAk3bs
 REDq/0iD1T9TvIwEmE1lHaRuqvCSO15WW+DKvbs7TS8zA0DyY7X/x8sIIy5YzZ5C
 bQ+JXiqk55OAj0sPskBpCvE5qEreuU8qAit57+8OseKWs57EICvJjrfsRnHlmIub
 pgGas3I42LjIgsuZRr2kjv+GrvaiikW+wWK6sq3CvPzTtHV196d26AK5l4NOoLkY
 0FTbBIYUSJ7wxs92xuTed5mZ7JFZdsa5DVMXF5MRZ9W6g2vZCLbqCNRddRhSAsl0
 gKmqZkuPTB7AnGQbJ2h/aKFT0ydsguzqbbKq62sK7ft5f1CUlbp9luDC9w==
 =99rq
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:
 "This is a bit on the large side, mostly due to two changes:

   - Changes to disable some broken PMU virtualization (see below for
     details under "x86 PMU")

   - Clean up SVM's enter/exit assembly code so that it can be compiled
     without OBJECT_FILES_NON_STANDARD. This fixes a warning "Unpatched
     return thunk in use. This should not happen!" when running KVM
     selftests.

  Everything else is small bugfixes and selftest changes:

   - Fix a mostly benign bug in the gfn_to_pfn_cache infrastructure
     where KVM would allow userspace to refresh the cache with a bogus
     GPA. The bug has existed for quite some time, but was exposed by a
     new sanity check added in 6.9 (to ensure a cache is either
     GPA-based or HVA-based).

   - Drop an unused param from gfn_to_pfn_cache_invalidate_start() that
     got left behind during a 6.9 cleanup.

   - Fix a math goof in x86's hugepage logic for
     KVM_SET_MEMORY_ATTRIBUTES that results in an array overflow
     (detected by KASAN).

   - Fix a bug where KVM incorrectly clears root_role.direct when
     userspace sets guest CPUID.

   - Fix a dirty logging bug in the where KVM fails to write-protect
     SPTEs used by a nested guest, if KVM is using Page-Modification
     Logging and the nested hypervisor is NOT using EPT.

  x86 PMU:

   - Drop support for virtualizing adaptive PEBS, as KVM's
     implementation is architecturally broken without an obvious/easy
     path forward, and because exposing adaptive PEBS can leak host LBRs
     to the guest, i.e. can leak host kernel addresses to the guest.

   - Set the enable bits for general purpose counters in
     PERF_GLOBAL_CTRL at RESET time, as done by both Intel and AMD
     processors.

   - Disable LBR virtualization on CPUs that don't support LBR
     callstacks, as KVM unconditionally uses
     PERF_SAMPLE_BRANCH_CALL_STACK when creating the perf event, and
     would fail on such CPUs.

  Tests:

   - Fix a flaw in the max_guest_memory selftest that results in it
     exhausting the supply of ucall structures when run with more than
     256 vCPUs.

   - Mark KVM_MEM_READONLY as supported for RISC-V in
     set_memory_region_test"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (30 commits)
  KVM: Drop unused @may_block param from gfn_to_pfn_cache_invalidate_start()
  KVM: selftests: Add coverage of EPT-disabled to vmx_dirty_log_test
  KVM: x86/mmu: Fix and clarify comments about clearing D-bit vs. write-protecting
  KVM: x86/mmu: Remove function comments above clear_dirty_{gfn_range,pt_masked}()
  KVM: x86/mmu: Write-protect L2 SPTEs in TDP MMU when clearing dirty status
  KVM: x86/mmu: Precisely invalidate MMU root_role during CPUID update
  KVM: VMX: Disable LBR virtualization if the CPU doesn't support LBR callstacks
  perf/x86/intel: Expose existence of callback support to KVM
  KVM: VMX: Snapshot LBR capabilities during module initialization
  KVM: x86/pmu: Do not mask LVTPC when handling a PMI on AMD platforms
  KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatible
  KVM: x86: Stop compiling vmenter.S with OBJECT_FILES_NON_STANDARD
  KVM: SVM: Create a stack frame in __svm_sev_es_vcpu_run()
  KVM: SVM: Save/restore args across SEV-ES VMRUN via host save area
  KVM: SVM: Save/restore non-volatile GPRs in SEV-ES VMRUN via host save area
  KVM: SVM: Clobber RAX instead of RBX when discarding spec_ctrl_intercepted
  KVM: SVM: Drop 32-bit "support" from __svm_sev_es_vcpu_run()
  KVM: SVM: Wrap __svm_sev_es_vcpu_run() with #ifdef CONFIG_KVM_AMD_SEV
  KVM: SVM: Create a stack frame in __svm_vcpu_run() for unwinding
  KVM: SVM: Remove a useless zeroing of allocated memory
  ...
2024-04-20 11:10:51 -07:00
Sean Christopherson
e913ef159f KVM: x86: Split core of hypercall emulation to helper function
By necessity, TDX will use a different register ABI for hypercalls.
Break out the core functionality so that it may be reused for TDX.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-Id: <5134caa55ac3dec33fb2addb5545b52b3b52db02.1705965635.git.isaku.yamahata@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-12 04:42:23 -04:00
Paolo Bonzini
2a955c4db1 KVM: x86: Add supported_vm_types to kvm_caps
This simplifies the implementation of KVM_CHECK_EXTENSION(KVM_CAP_VM_TYPES),
and also allows the vendor module to specify which VM types are supported.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-9-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:24 -04:00
Paolo Bonzini
517987e3fb KVM: x86: add fields to struct kvm_arch for CoCo features
Some VM types have characteristics in common; in fact, the only use
of VM types right now is kvm_arch_has_private_mem and it assumes that
_all_ nonzero VM types have private memory.

We will soon introduce a VM type for SEV and SEV-ES VMs, and at that
point we will have two special characteristics of confidential VMs
that depend on the VM type: not just if memory is private, but
also whether guest state is protected.  For the latter we have
kvm->arch.guest_state_protected, which is only set on a fully initialized
VM.

For VM types with protected guest state, we can actually fix a problem in
the SEV-ES implementation, where ioctls to set registers do not cause an
error even if the VM has been initialized and the guest state encrypted.
Make sure that when using VM types that will become an error.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20240209183743.22030-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-8-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:23 -04:00
Paolo Bonzini
546d714b08 KVM: introduce new vendor op for KVM_GET_DEVICE_ATTR
Allow vendor modules to provide their own attributes on /dev/kvm.
To avoid proliferation of vendor ops, implement KVM_HAS_DEVICE_ATTR
and KVM_GET_DEVICE_ATTR in terms of the same function.  You're not
supposed to use KVM_GET_DEVICE_ATTR to do complicated computations,
especially on /dev/kvm.

Reviewed-by: Michael Roth <michael.roth@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Reviewed-by: Isaku Yamahata <isaku.yamahata@intel.com>
Message-ID: <20240404121327.3107131-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:22 -04:00
Paolo Bonzini
8d2aec3b2d KVM: x86: use u64_to_user_ptr()
There is no danger to the kernel if 32-bit userspace provides a 64-bit
value that has the high bits set, but for whatever reason happens to
resolve to an address that has something mapped there.  KVM uses the
checked version of get_user() and put_user(), so any faults are caught
properly.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-ID: <20240404121327.3107131-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 13:08:22 -04:00
Sean Christopherson
fd706c9b16 KVM: x86: Snapshot if a vCPU's vendor model is AMD vs. Intel compatible
Add kvm_vcpu_arch.is_amd_compatible to cache if a vCPU's vendor model is
compatible with AMD, i.e. if the vCPU vendor is AMD or Hygon, along with
helpers to check if a vCPU is compatible AMD vs. Intel.  To handle Intel
vs. AMD behavior related to masking the LVTPC entry, KVM will need to
check for vendor compatibility on every PMI injection, i.e. querying for
AMD will soon be a moderately hot path.

Note!  This subtly (or maybe not-so-subtly) makes "Intel compatible" KVM's
default behavior, both if userspace omits (or never sets) CPUID 0x0 and if
userspace sets a completely unknown vendor.  One could argue that KVM
should treat such vCPUs as not being compatible with Intel *or* AMD, but
that would add useless complexity to KVM.

KVM needs to do *something* in the face of vendor specific behavior, and
so unless KVM conjured up a magic third option, choosing to treat unknown
vendors as neither Intel nor AMD means that checks on AMD compatibility
would yield Intel behavior, and checks for Intel compatibility would yield
AMD behavior.  And that's far worse as it would effectively yield random
behavior depending on whether KVM checked for AMD vs. Intel vs. !AMD vs.
!Intel.  And practically speaking, all x86 CPUs follow either Intel or AMD
architecture, i.e. "supporting" an unknown third architecture adds no
value.

