Improve the distribution algorithm of random base address to ensure
a uniformity among all suitable addresses. To generate a random value
once, and to build a continuous range in which every value is suitable,
count all the suitable addresses (referred to as positions) that can be
used as a base address. The positions are counted by iterating over the
usable memory ranges. For each range that is big enough to accommodate
the image, count all the suitable addresses where the image can be placed,
while taking reserved memory ranges into consideration.
A new function "iterate_valid_positions()" has dual purpose. Firstly, it
is called to count the positions in a given memory range, and secondly,
to convert a random position back to an address.
"get_random_base()" has been replaced with more generic
"randomize_within_range()" which now could be called for randomizing
base addresses not just for the kernel image.
Acked-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Just like other architectures provide a kaslr_enabled() function, instead
of directly accessing a global variable.
Also pass the renamed __kaslr_enabled variable from the decompressor to the
kernel, so that kalsr_enabled() is available there too. This will be used
by a subsequent patch which randomizes the module base load address.
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Since regular paging structs are initialized in decompressor already
move KASAN shadow mapping to decompressor as well. This helps to avoid
allocating KASAN required memory in 1 large chunk, de-duplicate paging
structs creation code and start the uncompressed kernel with KASAN
instrumentation right away. This also allows to avoid all pitfalls
accidentally calling KASAN instrumented code during KASAN initialization.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Currently several approaches for finding unused memory in decompressor
are utilized. While "safe_addr" grows towards higher addresses, vmem
code allocates paging structures top down. The former requires careful
ordering. In addition to that ipl report handling code verifies potential
intersections with secure boot certificates on its own. Neither of two
approaches are memory holes aware and consistent with each other in low
memory conditions.
To solve that, existing approaches are generalized and combined
together, as well as online memory ranges are now taken into
consideration.
physmem_info has been extended to contain reserved memory ranges. New
set of functions allow to handle reserves and find unused memory.
All reserves and memory allocations are "typed". In case of out of
memory condition decompressor fails with detailed info on current
reserved ranges and usable online memory.
Linux version 6.2.0 ...
Kernel command line: ... mem=100M
Our of memory allocating 100000 bytes 100000 aligned in range 0:5800000
Reserved memory ranges:
0000000000000000 0000000003e33000 DECOMPRESSOR
0000000003f00000 00000000057648a3 INITRD
00000000063e0000 00000000063e8000 VMEM
00000000063eb000 00000000063f4000 VMEM
00000000063f7800 0000000006400000 VMEM
0000000005800000 0000000006300000 KASAN
Usable online memory ranges (info source: sclp read info [3]):
0000000000000000 0000000006400000
Usable online memory total: 6400000 Reserved: 61b10a3 Free: 24ef5d
Call Trace:
(sp:000000000002bd58 [<0000000000012a70>] physmem_alloc_top_down+0x60/0x14c)
sp:000000000002bdc8 [<0000000000013756>] _pa+0x56/0x6a
sp:000000000002bdf0 [<0000000000013bcc>] pgtable_populate+0x45c/0x65e
sp:000000000002be90 [<00000000000140aa>] setup_vmem+0x2da/0x424
sp:000000000002bec8 [<0000000000011c20>] startup_kernel+0x428/0x8b4
sp:000000000002bf60 [<00000000000100f4>] startup_normal+0xd4/0xd4
physmem_alloc_range allows to find free memory in specified range. It
should be used for one time allocations only like finding position for
amode31 and vmlinux.
physmem_alloc_top_down can be used just like physmem_alloc_range, but
it also allows multiple allocations per type and tries to merge sequential
allocations together. Which is useful for paging structures allocations.
If sequential allocations cannot be merged together they are "chained",
allowing easy per type reserved ranges enumeration and migration to
memblock later. Extra "struct reserved_range" allocated for chaining are
not tracked or reserved but rely on the fact that both
physmem_alloc_range and physmem_alloc_top_down search for free memory
only below current top down allocator position. All reserved ranges
should be transferred to memblock before memblock allocations are
enabled.
The startup code has been reordered to delay any memory allocations until
online memory ranges are detected and occupied memory ranges are marked as
reserved to be excluded from follow-up allocations.
Ipl report certificates are a special case, ipl report certificates list
is checked together with other memory reserves until certificates are
saved elsewhere.
KASAN required memory for shadow memory allocation and mapping is reserved
as 1 large chunk which is later passed to KASAN early initialization code.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
In preparation to extending mem_detect with additional information like
reserved ranges rename it to more generic physmem_info. This new naming
also help to avoid confusion by using more exact terms like "physmem
online ranges", etc.
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Commit bf64f0517e ("s390/mem_detect: handle online memory limit
just once") introduced truncation of mem_detect online ranges
based on identity mapping size. For kdump case however the full
set of online memory ranges has to be feed into memblock_physmem_add
so that crashed system memory could be extracted.
Instead of truncating introduce a "usable limit" which is respected by
mem_detect api. Also add extra online memory ranges iterator which still
provides full set of online memory ranges disregarding the "usable limit".
