With the rework of how the __string() handles dynamic strings where it
saves off the source string in field in the helper structure[1], the
assignment of that value to the trace event field is stored in the helper
value and does not need to be passed in again.
This means that with:
__string(field, mystring)
Which use to be assigned with __assign_str(field, mystring), no longer
needs the second parameter and it is unused. With this, __assign_str()
will now only get a single parameter.
There's over 700 users of __assign_str() and because coccinelle does not
handle the TRACE_EVENT() macro I ended up using the following sed script:
git grep -l __assign_str | while read a ; do
sed -e 's/\(__assign_str([^,]*[^ ,]\) *,[^;]*/\1)/' $a > /tmp/test-file;
mv /tmp/test-file $a;
done
I then searched for __assign_str() that did not end with ';' as those
were multi line assignments that the sed script above would fail to catch.
Note, the same updates will need to be done for:
__assign_str_len()
__assign_rel_str()
__assign_rel_str_len()
I tested this with both an allmodconfig and an allyesconfig (build only for both).
[1] https://lore.kernel.org/linux-trace-kernel/20240222211442.634192653@goodmis.org/
Link: https://lore.kernel.org/linux-trace-kernel/20240516133454.681ba6a0@rorschach.local.home
Cc: Masami Hiramatsu <mhiramat@kernel.org>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Julia Lawall <Julia.Lawall@inria.fr>
Signed-off-by: Steven Rostedt (Google) <rostedt@goodmis.org>
Acked-by: Jani Nikula <jani.nikula@intel.com>
Acked-by: Christian König <christian.koenig@amd.com> for the amdgpu parts.
Acked-by: Thomas Hellström <thomas.hellstrom@linux.intel.com> #for
Acked-by: Rafael J. Wysocki <rafael@kernel.org> # for thermal
Acked-by: Takashi Iwai <tiwai@suse.de>
Acked-by: Darrick J. Wong <djwong@kernel.org> # xfs
Tested-by: Guenter Roeck <linux@roeck-us.net>
Add some tracepoints for the extent map shrinker to help debug and analyse
main events. These have proved useful during development of the shrinker.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We only ever need to use this to get the level of the tree block ref, so
use the btrfs_delayed_ref_owner() helper, which returns the level for
the given reference.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that most of our elements are inside of btrfs_delayed_ref_node
directly and we have helpers for the delayed_data_ref bits, go ahead and
remove all direct usage of btrfs_delayed_data_ref and use the helpers
where needed.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These two members are shared by both the tree refs and data refs, so
move them into btrfs_delayed_ref_node proper. This allows us to greatly
simplify the comparison code, as the shared refs always only sort on
parent, and the non shared refs always sort first on ref_root, and then
only data refs sort on their specific fields.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that all of the delayed ref information is in the delayed ref node,
drastically simplify the delayed ref tracepoints by simply passing in
the btrfs_delayed_ref_node and populating the tracepoints with the
values from the structure itself.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The mod_start and mod_len fields of struct extent_map were introduced by
commit 4e2f84e63d ("Btrfs: improve fsync by filtering extents that we
want") in order to avoid too low performance when fsyncing a file that
keeps getting extent maps merge, because it resulted in each fsync logging
again csum ranges that were already merged before.
We don't need this anymore as extent maps in the list of modified extents
are never merged with other extent maps and once we log an extent map we
remove it from the list of modified extent maps, so it's never logged
twice.
So remove the mod_start and mod_len fields from struct extent_map and use
instead the start and len fields when logging checksums in the fast fsync
path. This also makes EXTENT_FLAG_FILLING unused so remove it as well.
Running the reproducer from the commit mentioned before, with a larger
number of extents and against a null block device, so that IO is fast
and we can better see any impact from searching checksums items and
logging them, gave the following results from dd:
Before this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.948 s, 17.8 MB/s
After this change:
409600000 bytes (410 MB, 391 MiB) copied, 22.9997 s, 17.8 MB/s
So no changes in throughput.
The test was done in a release kernel (non-debug, Debian's default kernel
config) and its steps are the following:
$ mkfs.btrfs -f /dev/nullb0
$ mount /dev/sdb /mnt
$ dd if=/dev/zero of=/mnt/foobar bs=4k count=100000 oflag=sync
$ umount /mnt
This also reduces the size of struct extent_map from 128 bytes down to 112
bytes, so now we can have 36 extents maps per 4K page instead of 32.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently, in struct extent_map, we use an unsigned int (32 bits) to
identify the compression type of an extent and an unsigned long (64 bits
on a 64 bits platform, 32 bits otherwise) for flags. We are only using
6 different flags, so an unsigned long is excessive and we can use flags
to identify the compression type instead of using a dedicated 32 bits
field.
We can easily have tens or hundreds of thousands (or more) of extent maps
on busy and large filesystems, specially with compression enabled or many
or large files with tons of small extents. So it's convenient to have the
extent_map structure as small as possible in order to use less memory.