Deliberately don't convert any of the existing guest_cpuid_is_intel()
checks, as the Intel side of things is messier due to some flows explicitly
checking for exactly vendor==Intel, versus some flows assuming anything
that isn't "AMD compatible" gets Intel behavior.  The Intel code will be
cleaned up in the future.

Cc: stable@vger.kernel.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-ID: <20240405235603.1173076-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2024-04-11 12:58:56 -04:00
Li RongQing
a952d608f0 KVM: Use vfree for memory allocated by vcalloc()/__vcalloc()
commit 37b2a6510a48("KVM: use __vcalloc for very large allocations")
replaced kvzalloc()/kvcalloc() with vcalloc(), but didn't replace kvfree()
with vfree().

Signed-off-by: Li RongQing <lirongqing@baidu.com>
Link: https://lore.kernel.org/r/20240131012357.53563-1-lirongqing@baidu.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-04-09 12:18:38 -07:00
Daniel Sneddon
ed2e8d49b5 KVM: x86: Add BHI_NO
Intel processors that aren't vulnerable to BHI will set
MSR_IA32_ARCH_CAPABILITIES[BHI_NO] = 1;. Guests may use this BHI_NO bit to
determine if they need to implement BHI mitigations or not.  Allow this bit
to be passed to the guests.

Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Alexandre Chartre <alexandre.chartre@oracle.com>
Reviewed-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-04-08 19:27:06 +02:00
Linus Torvalds
4f712ee0cb S390:
* Changes to FPU handling came in via the main s390 pull request
 
 * Only deliver to the guest the SCLP events that userspace has
   requested.
 
 * More virtual vs physical address fixes (only a cleanup since
   virtual and physical address spaces are currently the same).
 
 * Fix selftests undefined behavior.
 
 x86:
 
 * Fix a restriction that the guest can't program a PMU event whose
   encoding matches an architectural event that isn't included in the
   guest CPUID.  The enumeration of an architectural event only says
   that if a CPU supports an architectural event, then the event can be
   programmed *using the architectural encoding*.  The enumeration does
   NOT say anything about the encoding when the CPU doesn't report support
   the event *in general*.  It might support it, and it might support it
   using the same encoding that made it into the architectural PMU spec.
 
 * Fix a variety of bugs in KVM's emulation of RDPMC (more details on
   individual commits) and add a selftest to verify KVM correctly emulates
   RDMPC, counter availability, and a variety of other PMC-related
   behaviors that depend on guest CPUID and therefore are easier to
   validate with selftests than with custom guests (aka kvm-unit-tests).
 
 * Zero out PMU state on AMD if the virtual PMU is disabled, it does not
   cause any bug but it wastes time in various cases where KVM would check
   if a PMC event needs to be synthesized.
 
 * Optimize triggering of emulated events, with a nice ~10% performance
   improvement in VM-Exit microbenchmarks when a vPMU is exposed to the
   guest.
 
 * Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
 
 * Fix a bug where KVM would report stale/bogus exit qualification information
   when exiting to userspace with an internal error exit code.
 
 * Add a VMX flag in /proc/cpuinfo to report 5-level EPT support.
 
 * Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
 * Tear down TDP MMU page tables at 4KiB granularity (used to be 1GiB).  KVM
   doesn't support yielding in the middle of processing a zap, and 1GiB
   granularity resulted in multi-millisecond lags that are quite impolite
   for CONFIG_PREEMPT kernels.
 
 * Allocate write-tracking metadata on-demand to avoid the memory overhead when
   a kernel is built with i915 virtualization support but the workloads use
   neither shadow paging nor i915 virtualization.
 
 * Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives.
 
 * Fix the debugregs ABI for 32-bit KVM.
 
 * Rework the "force immediate exit" code so that vendor code ultimately decides
   how and when to force the exit, which allowed some optimization for both
   Intel and AMD.
 
 * Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, causing extra unnecessary work.
 
 * Cleanup the logic for checking if the currently loaded vCPU is in-kernel.
 
 * Harden against underflowing the active mmu_notifier invalidation
   count, so that "bad" invalidations (usually due to bugs elsehwere in the
   kernel) are detected earlier and are less likely to hang the kernel.
 
 x86 Xen emulation:
 
 * Overlay pages can now be cached based on host virtual address,
   instead of guest physical addresses.  This removes the need to
   reconfigure and invalidate the cache if the guest changes the
   gpa but the underlying host virtual address remains the same.
 
 * When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.
 
 * Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).
 
 * Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.
 
 RISC-V:
 
 * Support exception and interrupt handling in selftests
 
 * New self test for RISC-V architectural timer (Sstc extension)
 
 * New extension support (Ztso, Zacas)
 
 * Support userspace emulation of random number seed CSRs.
 
 ARM:
 
 * Infrastructure for building KVM's trap configuration based on the
   architectural features (or lack thereof) advertised in the VM's ID
   registers
 
 * Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
   x86's WC) at stage-2, improving the performance of interacting with
   assigned devices that can tolerate it
 
 * Conversion of KVM's representation of LPIs to an xarray, utilized to
   address serialization some of the serialization on the LPI injection
   path
 
 * Support for _architectural_ VHE-only systems, advertised through the
   absence of FEAT_E2H0 in the CPU's ID register
 
 * Miscellaneous cleanups, fixes, and spelling corrections to KVM and
   selftests
 
 LoongArch:
 
 * Set reserved bits as zero in CPUCFG.
 
 * Start SW timer only when vcpu is blocking.
 
 * Do not restart SW timer when it is expired.
 
 * Remove unnecessary CSR register saving during enter guest.
 
 * Misc cleanups and fixes as usual.
 
 Generic:
 
 * cleanup Kconfig by removing CONFIG_HAVE_KVM, which was basically always
   true on all architectures except MIPS (where Kconfig determines the
   available depending on CPU capabilities).  It is replaced either by
   an architecture-dependent symbol for MIPS, and IS_ENABLED(CONFIG_KVM)
   everywhere else.
 
 * Factor common "select" statements in common code instead of requiring
   each architecture to specify it
 
 * Remove thoroughly obsolete APIs from the uapi headers.
 
 * Move architecture-dependent stuff to uapi/asm/kvm.h
 
 * Always flush the async page fault workqueue when a work item is being
   removed, especially during vCPU destruction, to ensure that there are no
   workers running in KVM code when all references to KVM-the-module are gone,
   i.e. to prevent a very unlikely use-after-free if kvm.ko is unloaded.
 
 * Grab a reference to the VM's mm_struct in the async #PF worker itself instead
   of gifting the worker a reference, so that there's no need to remember
   to *conditionally* clean up after the worker.
 
 Selftests:
 
 * Reduce boilerplate especially when utilize selftest TAP infrastructure.
 
 * Add basic smoke tests for SEV and SEV-ES, along with a pile of library
   support for handling private/encrypted/protected memory.
 
 * Fix benign bugs where tests neglect to close() guest_memfd files.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmX0iP8UHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroND7wf+JZoNvwZ+bmwWe/4jn/YwNoYi/C5z
 eypn8M1gsWEccpCpqPBwznVm9T29rF4uOlcMvqLEkHfTpaL1EKUUjP1lXPz/ileP
 6a2RdOGxAhyTiFC9fjy+wkkjtLbn1kZf6YsS0hjphP9+w0chNbdn0w81dFVnXryd
 j7XYI8R/bFAthNsJOuZXSEjCfIHxvTTG74OrTf1B1FEBB+arPmrgUeJftMVhffQK
 Sowgg8L/Ii/x6fgV5NZQVSIyVf1rp8z7c6UaHT4Fwb0+RAMW8p9pYv9Qp1YkKp8y
 5j0V9UzOHP7FRaYimZ5BtwQoqiZXYylQ+VuU/Y2f4X85cvlLzSqxaEMAPA==
 =mqOV
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Paolo Bonzini:
 "S390:

   - Changes to FPU handling came in via the main s390 pull request

   - Only deliver to the guest the SCLP events that userspace has
     requested

   - More virtual vs physical address fixes (only a cleanup since
     virtual and physical address spaces are currently the same)

   - Fix selftests undefined behavior

  x86:

   - Fix a restriction that the guest can't program a PMU event whose
     encoding matches an architectural event that isn't included in the
     guest CPUID. The enumeration of an architectural event only says
     that if a CPU supports an architectural event, then the event can
     be programmed *using the architectural encoding*. The enumeration
     does NOT say anything about the encoding when the CPU doesn't
     report support the event *in general*. It might support it, and it
     might support it using the same encoding that made it into the
     architectural PMU spec

   - Fix a variety of bugs in KVM's emulation of RDPMC (more details on
     individual commits) and add a selftest to verify KVM correctly
     emulates RDMPC, counter availability, and a variety of other
     PMC-related behaviors that depend on guest CPUID and therefore are
     easier to validate with selftests than with custom guests (aka
     kvm-unit-tests)

   - Zero out PMU state on AMD if the virtual PMU is disabled, it does
     not cause any bug but it wastes time in various cases where KVM
     would check if a PMC event needs to be synthesized

