1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
Commit graph

571 commits

Author SHA1 Message Date
Paolo Bonzini
2b347a3878 KVM: SEV: initialize regions_list of a mirror VM
This was broken before the introduction of KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM,
but technically harmless because the region list was unused for a mirror
VM.  However, it is untidy and it now causes a NULL pointer access when
attempting to move the encryption context of a mirror VM.

Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context")
Message-Id: <20211123005036.2954379-7-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:12 -05:00
Paolo Bonzini
501b580c02 KVM: SEV: cleanup locking for KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM
Encapsulate the handling of the migration_in_progress flag for both VMs in
two functions sev_lock_two_vms and sev_unlock_two_vms.  It does not matter
if KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM locks the destination struct kvm a bit
later, and this change 1) keeps the cleanup chain of labels smaller 2)
makes it possible for KVM_CAP_VM_COPY_ENC_CONTEXT_FROM to reuse the logic.

Cc: Peter Gonda <pgonda@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-6-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:11 -05:00
Paolo Bonzini
4674164f0a KVM: SEV: do not use list_replace_init on an empty list
list_replace_init cannot be used if the source is an empty list,
because "new->next->prev = new" will overwrite "old->next":

				new				old
				prev = new, next = new		prev = old, next = old
new->next = old->next		prev = new, next = old		prev = old, next = old
new->next->prev = new		prev = new, next = old		prev = old, next = new
new->prev = old->prev		prev = old, next = old		prev = old, next = old
new->next->prev = new		prev = old, next = old		prev = new, next = new

The desired outcome instead would be to leave both old and new the same
as they were (two empty circular lists).  Use list_cut_before, which
already has the necessary check and is documented to discard the
previous contents of the list that will hold the result.

Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211123005036.2954379-5-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:54:11 -05:00
Paolo Bonzini
37c4dbf337 KVM: x86: check PIR even for vCPUs with disabled APICv
The IRTE for an assigned device can trigger a POSTED_INTR_VECTOR even
if APICv is disabled on the vCPU that receives it.  In that case, the
interrupt will just cause a vmexit and leave the ON bit set together
with the PIR bit corresponding to the interrupt.

Right now, the interrupt would not be delivered until APICv is re-enabled.
However, fixing this is just a matter of always doing the PIR->IRR
synchronization, even if the vCPU has temporarily disabled APICv.

This is not a problem for performance, or if anything it is an
improvement.  First, in the common case where vcpu->arch.apicv_active is
true, one fewer check has to be performed.  Second, static_call_cond will
elide the function call if APICv is not present or disabled.  Finally,
in the case for AMD hardware we can remove the sync_pir_to_irr callback:
it is only needed for apic_has_interrupt_for_ppr, and that function
already has a fallback for !APICv.

Cc: stable@vger.kernel.org
Co-developed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: David Matlack <dmatlack@google.com>
Message-Id: <20211123004311.2954158-4-pbonzini@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-30 03:52:39 -05:00
Paolo Bonzini
817506df9d Merge branch 'kvm-5.16-fixes' into kvm-master
* Fixes for Xen emulation

* Kill kvm_map_gfn() / kvm_unmap_gfn() and broken gfn_to_pfn_cache

* Fixes for migration of 32-bit nested guests on 64-bit hypervisor

* Compilation fixes

* More SEV cleanups
2021-11-18 02:11:57 -05:00
Sean Christopherson
8e38e96a4e KVM: SEV: Fix typo in and tweak name of cmd_allowed_from_miror()
Rename cmd_allowed_from_miror() to is_cmd_allowed_from_mirror(), fixing
a typo and making it obvious that the result is a boolean where
false means "not allowed".

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-7-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:28 -05:00
Sean Christopherson
ea410ef4da KVM: SEV: Drop a redundant setting of sev->asid during initialization
Remove a fully redundant write to sev->asid during SEV/SEV-ES guest
initialization.  The ASID is set a few lines earlier prior to the call to
sev_platform_init(), which doesn't take "sev" as a param, i.e. can't
muck with the ASID barring some truly magical behind-the-scenes code.

No functional change intended.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-6-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
1bd00a4257 KVM: SEV: WARN if SEV-ES is marked active but SEV is not
WARN if the VM is tagged as SEV-ES but not SEV.  KVM relies on SEV and
SEV-ES being set atomically, and guards common flows with "is SEV", i.e.
observing SEV-ES without SEV means KVM has a fatal bug.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
a41fb26e61 KVM: SEV: Set sev_info.active after initial checks in sev_guest_init()
Set sev_info.active during SEV/SEV-ES activation before calling any code
that can potentially consume sev_info.es_active, e.g. set "active" and
"es_active" as a pair immediately after the initial sanity checks.  KVM
generally expects that es_active can be true if and only if active is
true, e.g. sev_asid_new() deliberately avoids sev_es_guest() so that it
doesn't get a false negative.  This will allow WARNing in sev_es_guest()
if the VM is tagged as SEV-ES but not SEV.

Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
79b1114276 KVM: SEV: Disallow COPY_ENC_CONTEXT_FROM if target has created vCPUs
Reject COPY_ENC_CONTEXT_FROM if the destination VM has created vCPUs.
KVM relies on SEV activation to occur before vCPUs are created, e.g. to
set VMCB flags and intercepts correctly.

Fixes: 54526d1fd5 ("KVM: x86: Support KVM VMs sharing SEV context")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: Nathan Tempelman <natet@google.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109215101.2211373-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-18 02:10:27 -05:00
Sean Christopherson
db215756ae KVM: x86: More precisely identify NMI from guest when handling PMI
Differentiate between IRQ and NMI for KVM's PMC overflow callback, which
was originally invoked in response to an NMI that arrived while the guest
was running, but was inadvertantly changed to fire on IRQs as well when
support for perf without PMU/NMI was added to KVM.  In practice, this
should be a nop as the PMC overflow callback shouldn't be reached, but
it's a cheap and easy fix that also better documents the situation.

Note, this also doesn't completely prevent false positives if perf
somehow ends up calling into KVM, e.g. an NMI can arrive in host after
KVM sets its flag.

Fixes: dd60d21706 ("KVM: x86: Fix perf timer mode IP reporting")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Link: https://lore.kernel.org/r/20211111020738.2512932-12-seanjc@google.com
2021-11-17 14:49:09 +01:00
Paolo Bonzini
501cfe0679 KVM: SEV: unify cgroup cleanup code for svm_vm_migrate_from
Use the same cleanup code independent of whether the cgroup to be
uncharged and unref'd is the source or the destination cgroup.  Use a
bool to track whether the destination cgroup has been charged, which also
fixes a bug in the error case: the destination cgroup must be uncharged
only if it does not match the source.