So remove the compression type field from struct extent_map, use flags
to identify the compression type and shorten the flags field from an
unsigned long to a u32. This saves 8 bytes (on 64 bits platforms) and
reduces the size of the structure from 136 bytes down to 128 bytes, using
now only two cache lines, and increases the number of extent maps we can
have per 4K page from 30 to 32. By using a u32 for the flags instead of
an unsigned long, we no longer use test_bit(), set_bit() and clear_bit(),
but that level of atomicity is not needed as most flags are never cleared
once set (before adding an extent map to the tree), and the ones that can
be cleared or set after an extent map is added to the tree, are always
performed while holding the write lock on the extent map tree, while the
reader holds a lock on the tree or tests for a flag that never changes
once the extent map is in the tree (such as compression flags).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After commit ac3c0d36a2 ("btrfs: make fiemap more efficient and accurate
reporting extent sharedness") we no longer need to create special extent
maps during fiemap that have a block start with the EXTENT_MAP_DELALLOC
value. So this block start value for extent maps is no longer used since
then, therefore remove it.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_io_tree is embedded in several structures, notably in struct
btrfs_inode. The fs_info is only used for reporting errors and for
reference in trace points. We can get to the pointer through the inode,
but not all io trees set it. However, we always know the owner and
can recognize if inode is valid. For access helpers are provided, const
variant for the trace points.
This reduces size of extent_io_tree by 8 bytes and following structures
in turn:
- btrfs_inode 1104 -> 1088
- btrfs_device 520 -> 512
- btrfs_root 1360 -> 1344
- btrfs_transaction 456 -> 440
- btrfs_fs_info 3600 -> 3592
- reloc_control 1520 -> 1512
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we abuse the extent_map structure for two purposes:
1) To actually represent extents for inodes;
2) To represent chunk mappings.
This is odd and has several disadvantages:
1) To create a chunk map, we need to do two memory allocations: one for
an extent_map structure and another one for a map_lookup structure, so
more potential for an allocation failure and more complicated code to
manage and link two structures;
2) For a chunk map we actually only use 3 fields (24 bytes) of the
respective extent map structure: the 'start' field to have the logical
start address of the chunk, the 'len' field to have the chunk's size,
and the 'orig_block_len' field to contain the chunk's stripe size.
Besides wasting a memory, it's also odd and not intuitive at all to
have the stripe size in a field named 'orig_block_len'.
We are also using 'block_len' of the extent_map structure to contain
the chunk size, so we have 2 fields for the same value, 'len' and
'block_len', which is pointless;
3) When an extent map is associated to a chunk mapping, we set the bit
EXTENT_FLAG_FS_MAPPING on its flags and then make its member named
'map_lookup' point to the associated map_lookup structure. This means
that for an extent map associated to an inode extent, we are not using
this 'map_lookup' pointer, so wasting 8 bytes (on a 64 bits platform);
4) Extent maps associated to a chunk mapping are never merged or split so
it's pointless to use the existing extent map infrastructure.
So add a dedicated data structure named 'btrfs_chunk_map' to represent
chunk mappings, this is basically the existing map_lookup structure with
some extra fields:
1) 'start' to contain the chunk logical address;
2) 'chunk_len' to contain the chunk's length;
3) 'stripe_size' for the stripe size;
4) 'rb_node' for insertion into a rb tree;
5) 'refs' for reference counting.
This way we do a single memory allocation for chunk mappings and we don't
waste memory for them with unused/unnecessary fields from an extent_map.
We also save 8 bytes from the extent_map structure by removing the
'map_lookup' pointer, so the size of struct extent_map is reduced from
144 bytes down to 136 bytes, and we can now have 30 extents map per 4K
page instead of 28.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There are two callbacks defined in btrfs_work but only two actually make
use of them, otherwise there are NULLs. We can get rid of the freeing
callback making it a special case of the normal work. This reduces the
size of btrfs_work by 8 bytes, final layout:
struct btrfs_work {
btrfs_func_t func; /* 0 8 */
btrfs_ordered_func_t ordered_func; /* 8 8 */
struct work_struct normal_work; /* 16 32 */
struct list_head ordered_list; /* 48 16 */
/* --- cacheline 1 boundary (64 bytes) --- */
struct btrfs_workqueue * wq; /* 64 8 */
long unsigned int flags; /* 72 8 */
/* size: 80, cachelines: 2, members: 6 */
/* last cacheline: 16 bytes */
};
This in turn reduces size of other structures (on a release config):
- async_chunk 160 -> 152
- async_submit_bio 152 -> 144
- btrfs_async_delayed_work 104 -> 96
- btrfs_caching_control 176 -> 168
- btrfs_delalloc_work 144 -> 136
- btrfs_fs_info 3608 -> 3600
- btrfs_ordered_extent 440 -> 424
- btrfs_writepage_fixup 104 -> 96
Signed-off-by: David Sterba <dsterba@suse.com>
Add trace events for raid-stripe-tree operations.
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The v0 extent item has been deprecated for a long time, and we don't have
any report from the community either.
So it's time to remove the v0 extent specific error handling, and just
treat them as regular extent tree corruption.
This patch would remove the btrfs_print_v0_err() helper, and enhance the
involved error handling to treat them just as any extent tree
corruption. No reports regarding v0 extents have been seen since the
graceful handling was added in 2018.
This involves:
- btrfs_backref_add_tree_node()
This change is a little tricky, the new code is changed to only handle
BTRFS_TREE_BLOCK_REF_KEY and BTRFS_SHARED_BLOCK_REF_KEY.
But this is safe, as we have rejected any unknown inline refs through
btrfs_get_extent_inline_ref_type().
For keyed backrefs, we're safe to skip anything we don't know (that's
if it can pass tree-checker in the first place).
- btrfs_lookup_extent_info()
- lookup_inline_extent_backref()
- run_delayed_extent_op()
- __btrfs_free_extent()
- add_tree_block()
Regular error handling of unexpected extent tree item, and abort
transaction (if we have a trans handle).