   - Optimize triggering of emulated events, with a nice ~10%
     performance improvement in VM-Exit microbenchmarks when a vPMU is
     exposed to the guest

   - Tighten the check for "PMI in guest" to reduce false positives if
     an NMI arrives in the host while KVM is handling an IRQ VM-Exit

   - Fix a bug where KVM would report stale/bogus exit qualification
     information when exiting to userspace with an internal error exit
     code

   - Add a VMX flag in /proc/cpuinfo to report 5-level EPT support

   - Rework TDP MMU root unload, free, and alloc to run with mmu_lock
     held for read, e.g. to avoid serializing vCPUs when userspace
     deletes a memslot

   - Tear down TDP MMU page tables at 4KiB granularity (used to be
     1GiB). KVM doesn't support yielding in the middle of processing a
     zap, and 1GiB granularity resulted in multi-millisecond lags that
     are quite impolite for CONFIG_PREEMPT kernels

   - Allocate write-tracking metadata on-demand to avoid the memory
     overhead when a kernel is built with i915 virtualization support
     but the workloads use neither shadow paging nor i915 virtualization

   - Explicitly initialize a variety of on-stack variables in the
     emulator that triggered KMSAN false positives

   - Fix the debugregs ABI for 32-bit KVM

   - Rework the "force immediate exit" code so that vendor code
     ultimately decides how and when to force the exit, which allowed
     some optimization for both Intel and AMD

   - Fix a long-standing bug where kvm_has_noapic_vcpu could be left
     elevated if vCPU creation ultimately failed, causing extra
     unnecessary work

   - Cleanup the logic for checking if the currently loaded vCPU is
     in-kernel

   - Harden against underflowing the active mmu_notifier invalidation
     count, so that "bad" invalidations (usually due to bugs elsehwere
     in the kernel) are detected earlier and are less likely to hang the
     kernel

  x86 Xen emulation:

   - Overlay pages can now be cached based on host virtual address,
     instead of guest physical addresses. This removes the need to
     reconfigure and invalidate the cache if the guest changes the gpa
     but the underlying host virtual address remains the same

   - When possible, use a single host TSC value when computing the
     deadline for Xen timers in order to improve the accuracy of the
     timer emulation

   - Inject pending upcall events when the vCPU software-enables its
     APIC to fix a bug where an upcall can be lost (and to follow Xen's
     behavior)

   - Fall back to the slow path instead of warning if "fast" IRQ
     delivery of Xen events fails, e.g. if the guest has aliased xAPIC
     IDs

  RISC-V:

   - Support exception and interrupt handling in selftests

   - New self test for RISC-V architectural timer (Sstc extension)

   - New extension support (Ztso, Zacas)

   - Support userspace emulation of random number seed CSRs

  ARM:

   - Infrastructure for building KVM's trap configuration based on the
     architectural features (or lack thereof) advertised in the VM's ID
     registers

   - Support for mapping vfio-pci BARs as Normal-NC (vaguely similar to
     x86's WC) at stage-2, improving the performance of interacting with
     assigned devices that can tolerate it

   - Conversion of KVM's representation of LPIs to an xarray, utilized
     to address serialization some of the serialization on the LPI
     injection path

   - Support for _architectural_ VHE-only systems, advertised through
     the absence of FEAT_E2H0 in the CPU's ID register

   - Miscellaneous cleanups, fixes, and spelling corrections to KVM and
     selftests

  LoongArch:

   - Set reserved bits as zero in CPUCFG

   - Start SW timer only when vcpu is blocking

   - Do not restart SW timer when it is expired

   - Remove unnecessary CSR register saving during enter guest

   - Misc cleanups and fixes as usual

  Generic:

   - Clean up Kconfig by removing CONFIG_HAVE_KVM, which was basically
     always true on all architectures except MIPS (where Kconfig
     determines the available depending on CPU capabilities). It is
     replaced either by an architecture-dependent symbol for MIPS, and
     IS_ENABLED(CONFIG_KVM) everywhere else

   - Factor common "select" statements in common code instead of
     requiring each architecture to specify it

   - Remove thoroughly obsolete APIs from the uapi headers

   - Move architecture-dependent stuff to uapi/asm/kvm.h

   - Always flush the async page fault workqueue when a work item is
     being removed, especially during vCPU destruction, to ensure that
     there are no workers running in KVM code when all references to
     KVM-the-module are gone, i.e. to prevent a very unlikely
     use-after-free if kvm.ko is unloaded

   - Grab a reference to the VM's mm_struct in the async #PF worker
     itself instead of gifting the worker a reference, so that there's
     no need to remember to *conditionally* clean up after the worker

  Selftests:

   - Reduce boilerplate especially when utilize selftest TAP
     infrastructure

   - Add basic smoke tests for SEV and SEV-ES, along with a pile of
     library support for handling private/encrypted/protected memory

   - Fix benign bugs where tests neglect to close() guest_memfd files"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (246 commits)
  selftests: kvm: remove meaningless assignments in Makefiles
  KVM: riscv: selftests: Add Zacas extension to get-reg-list test
  RISC-V: KVM: Allow Zacas extension for Guest/VM
  KVM: riscv: selftests: Add Ztso extension to get-reg-list test
  RISC-V: KVM: Allow Ztso extension for Guest/VM
  RISC-V: KVM: Forward SEED CSR access to user space
  KVM: riscv: selftests: Add sstc timer test
  KVM: riscv: selftests: Change vcpu_has_ext to a common function
  KVM: riscv: selftests: Add guest helper to get vcpu id
  KVM: riscv: selftests: Add exception handling support
  LoongArch: KVM: Remove unnecessary CSR register saving during enter guest
  LoongArch: KVM: Do not restart SW timer when it is expired
  LoongArch: KVM: Start SW timer only when vcpu is blocking
  LoongArch: KVM: Set reserved bits as zero in CPUCFG
  KVM: selftests: Explicitly close guest_memfd files in some gmem tests
  KVM: x86/xen: fix recursive deadlock in timer injection
  KVM: pfncache: simplify locking and make more self-contained
  KVM: x86/xen: remove WARN_ON_ONCE() with false positives in evtchn delivery
  KVM: x86/xen: inject vCPU upcall vector when local APIC is enabled
  KVM: x86/xen: improve accuracy of Xen timers
  ...
2024-03-15 13:03:13 -07:00
Linus Torvalds
0e33cf955f * Mitigate RFDS vulnerability
-----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmXvZgoACgkQaDWVMHDJ
 krC2Eg//aZKBp97/DSzRqXKDwJzVUr0sGJ9cii0gVT1sI+1U6ZZCh/roVH4xOT5/
 HqtOOnQ+X0mwUx2VG3Yv2VPI7VW68sJ3/y9D8R4tnMEsyQ4CmDw96Pre3NyKr/Av
 jmW7SK94fOkpNFJOMk3zpk7GtRUlCsVkS1P61dOmMYduguhel/V20rWlx83BgnAY
 Rf/c3rBjqe8Ri3rzBP5icY/d6OgwoafuhME31DD/j6oKOh+EoQBvA4urj46yMTMX
 /mrK7hCm/wqwuOOvgGbo7sfZNBLCYy3SZ3EyF4beDERhPF1DaSvCwOULpGVJroqu
 SelFsKXAtEbYrDgsan+MYlx3bQv43q7PbHska1gjkH91plO4nAsssPr5VsusUKmT
 sq8jyBaauZb40oLOSgooL4RqAHrfs8q5695Ouwh/DB/XovMezUI1N/BkpGFmqpJI
 o2xH9P5q520pkB8pFhN9TbRuFSGe/dbWC24QTq1DUajo3M3RwcwX6ua9hoAKLtDF
 pCV5DNcVcXHD3Cxp0M5dQ5JEAiCnW+ZpUWgxPQamGDNW5PEvjDmFwql2uWw/qOuW
 lkheOIffq8ejUBQFbN8VXfIzzeeKQNFiIcViaqGITjIwhqdHAzVi28OuIGwtdh3g
 ywLzSC8yvyzgKrNBgtFMr3ucKN0FoPxpBro253xt2H7w8srXW64=
 =5V9t
 -----END PGP SIGNATURE-----

Merge tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 RFDS mitigation from Dave Hansen:
 "RFDS is a CPU vulnerability that may allow a malicious userspace to
  infer stale register values from kernel space. Kernel registers can
  have all kinds of secrets in them so the mitigation is basically to
  wait until the kernel is about to return to userspace and has user
  values in the registers. At that point there is little chance of
  kernel secrets ending up in the registers and the microarchitectural
  state can be cleared.