Fixes: b56639318b ("KVM: SEV: Add support for SEV intra host migration")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-12 04:37:51 -05:00
Paolo Bonzini
f5396f2d82 Merge branch 'kvm-5.16-fixes' into kvm-master
* Fix misuse of gfn-to-pfn cache when recording guest steal time / preempted status

* Fix selftests on APICv machines

* Fix sparse warnings

* Fix detection of KVM features in CPUID

* Cleanups for bogus writes to MSR_KVM_PV_EOI_EN

* Fixes and cleanups for MSR bitmap handling

* Cleanups for INVPCID

* Make x86 KVM_SOFT_MAX_VCPUS consistent with other architectures
2021-11-11 11:03:05 -05:00
Paolo Bonzini
1f05833193 Merge branch 'kvm-sev-move-context' into kvm-master
Add support for AMD SEV and SEV-ES intra-host migration support.  Intra
host migration provides a low-cost mechanism for userspace VMM upgrades.

In the common case for intra host migration, we can rely on the normal
ioctls for passing data from one VMM to the next. SEV, SEV-ES, and other
confidential compute environments make most of this information opaque, and
render KVM ioctls such as "KVM_GET_REGS" irrelevant.  As a result, we need
the ability to pass this opaque metadata from one VMM to the next. The
easiest way to do this is to leave this data in the kernel, and transfer
ownership of the metadata from one KVM VM (or vCPU) to the next.  In-kernel
hand off makes it possible to move any data that would be
unsafe/impossible for the kernel to hand directly to userspace, and
cannot be reproduced using data that can be handed to userspace.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 11:02:58 -05:00
Vipin Sharma
796c83c58a KVM: Move INVPCID type check from vmx and svm to the common kvm_handle_invpcid()
Handle #GP on INVPCID due to an invalid type in the common switch
statement instead of relying on the callers (VMX and SVM) to manually
validate the type.

Unlike INVVPID and INVEPT, INVPCID is not explicitly documented to check
the type before reading the operand from memory, so deferring the
type validity check until after that point is architecturally allowed.

Signed-off-by: Vipin Sharma <vipinsh@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211109174426.2350547-3-vipinsh@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:24 -05:00
Maxim Levitsky
cae72dcc3b KVM: x86: inhibit APICv when KVM_GUESTDBG_BLOCKIRQ active
KVM_GUESTDBG_BLOCKIRQ relies on interrupts being injected using
standard kvm's inject_pending_event, and not via APICv/AVIC.

Since this is a debug feature, just inhibit APICv/AVIC while
KVM_GUESTDBG_BLOCKIRQ is in use on at least one vCPU.

Fixes: 61e5f69ef0 ("KVM: x86: implement KVM_GUESTDBG_BLOCKIRQ")

Reported-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Tested-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211108090245.166408-1-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:20 -05:00
Jim Mattson
e6cd31f1a8 kvm: x86: Convert return type of *is_valid_rdpmc_ecx() to bool
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.

Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:56:19 -05:00
Peter Gonda
0b020f5af0 KVM: SEV: Add support for SEV-ES intra host migration
For SEV-ES to work with intra host migration the VMSAs, GHCB metadata,
and other SEV-ES info needs to be preserved along with the guest's
memory.

Signed-off-by: Peter Gonda <pgonda@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-4-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:27 -05:00
Peter Gonda
b56639318b KVM: SEV: Add support for SEV intra host migration
For SEV to work with intra host migration, contents of the SEV info struct
such as the ASID (used to index the encryption key in the AMD SP) and
the list of memory regions need to be transferred to the target VM.
This change adds a commands for a target VMM to get a source SEV VM's sev
info.

Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Sean Christopherson <seanjc@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-3-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:27 -05:00
Paolo Bonzini
91b692a03c KVM: SEV: provide helpers to charge/uncharge misc_cg
Avoid code duplication across all callers of misc_cg_try_charge and
misc_cg_uncharge.  The resource type for KVM is always derived from
sev->es_active, and the quantity is always 1.

Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:26 -05:00
Peter Gonda
b67a4cc35c KVM: SEV: Refactor out sev_es_state struct
Move SEV-ES vCPU metadata into new sev_es_state struct from vcpu_svm.

Signed-off-by: Peter Gonda <pgonda@google.com>
Suggested-by: Tom Lendacky <thomas.lendacky@amd.com>
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Dr. David Alan Gilbert <dgilbert@redhat.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Vitaly Kuznetsov <vkuznets@redhat.com>
Cc: Wanpeng Li <wanpengli@tencent.com>
Cc: Jim Mattson <jmattson@google.com>
Cc: Joerg Roedel <joro@8bytes.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Borislav Petkov <bp@alien8.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: kvm@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Message-Id: <20211021174303.385706-2-pgonda@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-11-11 10:35:26 -05:00
Linus Torvalds
d7e0a795bf ARM:
* More progress on the protected VM front, now with the full
   fixed feature set as well as the limitation of some hypercalls
   after initialisation.
 
 * Cleanup of the RAZ/WI sysreg handling, which was pointlessly
   complicated
 
 * Fixes for the vgic placement in the IPA space, together with a
   bunch of selftests
 
 * More memcg accounting of the memory allocated on behalf of a guest
 
 * Timer and vgic selftests
 
 * Workarounds for the Apple M1 broken vgic implementation
 
 * KConfig cleanups
 
 * New kvmarm.mode=none option, for those who really dislike us
 
 RISC-V:
 * New KVM port.
 
 x86:
 * New API to control TSC offset from userspace
 
 * TSC scaling for nested hypervisors on SVM
 
 * Switch masterclock protection from raw_spin_lock to seqcount
 
 * Clean up function prototypes in the page fault code and avoid
 repeated memslot lookups
 
 * Convey the exit reason to userspace on emulation failure
 
 * Configure time between NX page recovery iterations
 
 * Expose Predictive Store Forwarding Disable CPUID leaf
 
 * Allocate page tracking data structures lazily (if the i915
 KVM-GT functionality is not compiled in)
 
 * Cleanups, fixes and optimizations for the shadow MMU code
 
 s390:
 * SIGP Fixes
 
 * initial preparations for lazy destroy of secure VMs
 
 * storage key improvements/fixes
 
 * Log the guest CPNC
 
 Starting from this release, KVM-PPC patches will come from
 Michael Ellerman's PPC tree.
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmGBOiEUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNowwf/axlx3g9sgCwQHr12/6UF/7hL/RwP
 9z+pGiUzjl2YQE+RjSvLqyd6zXh+h4dOdOKbZDLSkSTbcral/8U70ojKnQsXM0XM
 1LoymxBTJqkgQBLm9LjYreEbzrPV4irk4ygEmuk3CPOHZu8xX1ei6c5LdandtM/n
 XVUkXsQY+STkmnGv4P3GcPoDththCr0tBTWrFWtxa0w9hYOxx0ay1AZFlgM4FFX0
 QFuRc8VBLoDJpIUjbkhsIRIbrlHc/YDGjuYnAU7lV/CIME8vf2BW6uBwIZJdYcDj
 0ejozLjodEnuKXQGnc8sXFioLX2gbMyQJEvwCgRvUu/EU7ncFm1lfs7THQ==
 =UxKM
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull KVM updates from Paolo Bonzini:
 "ARM:

   - More progress on the protected VM front, now with the full fixed
     feature set as well as the limitation of some hypercalls after
     initialisation.