- remove_extent_data_ref()
It's pretty much the same as the regular rejection of unknown backref
key.
But for this particular case, we can also remove a BUG_ON().
- extent_data_ref_count()
We can remove the BTRFS_EXTENT_REF_V0_KEY BUG_ON(), as it would be
rejected by the only caller.
- btrfs_print_leaf()
Remove the handling for BTRFS_EXTENT_REF_V0_KEY.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
After commit 6bfd0133be ("btrfs: raid56: switch scrub path to use a
single function"), the raid56 implementation no longer uses different
endio functions for RMW/recover/scrub.
All read operations end in submit_read_wait_bio_list(), while all write
operations end in submit_write_bios(). This means quite some trace
events are out-of-date and no longer utilized.
This patch would unify the trace events into just two:
- trace_raid56_read()
Replaces trace_raid56_read_partial(), trace_raid56_scrub_read() and
trace_raid56_scrub_read_recover().
- trace_raid56_write()
Replaces trace_raid56_write_stripe() and
trace_raid56_scrub_write_stripe().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The btrfs_inode_mod_outstanding_extents trace event only shows the modified
number to the number of outstanding extents. It would be helpful if we can
see the resulting extent number as well.
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add a helper to complete an ordered_extent without first doing a lookup.
The tracepoint cannot use the ordered_extent class as we also want to
print the range.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In btrfs_io_context structure, we have a pointer raid_map, which
indicates the logical bytenr for each stripe.
But considering we always call sort_parity_stripes(), the result
raid_map[] is always sorted, thus raid_map[0] is always the logical
bytenr of the full stripe.
So why we waste the space and time (for sorting) for raid_map?
This patch will replace btrfs_io_context::raid_map with a single u64
number, full_stripe_start, by:
- Replace btrfs_io_context::raid_map with full_stripe_start
- Replace call sites using raid_map[0] to use full_stripe_start
- Replace call sites using raid_map[i] to compare with nr_data_stripes.
The benefits are:
- Less memory wasted on raid_map
It's sizeof(u64) * num_stripes vs sizeof(u64).
It'll always save at least one u64, and the benefit grows larger with
num_stripes.
- No more weird alloc_btrfs_io_context() behavior
As there is only one fixed size + one variable length array.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The aim of this patch is to reduce the fragmentation of block groups
under certain unhappy workloads. It is particularly effective when the
size of extents correlates with their lifetime, which is something we
have observed causing fragmentation in the fleet at Meta.
This patch categorizes extents into size classes:
- x < 128KiB: "small"
- 128KiB < x < 8MiB: "medium"
- x > 8MiB: "large"
and as much as possible reduces allocations of extents into block groups
that don't match the size class. This takes advantage of any (possible)
correlation between size and lifetime and also leaves behind predictable
re-usable gaps when extents are freed; small writes don't gum up bigger
holes.
Size classes are implemented in the following way:
- Mark each new block group with a size class of the first allocation
that goes into it.
- Add two new passes to ffe: "unset size class" and "wrong size class".
First, try only matching block groups, then try unset ones, then allow
allocation of new ones, and finally allow mismatched block groups.
- Filtering is done just by skipping inappropriate ones, there is no
special size class indexing.
Other solutions I considered were:
- A best fit allocator with an rb-tree. This worked well, as small
writes didn't leak big holes from large freed extents, but led to
regressions in ffe and write performance due to lock contention on
the rb-tree with every allocation possibly updating it in parallel.
Perhaps something clever could be done to do the updates in the
background while being "right enough".
- A fixed size "working set". This prevents freeing an extent
drastically changing where writes currently land, and seems like a
good option too. Doesn't take advantage of size in any way.
- The same size class idea, but implemented with xarray marks. This
turned out to be slower than looping the linked list and skipping
wrong block groups, and is also less flexible since we must have only
3 size classes (max #marks). With the current approach we can have as
many as we like.
Performance testing was done via: https://github.com/josefbacik/fsperf
Of particular relevance are the new fragmentation specific tests.
A brief summary of the testing results:
- Neutral results on existing tests. There are some minor regressions
and improvements here and there, but nothing that truly stands out as
notable.
- Improvement on new tests where size class and extent lifetime are
correlated. Fragmentation in these cases is completely eliminated
and write performance is generally a little better. There is also
significant improvement where extent sizes are just a bit larger than
the size class boundaries.
- Regression on one new tests: where the allocations are sized
intentionally a hair under the borders of the size classes. Results
are neutral on the test that intentionally attacks this new scheme by
mixing extent size and lifetime.