  This leverages some recent robustness fixes for the existing MDS
  vulnerability. Both MDS and RFDS use the VERW instruction for
  mitigation"

* tag 'rfds-for-linus-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests
  x86/rfds: Mitigate Register File Data Sampling (RFDS)
  Documentation/hw-vuln: Add documentation for RFDS
  x86/mmio: Disable KVM mitigation when X86_FEATURE_CLEAR_CPU_BUF is set
2024-03-12 09:31:39 -07:00
Pawan Gupta
2a0180129d KVM/x86: Export RFDS_NO and RFDS_CLEAR to guests
Mitigation for RFDS requires RFDS_CLEAR capability which is enumerated
by MSR_IA32_ARCH_CAPABILITIES bit 27. If the host has it set, export it
to guests so that they can deploy the mitigation.

RFDS_NO indicates that the system is not vulnerable to RFDS, export it
to guests so that they don't deploy the mitigation unnecessarily. When
the host is not affected by X86_BUG_RFDS, but has RFDS_NO=0, synthesize
RFDS_NO to the guest.

Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Josh Poimboeuf <jpoimboe@kernel.org>
2024-03-11 13:13:50 -07:00
Paolo Bonzini
e9a2bba476 KVM Xen and pfncache changes for 6.9:
- Rip out the half-baked support for using gfn_to_pfn caches to manage pages
    that are "mapped" into guests via physical addresses.
 
  - Add support for using gfn_to_pfn caches with only a host virtual address,
    i.e. to bypass the "gfn" stage of the cache.  The primary use case is
    overlay pages, where the guest may change the gfn used to reference the
    overlay page, but the backing hva+pfn remains the same.
 
  - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
    of a gpa, so that userspace doesn't need to reconfigure and invalidate the
    cache/mapping if the guest changes the gpa (but userspace keeps the resolved
    hva the same).
 
  - When possible, use a single host TSC value when computing the deadline for
    Xen timers in order to improve the accuracy of the timer emulation.
 
  - Inject pending upcall events when the vCPU software-enables its APIC to fix
    a bug where an upcall can be lost (and to follow Xen's behavior).
 
  - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
    events fails, e.g. if the guest has aliased xAPIC IDs.
 
  - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
    refresh), and drop a now-redundant acquisition of xen_lock (that was
    protecting the shared_info cache) to fix a deadlock due to recursively
    acquiring xen_lock.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrblYACgkQOlYIJqCj
 N/3K4Q/+KZ8lrnNXvdHNCQdosA5DDXpqUcRzhlTUp82fncpdJ0LqrSMzMots2Eh9
 KC0jSPo8EkivF+Epug0+bpQBEaLXzTWhRcS1grePCDz2lBnxoHFSWjvaK2p14KlC
 LvxCJZjxyfLKHwKHpSndvO9hVFElCY3mvvE9KRcKeQAmrz1cz+DDMKelo1MuV8D+
 GfymhYc+UXpY41+6hQdznx+WoGoXKRameo3iGYuBoJjvKOyl4Wxkx9WSXIxxxuqG
 kHxjiWTR/jF1ITJl6PeMrFcGl3cuGKM/UfTOM6W2h6Wi3mhLpXveoVLnqR1kipIj
 btSzSVHL7C4WTPwOcyhwPzap+dJmm31c6N0uPScT7r9yhs+q5BDj26vcVcyPZUHo
 efIwmsnO2eQvuw+f8C6QqWCPaxvw46N0zxzwgc5uA3jvAC93y0l4v+xlAQsC0wzV
 0+BwU00cutH/3t3c/WPD5QcmRLH726VoFuTlaDufpoMU7gBVJ8rzjcusxR+5BKT+
 GJcAgZxZhEgvnzmTKd4Ec/mt+xZ2Erd+kV3MKCHvDPyj8jqy8FQ4DAWKGBR+h3WR
 rqAs2k8NPHyh3i1a3FL1opmxEGsRS+Cnc6Bi77cj9DxTr22JkgDJEuFR+Ues1z6/
 SpE889kt3w5zTo34+lNxNPlIKmO0ICwwhDL6pxJTWU7iWQnKypU=
 =GliW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-xen-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM Xen and pfncache changes for 6.9:

 - Rip out the half-baked support for using gfn_to_pfn caches to manage pages
   that are "mapped" into guests via physical addresses.

 - Add support for using gfn_to_pfn caches with only a host virtual address,
   i.e. to bypass the "gfn" stage of the cache.  The primary use case is
   overlay pages, where the guest may change the gfn used to reference the
   overlay page, but the backing hva+pfn remains the same.

 - Add an ioctl() to allow mapping Xen's shared_info page using an hva instead
   of a gpa, so that userspace doesn't need to reconfigure and invalidate the
   cache/mapping if the guest changes the gpa (but userspace keeps the resolved
   hva the same).

 - When possible, use a single host TSC value when computing the deadline for
   Xen timers in order to improve the accuracy of the timer emulation.

 - Inject pending upcall events when the vCPU software-enables its APIC to fix
   a bug where an upcall can be lost (and to follow Xen's behavior).

 - Fall back to the slow path instead of warning if "fast" IRQ delivery of Xen
   events fails, e.g. if the guest has aliased xAPIC IDs.

 - Extend gfn_to_pfn_cache's mutex to cover (de)activation (in addition to
   refresh), and drop a now-redundant acquisition of xen_lock (that was
   protecting the shared_info cache) to fix a deadlock due to recursively
   acquiring xen_lock.
2024-03-11 10:42:55 -04:00
Paolo Bonzini
e9025cdd8c KVM x86 PMU changes for 6.9:
- Fix several bugs where KVM speciously prevents the guest from utilizing
    fixed counters and architectural event encodings based on whether or not
    guest CPUID reports support for the _architectural_ encoding.
 
  - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
    priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.
 
  - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
    and a variety of other PMC-related behaviors that depend on guest CPUID,
    i.e. are difficult to validate via KVM-Unit-Tests.
 
  - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
    cycles, e.g. when checking if a PMC event needs to be synthesized when
    skipping an instruction.
 
  - Optimize triggering of emulated events, e.g. for "count instructions" events
    when skipping an instruction, which yields a ~10% performance improvement in
    VM-Exit microbenchmarks when a vPMU is exposed to the guest.
 
  - Tighten the check for "PMI in guest" to reduce false positives if an NMI
    arrives in the host while KVM is handling an IRQ VM-Exit.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrUFQACgkQOlYIJqCj
 N/11dhAAnr9e6mPmXvaH4YKcvOGgTmwIQdi5W4IBzGm27ErEb0Vyskx3UATRhRm+
 gZyp3wNgEA9LeifICDNu4ypn7HZcl2VtRql6FYcB8Bcu8OiHfU8PhWL0/qrpY20e
 zffUj2tDweq2ft9Iks1SQJD0sxFkcXIcSKOffP7pRZJHFTKLltGORXwxzd9HJHPY
 nc4nERKegK2yH4A4gY6nZ0oV5L3OMUNHx815db5Y+HxXOIjBCjTQiNNd6mUdyX1N
 C5sIiElXLdvRTSDvirHfA32LqNwnajDGox4QKZkB3wszCxJ3kRd4OCkTEKMYKHxd
 KoKCJQnAdJFFW9xqbT8nNKXZ+hg2+ZQuoSaBuwKryf7jWi0e6a7jcV0OH+cQSZw7
 UNudKhs3r4ambfvnFp2IVZlZREMDB+LAjo2So48Jn/JGCAzqte3XqwVKskn9pS9S
 qeauXCdOLioZALYtTBl8RM1rEY5mbwQrpPv9CzbeU09qQ/hpXV14W9GmbyeOZcI1
 T1cYgEqlLuifRluwT/hxrY321+4noF116gSK1yb07x/sJU8/lhRooEk9V562066E
 qo6nIvc7Bv9gTGLwo6VReKSPcTT/6t3HwgPsRjqe+evso3EFN9f9hG+uPxtO6TUj
 pdPm3mkj2KfxDdJLf+Ys16gyGdiwI0ZImIkA0uLdM0zftNsrb4Y=
 =vayI
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-pmu-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 PMU changes for 6.9:

 - Fix several bugs where KVM speciously prevents the guest from utilizing
   fixed counters and architectural event encodings based on whether or not
   guest CPUID reports support for the _architectural_ encoding.

 - Fix a variety of bugs in KVM's emulation of RDPMC, e.g. for "fast" reads,
   priority of VMX interception vs #GP, PMC types in architectural PMUs, etc.

 - Add a selftest to verify KVM correctly emulates RDMPC, counter availability,
   and a variety of other PMC-related behaviors that depend on guest CPUID,
   i.e. are difficult to validate via KVM-Unit-Tests.

 - Zero out PMU metadata on AMD if the virtual PMU is disabled to avoid wasting
   cycles, e.g. when checking if a PMC event needs to be synthesized when
   skipping an instruction.

 - Optimize triggering of emulated events, e.g. for "count instructions" events
   when skipping an instruction, which yields a ~10% performance improvement in
   VM-Exit microbenchmarks when a vPMU is exposed to the guest.