   - Cleanup of the RAZ/WI sysreg handling, which was pointlessly
     complicated

   - Fixes for the vgic placement in the IPA space, together with a
     bunch of selftests

   - More memcg accounting of the memory allocated on behalf of a guest

   - Timer and vgic selftests

   - Workarounds for the Apple M1 broken vgic implementation

   - KConfig cleanups

   - New kvmarm.mode=none option, for those who really dislike us

  RISC-V:

   - New KVM port.

  x86:

   - New API to control TSC offset from userspace

   - TSC scaling for nested hypervisors on SVM

   - Switch masterclock protection from raw_spin_lock to seqcount

   - Clean up function prototypes in the page fault code and avoid
     repeated memslot lookups

   - Convey the exit reason to userspace on emulation failure

   - Configure time between NX page recovery iterations

   - Expose Predictive Store Forwarding Disable CPUID leaf

   - Allocate page tracking data structures lazily (if the i915 KVM-GT
     functionality is not compiled in)

   - Cleanups, fixes and optimizations for the shadow MMU code

  s390:

   - SIGP Fixes

   - initial preparations for lazy destroy of secure VMs

   - storage key improvements/fixes

   - Log the guest CPNC

  Starting from this release, KVM-PPC patches will come from Michael
  Ellerman's PPC tree"

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (227 commits)
  RISC-V: KVM: fix boolreturn.cocci warnings
  RISC-V: KVM: remove unneeded semicolon
  RISC-V: KVM: Fix GPA passed to __kvm_riscv_hfence_gvma_xyz() functions
  RISC-V: KVM: Factor-out FP virtualization into separate sources
  KVM: s390: add debug statement for diag 318 CPNC data
  KVM: s390: pv: properly handle page flags for protected guests
  KVM: s390: Fix handle_sske page fault handling
  KVM: x86: SGX must obey the KVM_INTERNAL_ERROR_EMULATION protocol
  KVM: x86: On emulation failure, convey the exit reason, etc. to userspace
  KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
  KVM: x86: Clarify the kvm_run.emulation_failure structure layout
  KVM: s390: Add a routine for setting userspace CPU state
  KVM: s390: Simplify SIGP Set Arch handling
  KVM: s390: pv: avoid stalls when making pages secure
  KVM: s390: pv: avoid stalls for kvm_s390_pv_init_vm
  KVM: s390: pv: avoid double free of sida page
  KVM: s390: pv: add macros for UVC CC values
  s390/mm: optimize reset_guest_reference_bit()
  s390/mm: optimize set_guest_storage_key()
  s390/mm: no need for pte_alloc_map_lock() if we know the pmd is present
  ...
2021-11-02 11:24:14 -07:00
Linus Torvalds
6e5772c8d9 Add an interface called cc_platform_has() which is supposed to be used
by confidential computing solutions to query different aspects of the
 system. The intent behind it is to unify testing of such aspects instead
 of having each confidential computing solution add its own set of tests
 to code paths in the kernel, leading to an unwieldy mess.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmF/uLUACgkQEsHwGGHe
 VUqGbQ/+LOmz8hmL5vtbXw/lVonCSBRKI2KVefnN2VtQ3rjtCq8HlNoq/hAdi15O
 WntABFV8u4daNAcssp+H/p+c8Mt/NzQa60TRooC5ZIynSOCj4oZQxTWjcnR4Qxrf
 oABy4sp09zNW31qExtTVTwPC/Ejzv4hA0Vqt9TLQOSxp7oYVYKeDJNp79VJK64Yz
 Ky7epgg8Pauk0tAT76ATR4kyy9PLGe4/Ry0bOtAptO4NShL1RyRgI0ywUmptJHSw
 FV/MnoexdAs4V8+4zPwyOkf8YMDnhbJcvFcr7Yd9AEz2q9Z1wKCgi1M3aZIoW8lV
 YMXECMGe9DfxmEJbnP5zbnL6eF32x+tbq+fK8Ye4V2fBucpWd27zkcTXjoP+Y+zH
 NLg+9QykR9QCH75YCOXcAg1Q5hSmc4DaWuJymKjT+W7MKs89ywjq+ybIBpLBHbQe
 uN9FM/CEKXx8nQwpNQc7mdUE5sZeCQ875028RaLbLx3/b6uwT6rBlNJfxl/uxmcZ
 iF1kG7Cx4uO+7G1a9EWgxtWiJQ8GiZO7PMCqEdwIymLIrlNksAk7nX2SXTuH5jIZ
 YDuBj/Xz2UUVWYFm88fV5c4ogiFlm9Jeo140Zua/BPdDJd2VOP013rYxzFE/rVSF
 SM2riJxCxkva8Fb+8TNiH42AMhPMSpUt1Nmd1H2rcEABRiT83Ow=
 =Na0U
 -----END PGP SIGNATURE-----

Merge tag 'x86_cc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull generic confidential computing updates from Borislav Petkov:
 "Add an interface called cc_platform_has() which is supposed to be used
  by confidential computing solutions to query different aspects of the
  system.

  The intent behind it is to unify testing of such aspects instead of
  having each confidential computing solution add its own set of tests
  to code paths in the kernel, leading to an unwieldy mess"

* tag 'x86_cc_for_v5.16_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
  treewide: Replace the use of mem_encrypt_active() with cc_platform_has()
  x86/sev: Replace occurrences of sev_es_active() with cc_platform_has()
  x86/sev: Replace occurrences of sev_active() with cc_platform_has()
  x86/sme: Replace occurrences of sme_active() with cc_platform_has()
  powerpc/pseries/svm: Add a powerpc version of cc_platform_has()
  x86/sev: Add an x86 version of cc_platform_has()
  arch/cc: Introduce a function to check for confidential computing features
  x86/ioremap: Selectively build arch override encryption functions
2021-11-01 15:16:52 -07:00
Linus Torvalds
8cb1ae19bf x86/fpu updates:
- Cleanup of extable fixup handling to be more robust, which in turn
    allows to make the FPU exception fixups more robust as well.
 