Fixes: bf64f0517e ("s390/mem_detect: handle online memory limit just once")
Reported-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Tested-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
If kernel is build without KASAN support there is a chance that kernel
image is going to be positioned by KASLR code to overlap with identity
mapping page tables.
When kernel is build with KASAN support enabled memory which
is potentially going to be used for page tables and KASAN
shadow mapping is accounted for in KASLR with the use of
kasan_estimate_memory_needs(). Split this function and introduce
vmem_estimate_memory_needs() to cover decompressor's vmem identity
mapping page tables.
Fixes: bb1520d581 ("s390/mm: start kernel with DAT enabled")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Introduce mem_detect_truncate() to cut any online memory ranges above
established identity mapping size, so that mem_detect users wouldn't
have to do it over and over again.
Suggested-by: Alexander Gordeev <agordeev@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Allocation of mem_detect extended area was not considered neither
in commit 9641b8cc73 ("s390/ipl: read IPL report at early boot")
nor in commit b2d24b97b2 ("s390/kernel: add support for kernel address
space layout randomization (KASLR)"). As a result mem_detect extended
theoretically may overlap with ipl report or randomized kernel image
position. But as mem_detect code will allocate extended area only
upon exceeding 255 online regions (which should alternate with offline
memory regions) it is not seen in practice.
To make sure mem_detect extended area does not overlap with ipl report
or randomized kernel position extend usage of "safe_addr". Make initrd
handling and mem_detect extended area allocation code move it further
right and make KASLR takes in into consideration as well.
Fixes: 9641b8cc73 ("s390/ipl: read IPL report at early boot")
Fixes: b2d24b97b2 ("s390/kernel: add support for kernel address space layout randomization (KASLR)")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Commit bb1520d581 ("s390/mm: start kernel with DAT enabled")
doesn't consider online memory holes due to potential memory offlining
and erroneously creates pgtables for stand-by memory, which bear RW+X
attribute and trigger a warning:
RANGE SIZE STATE REMOVABLE BLOCK
0x0000000000000000-0x0000000c3fffffff 49G online yes 0-48
0x0000000c40000000-0x0000000c7fffffff 1G offline 49
0x0000000c80000000-0x0000000fffffffff 14G online yes 50-63
0x0000001000000000-0x00000013ffffffff 16G offline 64-79
s390/mm: Found insecure W+X mapping at address 0xc40000000
WARNING: CPU: 14 PID: 1 at arch/s390/mm/dump_pagetables.c:142 note_page+0x2cc/0x2d8
Map only online memory ranges which fit within identity mapping limit.
Fixes: bb1520d581 ("s390/mm: start kernel with DAT enabled")
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Move Absolute Lowcore Area allocation to the decompressor.
As result, get_abs_lowcore() and put_abs_lowcore() access
brackets become really straight and do not require complex
execution context analysis and LAP and interrupts tackling.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
The setup of the kernel virtual address space is spread
throughout the sources, boot stages and config options
like this:
1. The available physical memory regions are queried
and stored as mem_detect information for later use
in the decompressor.
2. Based on the physical memory availability the virtual
memory layout is established in the decompressor;
3. If CONFIG_KASAN is disabled the kernel paging setup
code populates kernel pgtables and turns DAT mode on.
It uses the information stored at step [1].
4. If CONFIG_KASAN is enabled the kernel early boot
kasan setup populates kernel pgtables and turns DAT
mode on. It uses the information stored at step [1].
The kasan setup creates early_pg_dir directory and
directly overwrites swapper_pg_dir entries to make
shadow memory pages available.
Move the kernel virtual memory setup to the decompressor
and start the kernel with DAT turned on right from the
very first istruction. That completely eliminates the
boot phase when the kernel runs in DAT-off mode, simplies
the overall design and consolidates pgtables setup.
The identity mapping is created in the decompressor, while
kasan shadow mappings are still created by the early boot
kernel code.
Share with decompressor the existing kasan memory allocator.
It decreases the size of a newly requested memory block from
pgalloc_pos and ensures that kernel image is not overwritten.
pgalloc_low and pgalloc_pos pointers are made preserved boot
variables for that.
Use the bootdata infrastructure to setup swapper_pg_dir
and invalid_pg_dir directories used by the kernel later.
The interim early_pg_dir directory established by the
kasan initialization code gets eliminated as result.
As the kernel runs in DAT-on mode only the PSW_KERNEL_BITS
define gets PSW_MASK_DAT bit by default. Additionally, the
setup_lowcore_dat_off() and setup_lowcore_dat_on() routines
get merged, since there is no DAT-off mode stage anymore.
The memory mappings are created with RW+X protection that
allows the early boot code setting up all necessary data
and services for the kernel being booted. Just before the
paging is enabled the memory protection is changed to
RO+X for text, RO+NX for read-only data and RW+NX for
kernel data and the identity mapping.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Detect and enable memory facilities which is a
prerequisite for pgtables setup in the decompressor.
Reviewed-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Convert initial lowcore to C and use proper defines and structures to
initialize it. This should make the z/VM ipl procedure a bit less magic.
Acked-by: Peter Oberparleiter <oberpar@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
This change simplifies the task of making the decompressor relocatable.