 - Tighten the check for "PMI in guest" to reduce false positives if an NMI
   arrives in the host while KVM is handling an IRQ VM-Exit.
2024-03-11 10:41:09 -04:00
Paolo Bonzini
41ebae2ecd KVM x86 MMU changes for 6.9:
- Clean up code related to unprotecting shadow pages when retrying a guest
    instruction after failed #PF-induced emulation.
 
  - Zap TDP MMU roots at 4KiB granularity to minimize the delay in yielding if
    a reschedule is needed, e.g. if a high priority task needs to run.  Because
    KVM doesn't support yielding in the middle of processing a zapped non-leaf
    SPTE, zapping at 1GiB granularity can result in multi-millisecond lag when
    attempting to schedule in a high priority.
 
  - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
    read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.
 
  - Allocate write-tracking metadata on-demand to avoid the memory overhead when
    running kernels built with KVMGT support (external write-tracking enabled),
    but for workloads that don't use nested virtualization (shadow paging) or
    KVMGT.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrTH4ACgkQOlYIJqCj
 N/1q3xAAh3wpUDzRfkNkgGUbulhuJmQ72PiaW3NRoMo/3Rowegsdgt1N3/ec+fcJ
 Awx0KUM8Cju8O2Zqp6NzKwUkddCni8dHmOa55NJQuK2M1OpnE0RjBB94n+AFJZki
 mm8wKSKNgjlVeJDG87+RLPnbaeEvqYPp22oNKJyAPsimTbxvmhIqtg8qdyujGPXA
 Jke7LXgtVGav+nEzXiLh86VU/agoBJc/zt+hiuLvamU5Y8so+zReqFbrDtvsgtpV
 ryvMbDZxcPXKrsBP+B7syqUAbODcmh/wkzOCZ4Tby5yurEaw1rwpZIH0BRKRgGx2
 F2JqWayYsCOsrJ4DwQre8RfLMtbEKB2BBWkZlYyblAy0++1LcTP9pSk5YC5lSL71
 5Oszql9DKi10Vq5IfR/ehsr6mHXFr3AB7C7QefiXpytGbObQs8/f/OxinxaEajcs
 ERBgh+rcQ5p3kfdiHzuQjn7y45J7z21CKVhka4iKJtTxypBK4ZvkDOVqHuHppb5O
 aw6rC5HR1EKhSW4jz7QWrDExtDZ2X5HeYl8TgfHncSSJRc7urKYcSCHhXJsB6BPs
 iQf0xbHaIOyH9jmoqLZjz0QZmXB9fydQ/zAlFVXZsrNHvomayVjqrpl8UFTMdhuI
 zll9ynfRRHMUkIi1YubUlmFMgBeqOXGkfBFh8QUH3+YiI7Cwzh4=
 =SgFo
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-mmu-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 MMU changes for 6.9:

 - Clean up code related to unprotecting shadow pages when retrying a guest
   instruction after failed #PF-induced emulation.

 - Zap TDP MMU roots at 4KiB granularity to minimize the delay in yielding if
   a reschedule is needed, e.g. if a high priority task needs to run.  Because
   KVM doesn't support yielding in the middle of processing a zapped non-leaf
   SPTE, zapping at 1GiB granularity can result in multi-millisecond lag when
   attempting to schedule in a high priority.

 - Rework TDP MMU root unload, free, and alloc to run with mmu_lock held for
   read, e.g. to avoid serializing vCPUs when userspace deletes a memslot.

 - Allocate write-tracking metadata on-demand to avoid the memory overhead when
   running kernels built with KVMGT support (external write-tracking enabled),
   but for workloads that don't use nested virtualization (shadow paging) or
   KVMGT.
2024-03-11 10:29:22 -04:00
Paolo Bonzini
c9cd0beae9 KVM x86 misc changes for 6.9:
- Explicitly initialize a variety of on-stack variables in the emulator that
    triggered KMSAN false positives (though in fairness in KMSAN, it's comically
    difficult to see that the uninitialized memory is never truly consumed).
 
  - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
    DR6 and DR7.
 
  - Rework the "force immediate exit" code so that vendor code ultimately
    decides how and when to force the exit.  This allows VMX to further optimize
    handling preemption timer exits, and allows SVM to avoid sending a duplicate
    IPI (SVM also has a need to force an exit).
 
  - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
    vCPU creation ultimately failed, and add WARN to guard against similar bugs.
 
  - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
    (for directed yield), and simplify the logic for checking if the currently
    loaded vCPU is in-kernel.
 
  - Misc cleanups and fixes.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEKTobbabEP7vbhhN9OlYIJqCjN/0FAmXrRjQACgkQOlYIJqCj
 N/2Dzw//b+ptSBAl1kGBRmk/DqsX7J9ZkQYCQOTeh1vXiUM+XRTSQoArN0Oo1roy
 3wcEnQ0beVw7jMuzZ8UUuTfU8WUMja/kwltnqXYNHwLnb6yH0I/BIengXWdUdAMc
 FmgPZ4qJR2IzKYzvDsc3eEQ515O8UHWakyVDnmLBtiakAeBcUTYceHpEEPpzE5y5
 ODASTQKM9o/h8R8JwKFTJ8/mrOLNcsu5SycwFdnmubLJCrNWtJWTijA6y1lh6shn
 hbEJex+ESoC2v8p7IP53u1SGJubVlPajt+RkYJtlEI3WVsevp024eYcF4nb1OjXi
 qS2Y3W7DQGWvyCBoSzoMY+9nRMgyOOpHYetdiz+9oZOmnjiYWY0ku59U7Gv+Aotj
 AUbCn4Ry/OpqsuZ7Oo7i3IT8R7uzsTeNNdxhYBn1OQquBEZ0KBYXlZkGfTk9K0t0
 Fhka/5Zu6fBlg5J+zCyaXUGmsGWBo/9HxsC5z1JuKo8fatro5qyqYE5KiM01dkqc
 6FET6gL+fFprC5c67JGRPdEtk6F9Emb+6oiTTA8/8q8JQQAKiJKk95Nlq7KzPfVS
 A5RQPTuTJ7acE/5CY4zB1DdxCjqgnonBEA2ULnA/J10Rk8orHJRnGJcEwKEyDrZh
 HpsxIIqt++i8KffORpCym6zSAVYuQjn1mu7MGth+zuCqhcEpBfc=
 =GX0O
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-misc-6.9' of https://github.com/kvm-x86/linux into HEAD

KVM x86 misc changes for 6.9:

 - Explicitly initialize a variety of on-stack variables in the emulator that
   triggered KMSAN false positives (though in fairness in KMSAN, it's comically
   difficult to see that the uninitialized memory is never truly consumed).

 - Fix the deubgregs ABI for 32-bit KVM, and clean up code related to reading
   DR6 and DR7.

 - Rework the "force immediate exit" code so that vendor code ultimately
   decides how and when to force the exit.  This allows VMX to further optimize
   handling preemption timer exits, and allows SVM to avoid sending a duplicate
   IPI (SVM also has a need to force an exit).

 - Fix a long-standing bug where kvm_has_noapic_vcpu could be left elevated if
   vCPU creation ultimately failed, and add WARN to guard against similar bugs.

 - Provide a dedicated arch hook for checking if a different vCPU was in-kernel
   (for directed yield), and simplify the logic for checking if the currently
   loaded vCPU is in-kernel.

 - Misc cleanups and fixes.
2024-03-11 10:24:56 -04:00
Paolo Bonzini
39fee313fd Merge tag 'kvm-x86-guest_memfd_fixes-6.8' of https://github.com/kvm-x86/linux into HEAD
KVM GUEST_MEMFD fixes for 6.8:

 - Make KVM_MEM_GUEST_MEMFD mutually exclusive with KVM_MEM_READONLY to
   avoid creating ABI that KVM can't sanely support.

 - Update documentation for KVM_SW_PROTECTED_VM to make it abundantly
   clear that such VMs are purely a development and testing vehicle, and
   come with zero guarantees.

 - Limit KVM_SW_PROTECTED_VM guests to the TDP MMU, as the long term plan
   is to support confidential VMs with deterministic private memory (SNP
   and TDX) only in the TDP MMU.

 - Fix a bug in a GUEST_MEMFD negative test that resulted in false passes
   when verifying that KVM_MEM_GUEST_MEMFD memslots can't be dirty logged.
2024-03-09 11:42:17 -05:00
David Woodhouse
451a707813 KVM: x86/xen: improve accuracy of Xen timers
A test program such as http://david.woodhou.se/timerlat.c confirms user
reports that timers are increasingly inaccurate as the lifetime of a
guest increases. Reporting the actual delay observed when asking for
100µs of sleep, it starts off OK on a newly-launched guest but gets
worse over time, giving incorrect sleep times:

root@ip-10-0-193-21:~# ./timerlat -c -n 5
00000000 latency 103243/100000 (3.2430%)
00000001 latency 103243/100000 (3.2430%)
00000002 latency 103242/100000 (3.2420%)
00000003 latency 103245/100000 (3.2450%)
00000004 latency 103245/100000 (3.2450%)

The biggest problem is that get_kvmclock_ns() returns inaccurate values
when the guest TSC is scaled. The guest sees a TSC value scaled from the
host TSC by a mul/shift conversion (hopefully done in hardware). The
guest then converts that guest TSC value into nanoseconds using the
mul/shift conversion given to it by the KVM pvclock information.