  - Change the return code for signal frame related failures from explicit
    error codes to a boolean fail/success as that's all what the calling
    code evaluates.
 
  - A large refactoring of the FPU code to prepare for adding AMX support:
 
    - Distangle the public header maze and remove especially the misnomed
      kitchen sink internal.h which is despite it's name included all over
      the place.
 
    - Add a proper abstraction for the register buffer storage (struct
      fpstate) which allows to dynamically size the buffer at runtime by
      flipping the pointer to the buffer container from the default
      container which is embedded in task_struct::tread::fpu to a
      dynamically allocated container with a larger register buffer.
 
    - Convert the code over to the new fpstate mechanism.
 
    - Consolidate the KVM FPU handling by moving the FPU related code into
      the FPU core which removes the number of exports and avoids adding
      even more export when AMX has to be supported in KVM. This also
      removes duplicated code which was of course unnecessary different and
      incomplete in the KVM copy.
 
    - Simplify the KVM FPU buffer handling by utilizing the new fpstate
      container and just switching the buffer pointer from the user space
      buffer to the KVM guest buffer when entering vcpu_run() and flipping
      it back when leaving the function. This cuts the memory requirements
      of a vCPU for FPU buffers in half and avoids pointless memory copy
      operations.
 
      This also solves the so far unresolved problem of adding AMX support
      because the current FPU buffer handling of KVM inflicted a circular
      dependency between adding AMX support to the core and to KVM.  With
      the new scheme of switching fpstate AMX support can be added to the
      core code without affecting KVM.
 
    - Replace various variables with proper data structures so the extra
      information required for adding dynamically enabled FPU features (AMX)
      can be added in one place
 
  - Add AMX (Advanved Matrix eXtensions) support (finally):
 
     AMX is a large XSTATE component which is going to be available with
     Saphire Rapids XEON CPUs. The feature comes with an extra MSR (MSR_XFD)
     which allows to trap the (first) use of an AMX related instruction,
     which has two benefits:
 
     1) It allows the kernel to control access to the feature
 
     2) It allows the kernel to dynamically allocate the large register
        state buffer instead of burdening every task with the the extra 8K
        or larger state storage.
 
     It would have been great to gain this kind of control already with
     AVX512.
 
     The support comes with the following infrastructure components:
 
     1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature
 
        Permission is granted per process, inherited on fork() and cleared
        on exec(). The permission policy of the kernel is restricted to
        sigaltstack size validation, but the syscall obviously allows
        further restrictions via seccomp etc.
 
     2) A stronger sigaltstack size validation for sys_sigaltstack(2) which
        takes granted permissions and the potentially resulting larger
        signal frame into account. This mechanism can also be used to
        enforce factual sigaltstack validation independent of dynamic
        features to help with finding potential victims of the 2K
        sigaltstack size constant which is broken since AVX512 support was
        added.
 
     3) Exception handling for #NM traps to catch first use of a extended
        feature via a new cause MSR. If the exception was caused by the use
        of such a feature, the handler checks permission for that
        feature. If permission has not been granted, the handler sends a
        SIGILL like the #UD handler would do if the feature would have been
        disabled in XCR0. If permission has been granted, then a new fpstate
        which fits the larger buffer requirement is allocated.
 
        In the unlikely case that this allocation fails, the handler sends
        SIGSEGV to the task. That's not elegant, but unavoidable as the
        other discussed options of preallocation or full per task
        permissions come with their own set of horrors for kernel and/or
        userspace. So this is the lesser of the evils and SIGSEGV caused by
        unexpected memory allocation failures is not a fundamentally new
        concept either.
 
        When allocation succeeds, the fpstate properties are filled in to
        reflect the extended feature set and the resulting sizes, the
        fpu::fpstate pointer is updated accordingly and the trap is disarmed
        for this task permanently.
 
     4) Enumeration and size calculations
 
     5) Trap switching via MSR_XFD
 
        The XFD (eXtended Feature Disable) MSR is context switched with the
        same life time rules as the FPU register state itself. The mechanism
        is keyed off with a static key which is default disabled so !AMX
        equipped CPUs have zero overhead. On AMX enabled CPUs the overhead
        is limited by comparing the tasks XFD value with a per CPU shadow
        variable to avoid redundant MSR writes. In case of switching from a
        AMX using task to a non AMX using task or vice versa, the extra MSR
        write is obviously inevitable.
 
        All other places which need to be aware of the variable feature sets
        and resulting variable sizes are not affected at all because they
        retrieve the information (feature set, sizes) unconditonally from
        the fpstate properties.
 
     6) Enable the new AMX states
 
   Note, this is relatively new code despite the fact that AMX support is in
   the works for more than a year now.
 
   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which has
   not been caught in review and testing right away was restricted to AMX
   enabled systems, which is completely irrelevant for anyone outside Intel
   and their early access program. There might be dragons lurking as usual,
   but so far the fine grained refactoring has held up and eventual yet
   undetected fallout is bisectable and should be easily addressable before
   the 5.16 release. Famous last words...
 
   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity to
   follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for inclusion
   into 5.16-rc1.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/NkITHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYodDkEADH4+/nN/QoSUHIuuha5Zptj3g2b16a
 /3TxT9fhwPen/kzMGsUk70s3iWJMA+I5dCfkSZexJ2hfhcRe9cBzZIa1HCawKwf3
 YCISTsO/M+LpeORuZ+TpfFLJKnxNr1SEOl+EYffGhq0AkCjifb9Cnr0JZuoMUzGU
 jpfJZ2bj28ri5lG812DtzSMBM9E3SAwgJv+GNjmZbxZKb9mAfhbAMdBUXHirX7Ej
 jmx6koQjYOKwYIW8w1BrdC270lUKQUyJTbQgdRkN9Mh/HnKyFixQ18JqGlgaV2cT
 EtYePUfTEdaHdAhUINLIlEug1MfOslHU+HyGsdywnoChNB4GHPQuePC5Tz60VeFN
 RbQ9aKcBUu8r95rjlnKtAtBijNMA4bjGwllVxNwJ/ZoA9RPv1SbDZ07RX3qTaLVY
 YhVQl8+shD33/W24jUTJv1kMMexpHXIlv0gyfMryzpwI7uzzmGHRPAokJdbYKctC
 dyMPfdE90rxTiMUdL/1IQGhnh3awjbyfArzUhHyQ++HyUyzCFh0slsO0CD18vUy8
 FofhCugGBhjuKw3XwLNQ+KsWURz5qHctSzBc3qMOSyqFHbAJCVRANkhsFvWJo2qL
 75+Z7OTRebtsyOUZIdq26r4roSxHrps3dupWTtN70HWx2NhQG1nLEw986QYiQu1T
 hcKvDmehQLrUvg==
 =x3WL
 -----END PGP SIGNATURE-----

Merge tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull x86 fpu updates from Thomas Gleixner:

 - Cleanup of extable fixup handling to be more robust, which in turn
   allows to make the FPU exception fixups more robust as well.