The full dump of the performance results can be found here:
https://bur.io/fsperf/size-class-2022-11-15.txt
(there are ANSI escape codes, so best to curl and view in terminal)
Here is a snippet from the full results for a new test which mixes
buffered writes appending to a long lived set of files and large short
lived fallocates:
bufferedappendvsfallocate results
metric baseline current stdev diff
======================================================================================
avg_commit_ms 31.13 29.20 2.67 -6.22%
bg_count 14 15.60 0 11.43%
commits 11.10 12.20 0.32 9.91%
elapsed 27.30 26.40 2.98 -3.30%
end_state_mount_ns 11122551.90 10635118.90 851143.04 -4.38%
end_state_umount_ns 1.36e+09 1.35e+09 12248056.65 -1.07%
find_free_extent_calls 116244.30 114354.30 964.56 -1.63%
find_free_extent_ns_max 599507.20 1047168.20 103337.08 74.67%
find_free_extent_ns_mean 3607.19 3672.11 101.20 1.80%
find_free_extent_ns_min 500 512 6.67 2.40%
find_free_extent_ns_p50 2848 2876 37.65 0.98%
find_free_extent_ns_p95 4916 5000 75.45 1.71%
find_free_extent_ns_p99 20734.49 20920.48 1670.93 0.90%
frag_pct_max 61.67 0 8.05 -100.00%
frag_pct_mean 43.59 0 6.10 -100.00%
frag_pct_min 25.91 0 16.60 -100.00%
frag_pct_p50 42.53 0 7.25 -100.00%
frag_pct_p95 61.67 0 8.05 -100.00%
frag_pct_p99 61.67 0 8.05 -100.00%
fragmented_bg_count 6.10 0 1.45 -100.00%
max_commit_ms 49.80 46 5.37 -7.63%
sys_cpu 2.59 2.62 0.29 1.39%
write_bw_bytes 1.62e+08 1.68e+08 17975843.50 3.23%
write_clat_ns_mean 57426.39 54475.95 2292.72 -5.14%
write_clat_ns_p50 46950.40 42905.60 2101.35 -8.62%
write_clat_ns_p99 148070.40 143769.60 2115.17 -2.90%
write_io_kbytes 4194304 4194304 0 0.00%
write_iops 2476.15 2556.10 274.29 3.23%
write_lat_ns_max 2101667.60 2251129.50 370556.59 7.11%
write_lat_ns_mean 59374.91 55682.00 2523.09 -6.22%
write_lat_ns_min 17353.10 16250 1646.08 -6.36%
There are some mixed improvements/regressions in most metrics along with
an elimination of fragmentation in this workload.
On the balance, the drastic 1->0 improvement in the happy cases seems
worth the mix of regressions and improvements we do observe.
Some considerations for future work:
- Experimenting with more size classes
- More hinting/search ordering work to approximate a best-fit allocator
Signed-off-by: Boris Burkov <boris@bur.io>
Signed-off-by: David Sterba <dsterba@suse.com>
find_free_extent is a complicated function. It consists (at least) of:
- a hint that jumps into the middle of a for loop macro
- a middle loop trying every raid level
- an outer loop ascending through ffe loop levels
- complicated logic for skipping some of those ffe loop levels
- multiple underlying in-bg allocators (zoned, cluster, no cluster)
Which is all to say that more tracing is helpful for debugging its
behavior. Add two new tracepoints: at the entrance to the block_groups
loop (hit for every raid level and every ffe_ctl loop) and at the point
we seriously consider a block_group for allocation. This way we can see
the whole path through the algorithm, including hints, multiple loops,
etc.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The allocator tracepoints currently have a pile of values from ffe_ctl.
In modifying the allocator and adding more tracepoints, I found myself
adding to the already long argument list of the tracepoints. It makes it
a lot simpler to just send in the ffe_ctl itself.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Boris Burkov <boris@bur.io>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fix a typo of printing FLUSH_DELAYED_REFS event in flush_space() as
FLUSH_ELAYED_REFS.
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The extent_io_tree::private_data was meant to be a preparatory work for
the metadata inode rework but that never materialized. Now it's used
only for an inode so it's better to change the appropriate type and
rename it.
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a separate I/O failure tree to track the fail reads, so remove
the extra EXTENT_DAMAGED bit in the I/O tree as it's set but never used.
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We still have this oddity of stashing the io_failure_record in the
extent state for the io_failure_tree, which is leftover from when we
used to stuff private pointers in extent_io_trees.
However this doesn't make a lot of sense for the io failure records, we
can simply use a normal rb_tree for this. This will allow us to further
simplify the extent_io_tree code by removing the io_failure_rec pointer
from the extent state.
Convert the io_failure_tree to an rb tree + spinlock in the inode, and
then use our rb tree simple helpers to insert and find failed records.
This greatly cleans up this code and makes it easier to separate out the
extent_io_tree code.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When debugging a reference counting issue with ordered extents, I've found
we're lacking a lot of tracepoint coverage in the ordered extent code.
Close these gaps by adding tracepoints after every refcount_inc() in the
ordered extent code.
Reviewed-by: Boris Burkov <boris@bur.io>
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Anand Jain <anand.jain@oracle.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Add tracepoint for better insight to how the RAID56 data are submitted.
The output looks like this: (trace event header and UUID skipped)
raid56_read_partial: full_stripe=389152768 devid=3 type=DATA1 offset=32768 opf=0x0 physical=323059712 len=32768
raid56_read_partial: full_stripe=389152768 devid=1 type=DATA2 offset=0 opf=0x0 physical=67174400 len=65536
raid56_write_stripe: full_stripe=389152768 devid=3 type=DATA1 offset=0 opf=0x1 physical=323026944 len=32768
raid56_write_stripe: full_stripe=389152768 devid=2 type=PQ1 offset=0 opf=0x1 physical=323026944 len=32768
The above debug output is from a 32K data write into an empty RAID56
data chunk.
Some explanation on the event output:
full_stripe: the logical bytenr of the full stripe
devid: btrfs devid
type: raid stripe type.
DATA1: the first data stripe
DATA2: the second data stripe
PQ1: the P stripe
PQ2: the Q stripe
offset: the offset inside the stripe.
opf: the bio op type
physical: the physical offset the bio is for
len: the length of the bio
The first two lines are from partial RMW read, which is reading the
remaining data stripes from disks.
The last two lines are for full stripe RMW write, which is writing the
involved two 16K stripes (one for DATA1 stripe, one for P stripe).