But get_kvmclock_ns() performs only a single conversion directly from
host TSC to nanoseconds, giving a different result. A test program at
http://david.woodhou.se/tsdrift.c demonstrates the cumulative error
over a day.

It's non-trivial to fix get_kvmclock_ns(), although I'll come back to
that. The actual guest hv_clock is per-CPU, and *theoretically* each
vCPU could be running at a *different* frequency. But this patch is
needed anyway because...

The other issue with Xen timers was that the code would snapshot the
host CLOCK_MONOTONIC at some point in time, and then... after a few
interrupts may have occurred, some preemption perhaps... would also read
the guest's kvmclock. Then it would proceed under the false assumption
that those two happened at the *same* time. Any time which *actually*
elapsed between reading the two clocks was introduced as inaccuracies
in the time at which the timer fired.

Fix it to use a variant of kvm_get_time_and_clockread(), which reads the
host TSC just *once*, then use the returned TSC value to calculate the
kvmclock (making sure to do that the way the guest would instead of
making the same mistake get_kvmclock_ns() does).

Sadly, hrtimers based on CLOCK_MONOTONIC_RAW are not supported, so Xen
timers still have to use CLOCK_MONOTONIC. In practice the difference
between the two won't matter over the timescales involved, as the
*absolute* values don't matter; just the delta.

This does mean a new variant of kvm_get_time_and_clockread() is needed;
called kvm_get_monotonic_and_clockread() because that's what it does.

Fixes: 5363952605 ("KVM: x86/xen: handle PV timers oneshot mode")
Signed-off-by: David Woodhouse <dwmw@amazon.co.uk>
Reviewed-by: Paul Durrant <paul@xen.org>
Link: https://lore.kernel.org/r/20240227115648.3104-2-dwmw2@infradead.org
[sean: massage moved comment, tweak if statement formatting]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-03-04 16:22:32 -08:00
Sean Christopherson
a1176ef5c9 KVM: x86/mmu: Restrict KVM_SW_PROTECTED_VM to the TDP MMU
Advertise and support software-protected VMs if and only if the TDP MMU is
enabled, i.e. disallow KVM_SW_PROTECTED_VM if TDP is enabled for KVM's
legacy/shadow MMU.  TDP support for the shadow MMU is maintenance-only,
e.g. support for TDX and SNP will also be restricted to the TDP MMU.

Fixes: 89ea60c2c7 ("KVM: x86: Add support for "protected VMs" that can utilize private memory")
Link: https://lore.kernel.org/r/20240222190612.2942589-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 17:07:06 -08:00
Sean Christopherson
322d79f1db KVM: x86: Clean up directed yield API for "has pending interrupt"
Directly return the boolean result of whether or not a vCPU has a pending
interrupt instead of effectively doing:

  if (true)
	return true;

  return false;

Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240110003938.490206-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:27:40 -08:00
Sean Christopherson
9b8615c5d3 KVM: x86: Rely solely on preempted_in_kernel flag for directed yield
Snapshot preempted_in_kernel using kvm_arch_vcpu_in_kernel() so that the
flag is "accurate" (or rather, consistent and deterministic within KVM)
for guests with protected state, and explicitly use preempted_in_kernel
when checking if a vCPU was preempted in kernel mode instead of bouncing
through kvm_arch_vcpu_in_kernel().

Drop the gnarly logic in kvm_arch_vcpu_in_kernel() that redirects to
preempted_in_kernel if the target vCPU is not the "running", i.e. loaded,
vCPU, as the only reason that code existed was for the directed yield case
where KVM wants to check the CPL of a vCPU that may or may not be loaded
on the current pCPU.

Cc: Like Xu <like.xu.linux@gmail.com>
Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240110003938.490206-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:27:03 -08:00
Sean Christopherson
77bcd9e623 KVM: Add dedicated arch hook for querying if vCPU was preempted in-kernel
Plumb in a dedicated hook for querying whether or not a vCPU was preempted
in-kernel.  Unlike literally every other architecture, x86's VMX can check
if a vCPU is in kernel context if and only if the vCPU is loaded on the
current pCPU.

x86's kvm_arch_vcpu_in_kernel() works around the limitation by querying
kvm_get_running_vcpu() and redirecting to vcpu->arch.preempted_in_kernel
as needed.  But that's unnecessary, confusing, and fragile, e.g. x86 has
had at least one bug where KVM incorrectly used a stale
preempted_in_kernel.

No functional change intended.

Reviewed-by: Yuan Yao <yuan.yao@intel.com>
Link: https://lore.kernel.org/r/20240110003938.490206-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:26:26 -08:00
Sean Christopherson
fc3c94142b KVM: x86: Sanity check that kvm_has_noapic_vcpu is zero at module_exit()
WARN if kvm.ko is unloaded with an elevated kvm_has_noapic_vcpu to guard
against incorrect management of the key, e.g. to detect if KVM fails to
decrement the key in error paths.  Because kvm_has_noapic_vcpu is purely
an optimization, in all likelihood KVM could completely botch handling of
kvm_has_noapic_vcpu and no one would notice (which is a good argument for
deleting the key entirely, but that's a problem for another day).

Note, ideally the sanity check would be performance when kvm_usage_count
goes to zero, but adding an arch callback just for this sanity check isn't
at all worth doing.

Link: https://lore.kernel.org/r/20240209222047.394389-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:24:26 -08:00
Sean Christopherson
a78d904669 KVM: x86: Move "KVM no-APIC vCPU" key management into local APIC code
Move incrementing and decrementing of kvm_has_noapic_vcpu into
kvm_create_lapic() and kvm_free_lapic() respectively to fix a benign bug
where KVM fails to decrement the count if vCPU creation ultimately fails,
e.g. due to a memory allocation failing.

Note, the bug is benign as kvm_has_noapic_vcpu is used purely to optimize
lapic_in_kernel() checks, and that optimization is quite dubious.  That,
and practically speaking no setup that cares at all about performance runs
with a userspace local APIC.

Reported-by: Li RongQing <lirongqing@baidu.com>
Cc: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Xu Yilun <yilun.xu@linux.intel.com>
Link: https://lore.kernel.org/r/20240209222047.394389-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:24:09 -08:00
Sean Christopherson
0ec3d6d1f1 KVM: x86: Fully defer to vendor code to decide how to force immediate exit
Now that vmx->req_immediate_exit is used only in the scope of
vmx_vcpu_run(), use force_immediate_exit to detect that KVM should usurp
the VMX preemption to force a VM-Exit and let vendor code fully handle
forcing a VM-Exit.

Opportunsitically drop __kvm_request_immediate_exit() and just have
vendor code call smp_send_reschedule() directly.  SVM already does this
when injecting an event while also trying to single-step an IRET, i.e.
it's not exactly secret knowledge that KVM uses a reschedule IPI to force
an exit.

Link: https://lore.kernel.org/r/20240110012705.506918-7-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:22:41 -08:00
Sean Christopherson
9c9025ea00 KVM: x86: Plumb "force_immediate_exit" into kvm_entry() tracepoint
Annotate the kvm_entry() tracepoint with "immediate exit" when KVM is
forcing a VM-Exit immediately after VM-Enter, e.g. when KVM wants to
inject an event but needs to first complete some other operation.
Knowing that KVM is (or isn't) forcing an exit is useful information when
debugging issues related to event injection.

Suggested-by: Maxim Levitsky <mlevitsk@redhat.com>
Link: https://lore.kernel.org/r/20240110012705.506918-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:22:36 -08:00
Sean Christopherson
dfeef3d3f3 KVM: x86: Drop superfluous check on direct MMU vs. WRITE_PF_TO_SP flag
Remove reexecute_instruction()'s final check on the MMU being direct, as
EMULTYPE_WRITE_PF_TO_SP is only ever set if the MMU is indirect, i.e. is a
shadow MMU.  Prior to commit 93c05d3ef2 ("KVM: x86: improve
reexecute_instruction"), the flag simply didn't exist (and KVM actually
returned "true" unconditionally for both types of MMUs).  I.e. the
explicit check for a direct MMU is simply leftover artifact from old code.