 - Change the return code for signal frame related failures from
   explicit error codes to a boolean fail/success as that's all what the
   calling code evaluates.

 - A large refactoring of the FPU code to prepare for adding AMX
   support:

      - Distangle the public header maze and remove especially the
        misnomed kitchen sink internal.h which is despite it's name
        included all over the place.

      - Add a proper abstraction for the register buffer storage (struct
        fpstate) which allows to dynamically size the buffer at runtime
        by flipping the pointer to the buffer container from the default
        container which is embedded in task_struct::tread::fpu to a
        dynamically allocated container with a larger register buffer.

      - Convert the code over to the new fpstate mechanism.

      - Consolidate the KVM FPU handling by moving the FPU related code
        into the FPU core which removes the number of exports and avoids
        adding even more export when AMX has to be supported in KVM.
        This also removes duplicated code which was of course
        unnecessary different and incomplete in the KVM copy.

      - Simplify the KVM FPU buffer handling by utilizing the new
        fpstate container and just switching the buffer pointer from the
        user space buffer to the KVM guest buffer when entering
        vcpu_run() and flipping it back when leaving the function. This
        cuts the memory requirements of a vCPU for FPU buffers in half
        and avoids pointless memory copy operations.

        This also solves the so far unresolved problem of adding AMX
        support because the current FPU buffer handling of KVM inflicted
        a circular dependency between adding AMX support to the core and
        to KVM. With the new scheme of switching fpstate AMX support can
        be added to the core code without affecting KVM.

      - Replace various variables with proper data structures so the
        extra information required for adding dynamically enabled FPU
        features (AMX) can be added in one place

 - Add AMX (Advanced Matrix eXtensions) support (finally):

   AMX is a large XSTATE component which is going to be available with
   Saphire Rapids XEON CPUs. The feature comes with an extra MSR
   (MSR_XFD) which allows to trap the (first) use of an AMX related
   instruction, which has two benefits:

    1) It allows the kernel to control access to the feature

    2) It allows the kernel to dynamically allocate the large register
       state buffer instead of burdening every task with the the extra
       8K or larger state storage.

   It would have been great to gain this kind of control already with
   AVX512.

   The support comes with the following infrastructure components:

    1) arch_prctl() to
        - read the supported features (equivalent to XGETBV(0))
        - read the permitted features for a task
        - request permission for a dynamically enabled feature

       Permission is granted per process, inherited on fork() and
       cleared on exec(). The permission policy of the kernel is
       restricted to sigaltstack size validation, but the syscall
       obviously allows further restrictions via seccomp etc.

    2) A stronger sigaltstack size validation for sys_sigaltstack(2)
       which takes granted permissions and the potentially resulting
       larger signal frame into account. This mechanism can also be used
       to enforce factual sigaltstack validation independent of dynamic
       features to help with finding potential victims of the 2K
       sigaltstack size constant which is broken since AVX512 support
       was added.

    3) Exception handling for #NM traps to catch first use of a extended
       feature via a new cause MSR. If the exception was caused by the
       use of such a feature, the handler checks permission for that
       feature. If permission has not been granted, the handler sends a
       SIGILL like the #UD handler would do if the feature would have
       been disabled in XCR0. If permission has been granted, then a new
       fpstate which fits the larger buffer requirement is allocated.

       In the unlikely case that this allocation fails, the handler
       sends SIGSEGV to the task. That's not elegant, but unavoidable as
       the other discussed options of preallocation or full per task
       permissions come with their own set of horrors for kernel and/or
       userspace. So this is the lesser of the evils and SIGSEGV caused
       by unexpected memory allocation failures is not a fundamentally
       new concept either.

       When allocation succeeds, the fpstate properties are filled in to
       reflect the extended feature set and the resulting sizes, the
       fpu::fpstate pointer is updated accordingly and the trap is
       disarmed for this task permanently.

    4) Enumeration and size calculations

    5) Trap switching via MSR_XFD

       The XFD (eXtended Feature Disable) MSR is context switched with
       the same life time rules as the FPU register state itself. The
       mechanism is keyed off with a static key which is default
       disabled so !AMX equipped CPUs have zero overhead. On AMX enabled
       CPUs the overhead is limited by comparing the tasks XFD value
       with a per CPU shadow variable to avoid redundant MSR writes. In
       case of switching from a AMX using task to a non AMX using task
       or vice versa, the extra MSR write is obviously inevitable.

       All other places which need to be aware of the variable feature
       sets and resulting variable sizes are not affected at all because
       they retrieve the information (feature set, sizes) unconditonally
       from the fpstate properties.

    6) Enable the new AMX states

   Note, this is relatively new code despite the fact that AMX support
   is in the works for more than a year now.

   The big refactoring of the FPU code, which allowed to do a proper
   integration has been started exactly 3 weeks ago. Refactoring of the
   existing FPU code and of the original AMX patches took a week and has
   been subject to extensive review and testing. The only fallout which
   has not been caught in review and testing right away was restricted
   to AMX enabled systems, which is completely irrelevant for anyone
   outside Intel and their early access program. There might be dragons
   lurking as usual, but so far the fine grained refactoring has held up
   and eventual yet undetected fallout is bisectable and should be
   easily addressable before the 5.16 release. Famous last words...