The stripe for DATA2 doesn't need to be written.
There are 5 types of trace events:
- raid56_read_partial
Read remaining data for regular read/write path.
- raid56_write_stripe
Write the modified stripes for regular read/write path.
- raid56_scrub_read_recover
Read remaining data for scrub recovery path.
- raid56_scrub_write_stripe
Write the modified stripes for scrub path.
- raid56_scrub_read
Read remaining data for scrub path.
Also, since the trace events are included at super.c, we have to export
needed structure definitions to 'raid56.h' and include the header in
super.c, or we're unable to access those members.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
file-backed transparent hugepages.
Johannes Weiner has arranged for zswap memory use to be tracked and
managed on a per-cgroup basis.
Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for runtime
enablement of the recent huge page vmemmap optimization feature.
Baolin Wang contributes a series to fix some issues around hugetlb
pagetable invalidation.
Zhenwei Pi has fixed some interactions between hwpoisoned pages and
virtualization.
Tong Tiangen has enabled the use of the presently x86-only
page_table_check debugging feature on arm64 and riscv.
David Vernet has done some fixup work on the memcg selftests.
Peter Xu has taught userfaultfd to handle write protection faults against
shmem- and hugetlbfs-backed files.
More DAMON development from SeongJae Park - adding online tuning of the
feature and support for monitoring of fixed virtual address ranges. Also
easier discovery of which monitoring operations are available.
Nadav Amit has done some optimization of TLB flushing during mprotect().
Neil Brown continues to labor away at improving our swap-over-NFS support.
David Hildenbrand has some fixes to anon page COWing versus
get_user_pages().
Peng Liu fixed some errors in the core hugetlb code.
Joao Martins has reduced the amount of memory consumed by device-dax's
compound devmaps.
Some cleanups of the arch-specific pagemap code from Anshuman Khandual.
Muchun Song has found and fixed some errors in the TLB flushing of
transparent hugepages.
Roman Gushchin has done more work on the memcg selftests.
And, of course, many smaller fixes and cleanups. Notably, the customary
million cleanup serieses from Miaohe Lin.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCYo52xQAKCRDdBJ7gKXxA
jtJFAQD238KoeI9z5SkPMaeBRYSRQmNll85mxs25KapcEgWgGQD9FAb7DJkqsIVk
PzE+d9hEfirUGdL6cujatwJ6ejYR8Q8=
=nFe6
-----END PGP SIGNATURE-----
Merge tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull MM updates from Andrew Morton:
"Almost all of MM here. A few things are still getting finished off,
reviewed, etc.
- Yang Shi has improved the behaviour of khugepaged collapsing of
readonly file-backed transparent hugepages.
- Johannes Weiner has arranged for zswap memory use to be tracked and
managed on a per-cgroup basis.
- Munchun Song adds a /proc knob ("hugetlb_optimize_vmemmap") for
runtime enablement of the recent huge page vmemmap optimization
feature.
- Baolin Wang contributes a series to fix some issues around hugetlb
pagetable invalidation.
- Zhenwei Pi has fixed some interactions between hwpoisoned pages and
virtualization.
- Tong Tiangen has enabled the use of the presently x86-only
page_table_check debugging feature on arm64 and riscv.
- David Vernet has done some fixup work on the memcg selftests.
- Peter Xu has taught userfaultfd to handle write protection faults
against shmem- and hugetlbfs-backed files.
- More DAMON development from SeongJae Park - adding online tuning of
the feature and support for monitoring of fixed virtual address
ranges. Also easier discovery of which monitoring operations are
available.
- Nadav Amit has done some optimization of TLB flushing during
mprotect().
- Neil Brown continues to labor away at improving our swap-over-NFS
support.
- David Hildenbrand has some fixes to anon page COWing versus
get_user_pages().
- Peng Liu fixed some errors in the core hugetlb code.
- Joao Martins has reduced the amount of memory consumed by
device-dax's compound devmaps.
- Some cleanups of the arch-specific pagemap code from Anshuman
Khandual.
- Muchun Song has found and fixed some errors in the TLB flushing of
transparent hugepages.
- Roman Gushchin has done more work on the memcg selftests.
... and, of course, many smaller fixes and cleanups. Notably, the
customary million cleanup serieses from Miaohe Lin"
* tag 'mm-stable-2022-05-25' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm: (381 commits)
mm: kfence: use PAGE_ALIGNED helper
selftests: vm: add the "settings" file with timeout variable
selftests: vm: add "test_hmm.sh" to TEST_FILES
selftests: vm: check numa_available() before operating "merge_across_nodes" in ksm_tests
selftests: vm: add migration to the .gitignore
selftests/vm/pkeys: fix typo in comment
ksm: fix typo in comment
selftests: vm: add process_mrelease tests
Revert "mm/vmscan: never demote for memcg reclaim"
mm/kfence: print disabling or re-enabling message
include/trace/events/percpu.h: cleanup for "percpu: improve percpu_alloc_percpu event trace"
include/trace/events/mmflags.h: cleanup for "tracing: incorrect gfp_t conversion"
mm: fix a potential infinite loop in start_isolate_page_range()
MAINTAINERS: add Muchun as co-maintainer for HugeTLB
zram: fix Kconfig dependency warning
mm/shmem: fix shmem folio swapoff hang
cgroup: fix an error handling path in alloc_pagecache_max_30M()
mm: damon: use HPAGE_PMD_SIZE
tracing: incorrect isolate_mote_t cast in mm_vmscan_lru_isolate
nodemask.h: fix compilation error with GCC12
...