Link: https://lore.kernel.org/r/20240203002343.383056-4-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:19:06 -08:00
Sean Christopherson
515c18a64e KVM: x86: Drop dedicated logic for direct MMUs in reexecute_instruction()
Now that KVM doesn't pointlessly acquire mmu_lock for direct MMUs, drop
the dedicated path entirely and always query indirect_shadow_pages when
deciding whether or not to try unprotecting the gfn.  For indirect, a.k.a.
shadow MMUs, checking indirect_shadow_pages is harmless; unless *every*
shadow page was somehow zapped while KVM was attempting to emulate the
instruction, indirect_shadow_pages is guaranteed to be non-zero.

Well, unless the instruction used a direct hugepage with 2-level paging
for its code page, but in that case, there's obviously nothing to
unprotect.  And in the extremely unlikely case all shadow pages were
zapped, there's again obviously nothing to unprotect.

Link: https://lore.kernel.org/r/20240203002343.383056-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:19:06 -08:00
Mingwei Zhang
474b99ed70 KVM: x86/mmu: Don't acquire mmu_lock when using indirect_shadow_pages as a heuristic
Drop KVM's completely pointless acquisition of mmu_lock when deciding
whether or not to unprotect any shadow pages residing at the gfn before
resuming the guest to let it retry an instruction that KVM failed to
emulated.  In this case, indirect_shadow_pages is used as a coarse-grained
heuristic to check if there is any chance of there being a relevant shadow
page to unprotected.  But acquiring mmu_lock largely defeats any benefit
to the heuristic, as taking mmu_lock for write is likely far more costly
to the VM as a whole than unnecessarily walking mmu_page_hash.

Furthermore, the current code is already prone to false negatives and
false positives, as it drops mmu_lock before checking the flag and
unprotecting shadow pages.  And as evidenced by the lack of bug reports,
neither false positives nor false negatives are problematic.  A false
positive simply means that KVM will try to unprotect shadow pages that
have already been zapped.  And a false negative means that KVM will
resume the guest without unprotecting the gfn, i.e. if a shadow page was
_just_ created, the vCPU will hit the same page fault and do the whole
dance all over again, and detect and unprotect the shadow page the second
time around (or not, if something else zaps it first).

Reported-by: Jim Mattson <jmattson@google.com>
Signed-off-by: Mingwei Zhang <mizhang@google.com>
[sean: drop READ_ONCE() and comment change, rewrite changelog]
Link: https://lore.kernel.org/r/20240203002343.383056-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:19:06 -08:00
Sean Christopherson
2a5f091ce1 KVM: x86: Open code all direct reads to guest DR6 and DR7
Bite the bullet, and open code all direct reads of DR6 and DR7.  KVM
currently has a mix of open coded accesses and calls to kvm_get_dr(),
which is confusing and ugly because there's no rhyme or reason as to why
any particular chunk of code uses kvm_get_dr().

The obvious alternative is to force all accesses through kvm_get_dr(),
but it's not at all clear that doing so would be a net positive, e.g. even
if KVM ends up wanting/needing to force all reads through a common helper,
e.g. to play caching games, the cost of reverting this change is likely
lower than the ongoing cost of maintaining weird, arbitrary code.

No functional change intended.

Cc: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-3-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:14:47 -08:00
Sean Christopherson
fc5375dd8c KVM: x86: Make kvm_get_dr() return a value, not use an out parameter
Convert kvm_get_dr()'s output parameter to a return value, and clean up
most of the mess that was created by forcing callers to provide a pointer.

No functional change intended.

Acked-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240209220752.388160-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 16:14:47 -08:00
Paul Durrant
615451d8cb KVM: x86/xen: advertize the KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA capability
Now that all relevant kernel changes and selftests are in place, enable the
new capability.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-17-paul@xen.org
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-22 07:01:19 -08:00
Paul Durrant
a4bff3df51 KVM: pfncache: remove KVM_GUEST_USES_PFN usage
As noted in [1] the KVM_GUEST_USES_PFN usage flag is never set by any
callers of kvm_gpc_init(), and for good reason: the implementation is
incomplete/broken.  And it's not clear that there will ever be a user of
KVM_GUEST_USES_PFN, as coordinating vCPUs with mmu_notifier events is
non-trivial.

Remove KVM_GUEST_USES_PFN and all related code, e.g. dropping
KVM_GUEST_USES_PFN also makes the 'vcpu' argument redundant, to avoid
having to reason about broken code as __kvm_gpc_refresh() evolves.

Moreover, all existing callers specify KVM_HOST_USES_PFN so the usage
check in hva_to_pfn_retry() and hence the 'usage' argument to
kvm_gpc_init() are also redundant.

[1] https://lore.kernel.org/all/ZQiR8IpqOZrOpzHC@google.com

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-6-paul@xen.org
[sean: explicitly call out that guest usage is incomplete]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:43 -08:00
Paul Durrant
78b74638eb KVM: pfncache: add a mark-dirty helper
At the moment pages are marked dirty by open-coded calls to
mark_page_dirty_in_slot(), directly deferefencing the gpa and memslot
from the cache. After a subsequent patch these may not always be set
so add a helper now so that caller will protected from the need to know
about this detail.

Signed-off-by: Paul Durrant <pdurrant@amazon.com>
Reviewed-by: David Woodhouse <dwmw@amazon.co.uk>
Link: https://lore.kernel.org/r/20240215152916.1158-5-paul@xen.org
[sean: decrease indentation, use gpa_to_gfn()]
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-20 07:37:42 -08:00
Sean Christopherson
910c57dfa4 KVM: x86: Mark target gfn of emulated atomic instruction as dirty
When emulating an atomic access on behalf of the guest, mark the target
gfn dirty if the CMPXCHG by KVM is attempted and doesn't fault.  This
fixes a bug where KVM effectively corrupts guest memory during live
migration by writing to guest memory without informing userspace that the
page is dirty.

Marking the page dirty got unintentionally dropped when KVM's emulated
CMPXCHG was converted to do a user access.  Before that, KVM explicitly
mapped the guest page into kernel memory, and marked the page dirty during
the unmap phase.

Mark the page dirty even if the CMPXCHG fails, as the old data is written
back on failure, i.e. the page is still written.  The value written is
guaranteed to be the same because the operation is atomic, but KVM's ABI
is that all writes are dirty logged regardless of the value written.  And
more importantly, that's what KVM did before the buggy commit.

Huge kudos to the folks on the Cc list (and many others), who did all the
actual work of triaging and debugging.

Fixes: 1c2361f667 ("KVM: x86: Use __try_cmpxchg_user() to emulate atomic accesses")
Cc: stable@vger.kernel.org
Cc: David Matlack <dmatlack@google.com>
Cc: Pasha Tatashin <tatashin@google.com>
Cc: Michael Krebs <mkrebs@google.com>
base-commit: 6769ea8da8a93ed4630f1ce64df6aafcaabfce64
Reviewed-by: Jim Mattson <jmattson@google.com>
Link: https://lore.kernel.org/r/20240215010004.1456078-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-16 16:56:01 -08:00
Paolo Bonzini
2f8ebe43a0 KVM selftests fixes/cleanups (and one KVM x86 cleanup) for 6.8:
- Remove redundant newlines from error messages.
 
  - Delete an unused variable in the AMX test (which causes build failures when
    compiling with -Werror).
 
  - Fail instead of skipping tests if open(), e.g. of /dev/kvm, fails with an
    error code other than ENOENT (a Hyper-V selftest bug resulted in an EMFILE,
    and the test eventually got skipped).
 
  - Fix TSC related bugs in several Hyper-V selftests.
 
  - Fix a bug in the dirty ring logging test where a sem_post() could be left
    pending across multiple runs, resulting in incorrect synchronization between
    the main thread and the vCPU worker thread.
 
  - Relax the dirty log split test's assertions on 4KiB mappings to fix false
    positives due to the number of mappings for memslot 0 (used for code and
    data that is NOT being dirty logged) changing, e.g. due to NUMA balancing.
 
  - Have KVM's gtod_is_based_on_tsc() return "bool" instead of an "int" (the
    function generates boolean values, and all callers treat the return value as
    a bool).
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmXKupQSHHNlYW5qY0Bn
 b29nbGUuY29tAAoJEGCRIgFNDBL5DiQP/RNSgLrE9+/3oyqo9zpbhio2dKqz4dIk
 8Ga1ZE4R89dyMB9jGKtWn3rEkyma3TsB+neVpG9ohHV6j25JJ0vNAkxQu3Gt+gkl
 uM1lh/IfXPnAKyuy6dW9tpgZYE1v2/KfdWjeEzzxfPjzY/LX3yFiiCKEnUmfjjzZ
 sSz91nV4KYS4b4xLWTIcBgNJuyLJuL05htTLmCu7t8DKOBHwHxXjSn8qqG8OvAjs
 FOhf0zgGJKBFdKOw2Y8XeDdKO0RTEyEPHaFILcLEsuhoVIbY5OUmLe32pAFzzMbG
 hPawUZ5CzC++e339gUgGkRNY80iSnGcYVcZa+ohxOsNBdOWko9z/eGWZUV7qkYDK
 dkPHMoDnSzUCE2eSYbEB1eR/KOfziJCWMS9SAIJbJxIGb1HYajikwAEZ6FNp3R+u
 MyCuNlV9TfsGgt4Dx8RctMeH2ROpORRu7h3WPFUBgG2/jOzPk/OR6U8hSzvmhTvL
 MykZ8IaLmUIYoK/nCY2iwy50lQRxtZ/htqWn3sidCBGY0DXdNlMhvd3Vk9jtUvY5
 Fgof0b564eYfk/qO3cMIDd2WFaDejP28JVSn0CNm6z9i54ubCKkSBEb4kTYXXnVK
 YBHvbZ21Vjg52trudvK5UPt599sxxNBNiSV32ckLFKHS4ZVGSFSBSbsAWiQF157i
 CbYntmtJhM+D
 =infW
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-selftests-6.8-rcN' of https://github.com/kvm-x86/linux into HEAD

KVM selftests fixes/cleanups (and one KVM x86 cleanup) for 6.8:

 - Remove redundant newlines from error messages.