   Many thanks to Chang Bae and Dave Hansen for working hard on this and
   also to the various test teams at Intel who reserved extra capacity
   to follow the rapid development of this closely which provides the
   confidence level required to offer this rather large update for
   inclusion into 5.16-rc1

* tag 'x86-fpu-2021-11-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (110 commits)
  Documentation/x86: Add documentation for using dynamic XSTATE features
  x86/fpu: Include vmalloc.h for vzalloc()
  selftests/x86/amx: Add context switch test
  selftests/x86/amx: Add test cases for AMX state management
  x86/fpu/amx: Enable the AMX feature in 64-bit mode
  x86/fpu: Add XFD handling for dynamic states
  x86/fpu: Calculate the default sizes independently
  x86/fpu/amx: Define AMX state components and have it used for boot-time checks
  x86/fpu/xstate: Prepare XSAVE feature table for gaps in state component numbers
  x86/fpu/xstate: Add fpstate_realloc()/free()
  x86/fpu/xstate: Add XFD #NM handler
  x86/fpu: Update XFD state where required
  x86/fpu: Add sanity checks for XFD
  x86/fpu: Add XFD state to fpstate
  x86/msr-index: Add MSRs for XFD
  x86/cpufeatures: Add eXtended Feature Disabling (XFD) feature bit
  x86/fpu: Reset permission and fpstate on exec()
  x86/fpu: Prepare fpu_clone() for dynamically enabled features
  x86/fpu/signal: Prepare for variable sigframe length
  x86/signal: Use fpu::__state_user_size for sigalt stack validation
  ...
2021-11-01 14:03:56 -07:00
Linus Torvalds
43aa0a195f objtool updates:
- Improve retpoline code patching by separating it from alternatives which
    reduces memory footprint and allows to do better optimizations in the
    actual runtime patching.
 
  - Add proper retpoline support for x86/BPF
 
  - Address noinstr warnings in x86/kvm, lockdep and paravirtualization code
 
  - Add support to handle pv_opsindirect calls in the noinstr analysis
 
  - Classify symbols upfront and cache the result to avoid redundant
    str*cmp() invocations.
 
  - Add a CFI hash to reduce memory consumption which also reduces runtime
    on a allyesconfig by ~50%
 
  - Adjust XEN code to make objtool handling more robust and as a side
    effect to prevent text fragmentation due to placement of the hypercall
    page.
 -----BEGIN PGP SIGNATURE-----
 
 iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmF/GFgTHHRnbHhAbGlu
 dXRyb25peC5kZQAKCRCmGPVMDXSYoc1JD/0Sz6seP2OUMxbMT3gCcFo9sMvYTdsM
 7WuGFbBbnCIo7g8JH7k0zRRBigptMp2eUtQXKkgaaIbWN4JbuVKf8KxN5/qXxLi4
 fJ12QnNTGH9N2jtzl5wKmpjaKJnnJMD9D10XwoR+T6gn6NHd+AgLEs7GxxuQUlgo
 eC9oEXhNHC8uNhiZc38EwfwmItI1bRgaLrnZWIL4rYGSMxfCK1/cEOpWrFfX9wmj
 /diB6oqMyPXZXMCtgpX7TniUr5XOTCcUkeO9mQv5bmyq/YM/8hrTbcVSJlsVYLvP
 EsBnUSHAcfLFiHXwa1RNiIGdbiPjbN+UYeXGAvqF58f3e5dTIHtN/UmWo7OH93If
 9rLMVNcMpsfPx7QRk2IxEPumLCkyfwjzfKrVDM6P6TKEIUzD1og4IK9gTlfykVsh
 56G5XiCOC/X2x8IMxKTLGuBiAVLFHXK/rSwoqhvNEWBFKDbP13QWs0LurBcW09Sa
 /kQI9pIBT1xFA/R+OY5Xy1cqNVVK1Gxmk8/bllCijA9pCFSCFM4hLZE5CevdrBCV
 h5SdqEK5hIlzFyypXfsCik/4p/+rfvlGfUKtFsPctxx29SPe+T0orx+l61jiWQok
 rZOflwMawK5lDuASHrvNHGJcWaTwoo3VcXMQDnQY0Wulc43J5IFBaPxkZzgyd+S1
 4lktHxatrCMUgw==
 =pfZi
 -----END PGP SIGNATURE-----

Merge tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip

Pull objtool updates from Thomas Gleixner:

 - Improve retpoline code patching by separating it from alternatives
   which reduces memory footprint and allows to do better optimizations
   in the actual runtime patching.

 - Add proper retpoline support for x86/BPF

 - Address noinstr warnings in x86/kvm, lockdep and paravirtualization
   code

 - Add support to handle pv_opsindirect calls in the noinstr analysis

 - Classify symbols upfront and cache the result to avoid redundant
   str*cmp() invocations.

 - Add a CFI hash to reduce memory consumption which also reduces
   runtime on a allyesconfig by ~50%

 - Adjust XEN code to make objtool handling more robust and as a side
   effect to prevent text fragmentation due to placement of the
   hypercall page.

* tag 'objtool-core-2021-10-31' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits)
  bpf,x86: Respect X86_FEATURE_RETPOLINE*
  bpf,x86: Simplify computing label offsets
  x86,bugs: Unconditionally allow spectre_v2=retpoline,amd
  x86/alternative: Add debug prints to apply_retpolines()
  x86/alternative: Try inline spectre_v2=retpoline,amd
  x86/alternative: Handle Jcc __x86_indirect_thunk_\reg
  x86/alternative: Implement .retpoline_sites support
  x86/retpoline: Create a retpoline thunk array
  x86/retpoline: Move the retpoline thunk declarations to nospec-branch.h
  x86/asm: Fixup odd GEN-for-each-reg.h usage
  x86/asm: Fix register order
  x86/retpoline: Remove unused replacement symbols
  objtool,x86: Replace alternatives with .retpoline_sites
  objtool: Shrink struct instruction
  objtool: Explicitly avoid self modifying code in .altinstr_replacement
  objtool: Classify symbols
  objtool: Support pv_opsindirect calls for noinstr
  x86/xen: Rework the xen_{cpu,irq,mmu}_opsarrays
  x86/xen: Mark xen_force_evtchn_callback() noinstr
  x86/xen: Make irq_disable() noinstr
  ...
2021-11-01 13:24:43 -07:00
Linus Torvalds
ca5e83eddc * Fixes for s390 interrupt delivery
* Fixes for Xen emulator bugs showing up as debug kernel WARNs
 * Fix another issue with SEV/ES string I/O VMGEXITs
 -----BEGIN PGP SIGNATURE-----
 
 iQFIBAABCAAyFiEE8TM4V0tmI4mGbHaCv/vSX3jHroMFAmF6uGIUHHBib256aW5p
 QHJlZGhhdC5jb20ACgkQv/vSX3jHroNRagf/Srvk9lNcRh4cEzsczErKMyr3xOqA
 jgsTSqgl1ExJI9sBLMpVYBOFGILMaMSrhLPIltKPy0Bj/E+hw8WOQwPa44QjWlSD
 MAUxO1Nryt9Luc2L8uSd1c//g4fr4V1BhOaumk1lM14Q8EDfQBcDIMI2ZKueMU1+
 2Q+n8/AsG63jQIINwKNidof0dzRtbfcE30Wq/8QHttIPo5wt6l0YClOlOikqNY8N
 5+WSQFmuutHIXftq5Jb/Ldn/+HVukWZyZOEVwLnBpM9uBvIubNgcEakqvxsaVtAn
 FHdvnA+Bk99/Xuhl+wRLQo8ofzQIQ13RQv3HPArJAJv34oAJZx2rNObVlA==
 =6ofB
 -----END PGP SIGNATURE-----

Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm fixes from Paolo Bonzini:

 - Fixes for s390 interrupt delivery

 - Fixes for Xen emulator bugs showing up as debug kernel WARNs

 - Fix another issue with SEV/ES string I/O VMGEXITs

* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm:
  KVM: x86: Take srcu lock in post_kvm_run_save()
  KVM: SEV-ES: fix another issue with string I/O VMGEXITs
  KVM: x86/xen: Fix kvm_xen_has_interrupt() sleeping in kvm_vcpu_block()
  KVM: x86: switch pvclock_gtod_sync_lock to a raw spinlock
  KVM: s390: preserve deliverable_mask in __airqs_kick_single_vcpu
  KVM: s390: clear kicked_mask before sleeping again
2021-10-31 11:19:02 -07:00
Paolo Bonzini
9b0971ca7f KVM: SEV-ES: fix another issue with string I/O VMGEXITs
If the guest requests string I/O from the hypervisor via VMGEXIT,
SW_EXITINFO2 will contain the REP count.  However, sev_es_string_io
was incorrectly treating it as the size of the GHCB buffer in
bytes.

This fixes the "outsw" test in the experimental SEV tests of
kvm-unit-tests.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Reported-by: Marc Orr <marcorr@google.com>
Tested-by: Marc Orr <marcorr@google.com>
Reviewed-by: Marc Orr <marcorr@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-27 10:58:26 -04:00
David Edmondson
0a62a0319a KVM: x86: Get exit_reason as part of kvm_x86_ops.get_exit_info
Extend the get_exit_info static call to provide the reason for the VM
exit. Modify relevant trace points to use this rather than extracting
the reason in the caller.

Signed-off-by: David Edmondson <david.edmondson@oracle.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20210920103737.2696756-3-david.edmondson@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-25 06:48:24 -04:00
Thomas Gleixner
d69c1382e1 x86/kvm: Convert FPU handling to a single swap buffer
For the upcoming AMX support it's necessary to do a proper integration with
KVM. Currently KVM allocates two FPU structs which are used for saving the user
state of the vCPU thread and restoring the guest state when entering
vcpu_run() and doing the reverse operation before leaving vcpu_run().

With the new fpstate mechanism this can be reduced to one extra buffer by
swapping the fpstate pointer in current:🧵:fpu. This makes the
upcoming support for AMX and XFD simpler because then fpstate information
(features, sizes, xfd) are always consistent and it does not require any
nasty workarounds.

Convert the KVM FPU code over to this new scheme.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211022185313.019454292@linutronix.de
2021-10-23 16:13:29 +02:00
Sean Christopherson
ee49a89329 KVM: x86: Move SVM's APICv sanity check to common x86
Move SVM's assertion that vCPU's APICv state is consistent with its VM's
state out of svm_vcpu_run() and into x86's common inner run loop.  The
assertion and underlying logic is not unique to SVM, it's just that SVM
has more inhibiting conditions and thus is more likely to run headfirst
into any KVM bugs.

Add relevant comments to document exactly why the update path has unusual
ordering between the update the kick, why said ordering is safe, and also
the basic rules behind the assertion in the run loop.

Cc: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211022004927.1448382-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 11:20:16 -04:00
Sean Christopherson
9dadfc4a61 KVM: x86: Add vendor name to kvm_x86_ops, use it for error messages
Paul pointed out the error messages when KVM fails to load are unhelpful
in understanding exactly what went wrong if userspace probes the "wrong"
module.

Add a mandatory kvm_x86_ops field to track vendor module names, kvm_intel
and kvm_amd, and use the name for relevant error message when KVM fails
to load so that the user knows which module failed to load.

Opportunistically tweak the "disabled by bios" error message to clarify
that _support_ was disabled, not that the module itself was magically
disabled by BIOS.

Suggested-by: Paul Menzel <pmenzel@molgen.mpg.de>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211018183929.897461-2-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-22 05:19:28 -04:00
Masahiro Kozuka
c8c340a9b4 KVM: SEV: Flush cache on non-coherent systems before RECEIVE_UPDATE_DATA
Flush the destination page before invoking RECEIVE_UPDATE_DATA, as the
PSP encrypts the data with the guest's key when writing to guest memory.
If the target memory was not previously encrypted, the cache may contain
dirty, unecrypted data that will persist on non-coherent systems.

Fixes: 15fb7de1a7 ("KVM: SVM: Add KVM_SEV_RECEIVE_UPDATE_DATA command")
Cc: stable@vger.kernel.org
Cc: Peter Gonda <pgonda@google.com>
Cc: Marc Orr <marcorr@google.com>
Cc: Tom Lendacky <thomas.lendacky@amd.com>
Cc: Brijesh Singh <brijesh.singh@amd.com>
Signed-off-by: Masahiro Kozuka <masa.koz@kozuka.jp>
[sean: converted bug report to changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210914210951.2994260-3-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-21 13:01:25 -04:00
Thomas Gleixner
d9d005f32a x86/fpu: Move mxcsr related code to core
No need to expose that to code which only needs the XCR0 accessors.

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20211015011539.740012411@linutronix.de
2021-10-20 15:27:28 +02:00
Paolo Bonzini
a25c78d04c Merge commit 'kvm-pagedata-alloc-fixes' into HEAD 2021-10-18 14:13:37 -04:00
Paolo Bonzini
9f1ee7b169 KVM: SEV-ES: reduce ghcb_sa_len to 32 bits
The size of the GHCB scratch area is limited to 16 KiB (GHCB_SCRATCH_AREA_LIMIT),
so there is no need for it to be a u64.  This fixes a build error on 32-bit
systems:

i686-linux-gnu-ld: arch/x86/kvm/svm/sev.o: in function `sev_es_string_io:
sev.c:(.text+0x110f): undefined reference to `__udivdi3'

Cc: stable@vger.kernel.org
Fixes: 019057bd73 ("KVM: SEV-ES: fix length of string I/O")
Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:07:19 -04:00
Peter Gonda
baa1e5ca17 KVM: SEV-ES: Set guest_state_protected after VMSA update
The refactoring in commit bb18a67774 ("KVM: SEV: Acquire
vcpu mutex when updating VMSA") left behind the assignment to
svm->vcpu.arch.guest_state_protected; add it back.