Just let the one caller that wants optional WQ_HIGHPRI handling allocate
a separate btrfs_workqueue for that. This allows to rename struct
__btrfs_workqueue to btrfs_workqueue, remove a pointer indirection and
separate allocation for all btrfs_workqueue users and generally simplify
the code.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Fixes the following sparse warnings:
include/trace/events/*: sparse: cast to restricted gfp_t
include/trace/events/*: sparse: restricted gfp_t degrades to integer
gfp_t type is bitwise and requires __force attributes for any casts.
Link: https://lkml.kernel.org/r/331d88fe-f4f7-657c-02a2-d977f15fbff6@openvz.org
Signed-off-by: Vasily Averin <vvs@openvz.org>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Ingo Molnar <mingo@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
This code adds the on disk structures for the block group root, which
will hold the block group items for extent tree v2.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The root on the trans->root can be anything, and generally we're
committing from the transaction kthread so it's usually the tree_root.
Change this to just take an fs_info, and to maintain compatibility
simply put the ROOT_TREE_OBJECTID as the root objectid for the
tracepoint. This will allow use to remove trans->root.
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have been hitting some early ENOSPC issues in production with more
recent kernels, and I tracked it down to us simply not flushing delalloc
as aggressively as we should be. With tracing I was seeing us failing
all tickets with all of the block rsvs at or around 0, with very little
pinned space, but still around 120MiB of outstanding bytes_may_used.
Upon further investigation I saw that we were flushing around 14 pages
per shrink call for delalloc, despite having around 2GiB of delalloc
outstanding.
Consider the example of a 8 way machine, all CPUs trying to create a
file in parallel, which at the time of this commit requires 5 items to
do. Assuming a 16k leaf size, we have 10MiB of total metadata reclaim
size waiting on reservations. Now assume we have 128MiB of delalloc
outstanding. With our current math we would set items to 20, and then
set to_reclaim to 20 * 256k, or 5MiB.
Assuming that we went through this loop all 3 times, for both
FLUSH_DELALLOC and FLUSH_DELALLOC_WAIT, and then did the full loop
twice, we'd only flush 60MiB of the 128MiB delalloc space. This could
leave a fair bit of delalloc reservations still hanging around by the
time we go to ENOSPC out all the remaining tickets.
Fix this two ways. First, change the calculations to be a fraction of
the total delalloc bytes on the system. Prior to this change we were
calculating based on dirty inodes so our math made more sense, now it's
just completely unrelated to what we're actually doing.
Second add a FLUSH_DELALLOC_FULL state, that we hold off until we've
gone through the flush states at least once. This will empty the system
of all delalloc so we're sure to be truly out of space when we start
failing tickets.
I'm tagging stable 5.10 and forward, because this is where we started
using the page stuff heavily again. This affects earlier kernel
versions as well, but would be a pain to backport to them as the
flushing mechanisms aren't the same.
CC: stable@vger.kernel.org # 5.10+
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When debugging early enospc problems it was useful to have a tracepoint
where we failed all tickets so I could check the state of the enospc
counters at failure time to validate my fixes. This adds the tracpoint
so you can easily get that information.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
In order to debug delalloc flushing issues I added delalloc_bytes and
ordered_bytes to this tracepoint to see if they were non-zero when we
were going ENOSPC. This was valuable for me and showed me cases where we
weren't waiting on ordered extents properly. In order to add this to the
tracepoint we need to take away the const modifier for fs_info, as
percpu_sum_counter_positive() will change the counter when it adds up
the percpu buckets. This is needed to make sure we're getting accurate
information at these tracepoints, as the wrong information could send us
down the wrong path when debugging problems.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
- Added option for per CPU threads to the hwlat tracer
- Have hwlat tracer handle hotplug CPUs
- New tracer: osnoise, that detects latency caused by interrupts, softirqs
and scheduling of other tasks.
- Added timerlat tracer that creates a thread and measures in detail what
sources of latency it has for wake ups.
- Removed the "success" field of the sched_wakeup trace event.
This has been hardcoded as "1" since 2015, no tooling should be looking
at it now. If one exists, we can revert this commit, fix that tool and
try to remove it again in the future.
- tgid mapping fixed to handle more than PID_MAX_DEFAULT pids/tgids.
- New boot command line option "tp_printk_stop", as tp_printk causes trace
events to write to console. When user space starts, this can easily live
lock the system. Having a boot option to stop just after boot up is
useful to prevent that from happening.
- Have ftrace_dump_on_oops boot command line option take numbers that match
the numbers shown in /proc/sys/kernel/ftrace_dump_on_oops.
- Bootconfig clean ups, fixes and enhancements.
- New ktest script that tests bootconfig options.
- Add tracepoint_probe_register_may_exist() to register a tracepoint
without triggering a WARN*() if it already exists. BPF has a path from
user space that can do this. All other paths are considered a bug.
- Small clean ups and fixes
-----BEGIN PGP SIGNATURE-----
iIoEABYIADIWIQRRSw7ePDh/lE+zeZMp5XQQmuv6qgUCYN8YPhQccm9zdGVkdEBn
b29kbWlzLm9yZwAKCRAp5XQQmuv6qhxLAP9Mo5hHv7Hg6W7Ddv77rThm+qclsMR/
yW0P+eJpMm4+xAD8Cq03oE1DimPK+9WZBKU5rSqAkqG6CjgDRw6NlIszzQQ=
=WEPR
-----END PGP SIGNATURE-----
Merge tag 'trace-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace
Pull tracing updates from Steven Rostedt:
- Added option for per CPU threads to the hwlat tracer
- Have hwlat tracer handle hotplug CPUs
- New tracer: osnoise, that detects latency caused by interrupts,
softirqs and scheduling of other tasks.