 - Delete an unused variable in the AMX test (which causes build failures when
   compiling with -Werror).

 - Fail instead of skipping tests if open(), e.g. of /dev/kvm, fails with an
   error code other than ENOENT (a Hyper-V selftest bug resulted in an EMFILE,
   and the test eventually got skipped).

 - Fix TSC related bugs in several Hyper-V selftests.

 - Fix a bug in the dirty ring logging test where a sem_post() could be left
   pending across multiple runs, resulting in incorrect synchronization between
   the main thread and the vCPU worker thread.

 - Relax the dirty log split test's assertions on 4KiB mappings to fix false
   positives due to the number of mappings for memslot 0 (used for code and
   data that is NOT being dirty logged) changing, e.g. due to NUMA balancing.

 - Have KVM's gtod_is_based_on_tsc() return "bool" instead of an "int" (the
   function generates boolean values, and all callers treat the return value as
   a bool).
2024-02-14 12:34:58 -05:00
Paolo Bonzini
22d0bc0721 KVM x86 fixes for 6.8:
- Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
    if the incoming events->nmi.pending is non-zero.  If the target vCPU is in
    the UNITIALIZED state, the spurious request will result in KVM exiting to
    userspace, which in turn causes QEMU to constantly acquire and release
    QEMU's global mutex, to the point where the BSP is unable to make forward
    progress.
 
  - Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
    incorrectly truncated, and ultimately causes KVM to think a fixed counter
    has already been disabled (KVM thinks the old value is '0').
 
  - Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
    that is ultimately ignored due to ignore_msrs=true doesn't zero the output
    as intended.
 -----BEGIN PGP SIGNATURE-----
 
 iQJGBAABCgAwFiEEMHr+pfEFOIzK+KY1YJEiAU0MEvkFAmXKt90SHHNlYW5qY0Bn
 b29nbGUuY29tAAoJEGCRIgFNDBL5e5wP/jU3Zuul2e7fb4E6RN/GPhAFSTzG7Cwe
 4lVSSSPmOQsEXTKwCOMj7fgwF9qVSLzLRi62MKziTJY/1FDsTcI3xlM7nM2wwQC2
 26evIzI3qB54rHQdviuh1jwh6scZH7xLw7kANE+8x4skkm6AZB1IUnj3utR3fEPj
 mIUA5kGQxEAEDrn0TFzrRgIw4JngKjrCwmpT+vbmR37flC+Rwv8jr4JY1E3cBAT3
 KEilv3Fg07gbvagWGZNSSUNqQos5MsnLifdryKbA/vuIJf+j/01CMo5KtLKshiaX
 t4gXPldVZDXdxjH6im0wRAX4s/FpZg3vVje2OxPbzwMVb5+XvLewzjzagQ1lFA3I
 gsNXF8uGdYn0fb8T/wQG4ulWBw6A844PSmGONCwLDA+GZuL9xjMIK5d1litvb/im
 bEP1Ahv6UcnDNKHqRzuFXQENiS2uQdJNLs7p291oDNkTm/CGjDUgFXPuaCehWrUf
 ZZf1dxmIPM/Xt2j19mS/HnTHD114A8t1GTx799kBXbG4x0ScVQclkhRk6yFG3ObA
 14uXxxAdEBoZGBJ2yr5FbddvRLswbWugFoxKbtCZ/CHMopOUQcRRmRb7Lm1NHLtg
 Ae/sHO6gQ1xcrbwpMCq+6RjFK57yW+n1TB8ZTmAE2RQynGqzReSTlUNtfn3yMg4v
 hz+2zGzezoeN
 =92ae
 -----END PGP SIGNATURE-----

Merge tag 'kvm-x86-fixes-6.8-rcN' of https://github.com/kvm-x86/linux into HEAD

KVM x86 fixes for 6.8:

 - Make a KVM_REQ_NMI request while handling KVM_SET_VCPU_EVENTS if and only
   if the incoming events->nmi.pending is non-zero.  If the target vCPU is in
   the UNITIALIZED state, the spurious request will result in KVM exiting to
   userspace, which in turn causes QEMU to constantly acquire and release
   QEMU's global mutex, to the point where the BSP is unable to make forward
   progress.

 - Fix a type (u8 versus u64) goof that results in pmu->fixed_ctr_ctrl being
   incorrectly truncated, and ultimately causes KVM to think a fixed counter
   has already been disabled (KVM thinks the old value is '0').

 - Fix a stack leak in KVM_GET_MSRS where a failed MSR read from userspace
   that is ultimately ignored due to ignore_msrs=true doesn't zero the output
   as intended.
2024-02-14 12:34:43 -05:00
Mathias Krause
e1dda3afe2 KVM: x86: Fix broken debugregs ABI for 32 bit kernels
The ioctl()s to get and set KVM's debug registers are broken for 32 bit
kernels as they'd only copy half of the user register state because of a
UAPI and in-kernel type mismatch (__u64 vs. unsigned long; 8 vs. 4
bytes).

This makes it impossible for userland to set anything but DR0 without
resorting to bit folding tricks.

Switch to a loop for copying debug registers that'll implicitly do the
type conversion for us, if needed.

There are likely no users (left) for 32bit KVM, fix the bug nonetheless.

Fixes: a1efbe77c1 ("KVM: x86: Add support for saving&restoring debug registers")
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Link: https://lore.kernel.org/r/20240203124522.592778-4-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-05 15:40:54 -08:00
Mathias Krause
3376ca3f1a KVM: x86: Fix KVM_GET_MSRS stack info leak
Commit 6abe9c1386 ("KVM: X86: Move ignore_msrs handling upper the
stack") changed the 'ignore_msrs' handling, including sanitizing return
values to the caller. This was fine until commit 12bc2132b1 ("KVM:
X86: Do the same ignore_msrs check for feature msrs") which allowed
non-existing feature MSRs to be ignored, i.e. to not generate an error
on the ioctl() level. It even tried to preserve the sanitization of the
return value. However, the logic is flawed, as '*data' will be
overwritten again with the uninitialized stack value of msr.data.

Fix this by simplifying the logic and always initializing msr.data,
vanishing the need for an additional error exit path.

Fixes: 12bc2132b1 ("KVM: X86: Do the same ignore_msrs check for feature msrs")
Signed-off-by: Mathias Krause <minipli@grsecurity.net>
Reviewed-by: Xiaoyao Li <xiaoyao.li@intel.com>
Link: https://lore.kernel.org/r/20240203124522.592778-2-minipli@grsecurity.net
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-05 11:20:51 -08:00
Sean Christopherson
f19063b1ca KVM: x86/pmu: Snapshot event selectors that KVM emulates in software
Snapshot the event selectors for the events that KVM emulates in software,
which is currently instructions retired and branch instructions retired.
The event selectors a tied to the underlying CPU, i.e. are constant for a
given platform even though perf doesn't manage the mappings as such.

Getting the event selectors from perf isn't exactly cheap, especially if
mitigations are enabled, as at least one indirect call is involved.

Snapshot the values in KVM instead of optimizing perf as working with the
raw event selectors will be required if KVM ever wants to emulate events
that aren't part of perf's uABI, i.e. that don't have an "enum perf_hw_id"
entry.

Link: https://lore.kernel.org/r/20231110022857.1273836-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 09:35:48 -08:00
Vitaly Kuznetsov
9e62797fd7 KVM: x86: Make gtod_is_based_on_tsc() return 'bool'
gtod_is_based_on_tsc() is boolean in nature, i.e. it returns '1' for good
clocksources and '0' otherwise. Moreover, its result is used raw by
kvm_get_time_and_clockread()/kvm_get_walltime_and_clockread() which are
'bool'.

No functional change intended.

Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Link: https://lore.kernel.org/r/20240109141121.1619463-6-vkuznets@redhat.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
2024-02-01 08:58:16 -08:00