Signed-off-by: Peter Gonda <pgonda@google.com>
[Delta between v2 and v3 of Peter's patch, which had already been
 committed; the commit message is my own. - Paolo]
Fixes: bb18a67774 ("KVM: SEV: Acquire vcpu mutex when updating VMSA")
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-18 14:07:17 -04:00
Paolo Bonzini
019057bd73 KVM: SEV-ES: fix length of string I/O
The size of the data in the scratch buffer is not divided by the size of
each port I/O operation, so vcpu->arch.pio.count ends up being larger
than it should be by a factor of size.

Cc: stable@vger.kernel.org
Fixes: 7ed9abfe8e ("KVM: SVM: Support string IO operations for an SEV-ES guest")
Acked-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-15 04:47:36 -04:00
Peter Zijlstra
b08cadbd3b Merge branch 'objtool/urgent'
Fixup conflicts.

# Conflicts:
#	tools/objtool/check.c
2021-10-07 00:40:17 +02:00
Tom Lendacky
4d96f91091 x86/sev: Replace occurrences of sev_active() with cc_platform_has()
Replace uses of sev_active() with the more generic cc_platform_has()
using CC_ATTR_GUEST_MEM_ENCRYPT. If future support is added for other
memory encryption technologies, the use of CC_ATTR_GUEST_MEM_ENCRYPT
can be updated, as required.

Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lkml.kernel.org/r/20210928191009.32551-7-bp@alien8.de
2021-10-04 11:46:58 +02:00
Krish Sadhukhan
174a921b69 nSVM: Check for reserved encodings of TLB_CONTROL in nested VMCB
According to section "TLB Flush" in APM vol 2,

    "Support for TLB_CONTROL commands other than the first two, is
     optional and is indicated by CPUID Fn8000_000A_EDX[FlushByAsid].

     All encodings of TLB_CONTROL not defined in the APM are reserved."

Signed-off-by: Krish Sadhukhan <krish.sadhukhan@oracle.com>
Message-Id: <20210920235134.101970-3-krish.sadhukhan@oracle.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:57 -04:00
Maxim Levitsky
5228eb96a4 KVM: x86: nSVM: implement nested TSC scaling
This was tested by booting a nested guest with TSC=1Ghz,
observing the clocks, and doing about 100 cycles of migration.

Note that qemu patch is needed to support migration because
of a new MSR that needs to be placed in the migration state.

The patch will be sent to the qemu mailing list soon.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-14-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Maxim Levitsky
f800650a4e KVM: x86: SVM: add module param to control TSC scaling
This allows to easily simulate a CPU without this feature.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-13-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:44:46 -04:00
Paolo Bonzini
36e8194dcd KVM: x86: SVM: don't set VMLOAD/VMSAVE intercepts on vCPU reset
Commit adc2a23734 ("KVM: nSVM: improve SYSENTER emulation on AMD"),
made init_vmcb set vmload/vmsave intercepts unconditionally,
and relied on svm_vcpu_after_set_cpuid to clear them when possible.

However init_vmcb is also called when the vCPU is reset, and it is
not followed by another call to svm_vcpu_after_set_cpuid because
the CPUID is already set.  This mistake makes the VMSAVE/VMLOAD intercept
to be set when it is not needed, and harms performance of the nested
guest.

Extract the relevant parts of svm_vcpu_after_set_cpuid so that they
can be called again on reset.

Fixes: adc2a23734 ("KVM: nSVM: improve SYSENTER emulation on AMD")
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-10-01 03:37:34 -04:00
Maxim Levitsky
4c84926e22 KVM: x86: SVM: add module param to control LBR virtualization
This is useful for debug and also makes it consistent with
the rest of the SVM optional features.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-9-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:11 -04:00
Maxim Levitsky
0226a45c46 KVM: x86: nSVM: don't copy pause related settings
According to the SDM, the CPU never modifies these settings.
It loads them on VM entry and updates an internal copy instead.

Also don't load them from the vmcb12 as we don't expose these
features to the nested guest yet.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-5-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:11 -04:00
Sean Christopherson
9ebe530b9f KVM: SVM: Move RESET emulation to svm_vcpu_reset()
Move RESET emulation for SVM vCPUs to svm_vcpu_reset(), and drop an extra
init_vmcb() from svm_create_vcpu() in the process.  Hopefully KVM will
someday expose a dedicated RESET ioctl(), and in the meantime separating
"create" from "RESET" is a nice cleanup.

Keep the call to svm_switch_vmcb() so that misuse of svm->vmcb at worst
breaks the guest, e.g. premature accesses doesn't cause a NULL pointer
dereference.

Cc: Reiji Watanabe <reijiw@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20210921000303.400537-10-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-30 04:27:07 -04:00
Maxim Levitsky
faf6b75562 KVM: x86: nSVM: don't copy virt_ext from vmcb12
These field correspond to features that we don't expose yet to L2

While currently there are no CVE worthy features in this field,
if AMD adds more features to this field, that could allow guest
escapes similar to CVE-2021-3653 and CVE-2021-3656.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-6-mlevitsk@redhat.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:06:46 -04:00
Maxim Levitsky
d1cba6c922 KVM: x86: nSVM: test eax for 4K alignment for GP errata workaround
GP SVM errata workaround made the #GP handler always emulate
the SVM instructions.

However these instructions #GP in case the operand is not 4K aligned,
but the workaround code didn't check this and we ended up
emulating these instructions anyway.

This is only an emulation accuracy check bug as there is no harm for
KVM to read/write unaligned vmcb images.

Fixes: 82a11e9c6f ("KVM: SVM: Add emulation support for #GP triggered by SVM instructions")

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-4-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:05:29 -04:00
Maxim Levitsky
aee77e1169 KVM: x86: nSVM: restore int_vector in svm_clear_vintr
In svm_clear_vintr we try to restore the virtual interrupt
injection that might be pending, but we fail to restore
the interrupt vector.

Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210914154825.104886-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-23 10:04:40 -04:00
Maxim Levitsky
136a55c054 KVM: x86: nSVM: refactor svm_leave_smm and smm_enter_smm
Use return statements instead of nested if, and fix error
path to free all the maps that were allocated.

Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Maxim Levitsky <mlevitsk@redhat.com>
Message-Id: <20210913140954.165665-2-mlevitsk@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2021-09-22 10:47:43 -04:00