- Added timerlat tracer that creates a thread and measures in detail
what sources of latency it has for wake ups.
- Removed the "success" field of the sched_wakeup trace event. This has
been hardcoded as "1" since 2015, no tooling should be looking at it
now. If one exists, we can revert this commit, fix that tool and try
to remove it again in the future.
- tgid mapping fixed to handle more than PID_MAX_DEFAULT pids/tgids.
- New boot command line option "tp_printk_stop", as tp_printk causes
trace events to write to console. When user space starts, this can
easily live lock the system. Having a boot option to stop just after
boot up is useful to prevent that from happening.
- Have ftrace_dump_on_oops boot command line option take numbers that
match the numbers shown in /proc/sys/kernel/ftrace_dump_on_oops.
- Bootconfig clean ups, fixes and enhancements.
- New ktest script that tests bootconfig options.
- Add tracepoint_probe_register_may_exist() to register a tracepoint
without triggering a WARN*() if it already exists. BPF has a path
from user space that can do this. All other paths are considered a
bug.
- Small clean ups and fixes
* tag 'trace-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (49 commits)
tracing: Resize tgid_map to pid_max, not PID_MAX_DEFAULT
tracing: Simplify & fix saved_tgids logic
treewide: Add missing semicolons to __assign_str uses
tracing: Change variable type as bool for clean-up
trace/timerlat: Fix indentation on timerlat_main()
trace/osnoise: Make 'noise' variable s64 in run_osnoise()
tracepoint: Add tracepoint_probe_register_may_exist() for BPF tracing
tracing: Fix spelling in osnoise tracer "interferences" -> "interference"
Documentation: Fix a typo on trace/osnoise-tracer
trace/osnoise: Fix return value on osnoise_init_hotplug_support
trace/osnoise: Make interval u64 on osnoise_main
trace/osnoise: Fix 'no previous prototype' warnings
tracing: Have osnoise_main() add a quiescent state for task rcu
seq_buf: Make trace_seq_putmem_hex() support data longer than 8
seq_buf: Fix overflow in seq_buf_putmem_hex()
trace/osnoise: Support hotplug operations
trace/hwlat: Support hotplug operations
trace/hwlat: Protect kdata->kthread with get/put_online_cpus
trace: Add timerlat tracer
trace: Add osnoise tracer
...
The __assign_str macro has an unusual ending semicolon but the vast
majority of uses of the macro already have semicolon termination.
$ git grep -P '\b__assign_str\b' | wc -l
551
$ git grep -P '\b__assign_str\b.*;' | wc -l
480
Add semicolons to the __assign_str() uses without semicolon termination
and all the other uses without semicolon termination via additional defines
that are equivalent to __assign_str() with the eventual goal of removing
the semicolon from the __assign_str() macro definition.
Link: https://lore.kernel.org/lkml/1e068d21106bb6db05b735b4916bb420e6c9842a.camel@perches.com/
Link: https://lkml.kernel.org/r/48a056adabd8f70444475352f617914cef504a45.camel@perches.com
Signed-off-by: Joe Perches <joe@perches.com>
Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
may_commit_transaction was introduced before the ticketing
infrastructure existed. There was a problem where we'd legitimately be
out of space, but every reservation would trigger a transaction commit
and then fail. Thus if you had 1000 things trying to make a
reservation, they'd all do the flushing loop and thus commit the
transaction 1000 times before they'd get their ENOSPC.
This helper was introduced to short circuit this, if there wasn't space
that could be reclaimed by committing the transaction then simply ENOSPC
out. This made true ENOSPC tests much faster as we didn't waste a bunch
of time.
However many of our bugs over the years have been from cases where we
didn't account for some space that would be reclaimed by committing a
transaction. The delayed refs rsv space, delayed rsv, many pinned bytes
miscalculations, etc. And in the meantime the original problem has been
solved with ticketing. We no longer will commit the transaction 1000
times. Instead we'll get 1000 waiters, we will go through the flushing
mechanisms, and if there's no progress after 2 loops we ENOSPC everybody
out. The ticketing infrastructure gives us a deterministic way to see
if we're making progress or not, thus we avoid a lot of extra work.
So simplify this step by simply unconditionally committing the
transaction. This removes what is arguably our most common source of
early ENOSPC bugs and will allow us to drastically simplify many of the
things we track because we simply won't need them with this stuff gone.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
There is a pretty bad abuse of btrfs_writepage_endio_finish_ordered() in
end_compressed_bio_write().
It passes compressed pages to btrfs_writepage_endio_finish_ordered(),
which is only supposed to accept inode pages.
Thankfully the important info here is the inode, so let's pass
btrfs_inode directly into btrfs_writepage_endio_finish_ordered(), and
make @page parameter optional.
By this, end_compressed_bio_write() can happily pass page=NULL while
still getting everything done properly.
Also, to cooperate with such modification, replace @page parameter for
trace_btrfs_writepage_end_io_hook() with btrfs_inode.
Although this removes page_index info, the existing start/len should be
enough for most usage.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When a file gets deleted on a zoned file system, the space freed is not
returned back into the block group's free space, but is migrated to
zone_unusable.
As this zone_unusable space is behind the current write pointer it is not
possible to use it for new allocations. In the current implementation a
zone is reset once all of the block group's space is accounted as zone
unusable.
This behaviour can lead to premature ENOSPC errors on a busy file system.
Instead of only reclaiming the zone once it is completely unusable,
kick off a reclaim job once the amount of unusable bytes exceeds a user
configurable threshold between 51% and 100%. It can be set per mounted
filesystem via the sysfs tunable bg_reclaim_threshold which is set to 75%
by default.
Similar to reclaiming unused block groups, these dirty block groups are
added to a to_reclaim list and then on a transaction commit, the reclaim
process is triggered but after we deleted unused block groups, which will
free space for the relocation process.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Often when I'm debugging ENOSPC related issues I have to resort to
printing the entire ENOSPC state with trace_printk() in different spots.
This gets pretty annoying, so add a trace state that does this for us.
Then add a trace point at the end of preemptive flushing so you can see
the state of the space_info when we decide to exit preemptive flushing.
This helped me figure out we weren't kicking in the preemptive flushing
soon enough.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since we have normal ticketed flushing and preemptive flushing, adjust
the tracepoint so that we know the source of the flushing action to make
it easier to debug problems.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Solely for preemptive flushing, we want to be able to force the
transaction commit without any of the ambiguity of
may_commit_transaction(). This is because may_commit_transaction()
checks tickets and such, and in preemptive flushing we already know
it'll be helpful, so use this to keep the code nice and clean and
straightforward.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
[ add comment ]
Signed-off-by: David Sterba <dsterba@suse.com>
While debugging a ENOSPC related performance problem I needed to see the
time difference between start and end of a reserve ticket, so add a
trace point to report when we handle a reserve ticket.
I opted to spit out start_ns itself without calculating the difference
because there could be a gap between enabling the tracepoint and setting
start_ns. Doing it this way allows us to filter on 0 start_ns so we
don't get bogus entries, and we can easily calculate the time difference
with bpftrace or something else.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
[BUG]
There is a long existing bug in the last parameter of
btrfs_add_ordered_extent(), in commit 771ed689d2 ("Btrfs: Optimize
compressed writeback and reads") back to 2008.
In that ancient commit btrfs_add_ordered_extent() expects the @type
parameter to be one of the following:
- BTRFS_ORDERED_REGULAR
- BTRFS_ORDERED_NOCOW
- BTRFS_ORDERED_PREALLOC
- BTRFS_ORDERED_COMPRESSED
But we pass 0 in cow_file_range(), which means BTRFS_ORDERED_IO_DONE.
Ironically extra check in __btrfs_add_ordered_extent() won't set the bit
if we see (type == IO_DONE || type == IO_COMPLETE), and avoid any
obvious bug.
But this still leads to regular COW ordered extent having no bit to
indicate its type in various trace events, rendering REGULAR bit
useless.
[FIX]
Change the following aspects to avoid such problem:
- Reorder btrfs_ordered_extent::flags
Now the type bits go first (REGULAR/NOCOW/PREALLCO/COMPRESSED), then
DIRECT bit, finally extra status bits like IO_DONE/COMPLETE/IOERR.
- Add extra ASSERT() for btrfs_add_ordered_extent_*()
- Remove @type parameter for btrfs_add_ordered_extent_compress()
As the only valid @type here is BTRFS_ORDERED_COMPRESSED.
- Remove the unnecessary special check for IO_DONE/COMPLETE in
__btrfs_add_ordered_extent()
This is just to make the code work, with extra ASSERT(), there are
limited values can be passed in.
Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Btree inode is special compared to all other inode extent io_trees,
although it has a btrfs inode, it doesn't have the track_uptodate bit at
all.
This means a lot of things like extent locking doesn't even need to be
applied to btree io tree.
Since it's so special, adds a new owner value for it to make debuging a
little easier.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Reviewed-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The current trace event always output result like this:
find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA)
find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=4(METADATA)
find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA)
find_free_extent: root=2(EXTENT_TREE) len=8192 empty_size=0 flags=1(DATA)
find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA)
find_free_extent: root=2(EXTENT_TREE) len=4096 empty_size=0 flags=1(DATA)
T's saying we're allocating data extent for EXTENT tree, which is not
even possible.
It's because we always use EXTENT tree as the owner for
trace_find_free_extent() without using the @root from
btrfs_reserve_extent().
This patch will change the parameter to use proper @root for
trace_find_free_extent():
Now it looks much better:
find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA)
find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=1(DATA)
find_free_extent: root=5(FS_TREE) len=4096 empty_size=0 flags=1(DATA)
find_free_extent: root=5(FS_TREE) len=8192 empty_size=0 flags=1(DATA)
find_free_extent: root=5(FS_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
find_free_extent: root=7(CSUM_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
find_free_extent: root=2(EXTENT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
find_free_extent: root=1(ROOT_TREE) len=16384 empty_size=0 flags=36(METADATA|DUP)
Reported-by: Hans van Kranenburg <hans@knorrie.org>
CC: stable@vger.kernel.org # 5.4+
Signed-off-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Only 6 out of all flush states were being printed correctly since
only they were exported via the TRACE_DEFINE_ENUM macro. This patch
converts all flush states to use the newly introduced EM macro so that
they can all be printed correctly.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This fixes correct pint out of the extent io tree owner in
btrfs_set_extent_bit/btrfs_clear_extent_bit/btrfs_convert_extent_bit
tracepoints.
Signed-off-by: Nikolay Borisov <nborisov@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>