The decompressor's image contains special DMA sections between _sdma and
_edma. This DMA segment is loaded at boot as part of the decompressor and
then simply handed over to the decompressed kernel. The decompressor itself
never uses it in any way. The primary reason for this is the need to keep
the aforementioned DMA segment below 2GB which is required by architecture,
and because the decompressor is always loaded at a fixed low physical
address, it is guaranteed that the DMA region will not cross the 2GB
memory limit. If the DMA region had been placed in the decompressed kernel,
then KASLR would make this guarantee impossible to fulfill or it would
be restricted to the first 2GB of memory address space.
This commit moves all DMA sections between _sdma and _edma from
the decompressor's image to the decompressed kernel's image. The complete
DMA region is placed in the init section of the decompressed kernel and
immediately relocated below 2GB at start-up before it is needed by other
parts of the decompressed kernel. The relocation of the DMA region happens
even if the decompressed kernel is already located below 2GB in order
to keep the first implementation simple. The relocation should not have
any noticeable impact on boot time because the DMA segment is only a couple
of pages.
After relocating the DMA sections, the kernel has to fix all references
which point into it. In order to automate this, place all variables
pointing into the DMA sections in a special .dma.refs section. All such
variables must be defined using the new __dma_ref macro. Only variables
containing addresses within the DMA sections must be placed in the new
.dma.refs section.
Furthermore, move the initialization of control registers from
the decompressor to the decompressed kernel because some control registers
reference tables that must be placed in the DMA data section to
guarantee that their addresses are below 2G. Because the decompressed
kernel relocates the DMA sections at startup, the content of control
registers CR2, CR5 and CR15 must be updated with new addresses after
the relocation. The decompressed kernel initializes all control registers
early at boot and then updates the content of CR2, CR5 and CR15
as soon as the DMA relocation has occurred. This practically reverts
the commit a80313ff91 ("s390/kernel: introduce .dma sections").
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
To make the decompressor relocatable, the early SCLP buffer with a fixed
address must be replaced with a relocatable C buffer of the according size
and alignment as required by SCLP.
Introduce a new function sclp_early_set_buffer() into the SCLP driver
which enables the decompressor to change the SCLP early buffer at any time.
This will be useful when the decompressor becomes fully relocatable and
might need to change the SCLP early buffer to one with an address < 2G
as required by SCLP because it was loaded at an address >= 2G.
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Instead of using constant addresses for the normal and dump-info stacks,
allocate both stacks in the decompressor's image and load the stack register
in a position-independent manner.
This will allow loading and entering the decompressor at an arbitrary
memory address without corrupting the content at the fixed addresses
used until now for both stacks. This is one of the prerequisites
for being able to kexec the decompressor from its load address without
relocating it first.
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
To prevent multiple incompatible declarations of symbols and to catch
such mistakes at compile time.
Signed-off-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Acked-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Currently there are two separate places where kernel memory layout has
to be known and adjusted:
1. early kasan setup.
2. paging setup later.
Those 2 places had to be kept in sync and adjusted to reflect peculiar
technical details of one another. With additional factors which influence
kernel memory layout like ultravisor secure storage limit, complexity
of keeping two things in sync grew up even more.
Besides that if we look forward towards creating identity mapping and
enabling DAT before jumping into uncompressed kernel - that would also
require full knowledge of and control over kernel memory layout.
So, de-duplicate and move kernel memory layout setup logic into
the decompressor.
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
The decompressor does not have any special debug means. Running the
kernel under qemu with gdb is helpful but tedious exercise if done
repeatedly. It is also not applicable to debugging under LPAR and z/VM.
One special thing which stands out is a working sclp_early_printk,
which could be used once the kernel switches to 64-bit addressing mode.
But sclp_early_printk does not provide any string formating capabilities.
Formatting and printing string without printk-alike function is a
not fun. The lack of printk-alike function means people would save up on
testing and introduce more bugs.
So, finally, provide decompressor_printk function, which fits on one
screen and trades features for simplicity.
It only supports "%s", "%x" and "%lx" specifiers and zero padding for
hex values.
Reviewed-by: Alexander Egorenkov <egorenar@linux.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
Currently we have to consider too many different values which
in the end only affect identity mapping size. These are:
1. max_physmem_end - end of physical memory online or standby.
Always <= end of the last online memory block (get_mem_detect_end()).
2. CONFIG_MAX_PHYSMEM_BITS - the maximum size of physical memory the
kernel is able to support.
3. "mem=" kernel command line option which limits physical memory usage.
4. OLDMEM_BASE which is a kdump memory limit when the kernel is executed as
crash kernel.
5. "hsa" size which is a memory limit when the kernel is executed during
zfcp/nvme dump.
Through out kernel startup and run we juggle all those values at once
but that does not bring any amusement, only confusion and complexity.
Unify all those values to a single one we should really care, that is
our identity mapping size.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Reviewed-by: Alexander Gordeev <agordeev@linux.ibm.com>
Acked-by: Heiko Carstens <hca@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
To make sure that the vmalloc area size is for almost all cases large
enough let it depend on the (potential) physical memory size. There is
still the possibility to override this with the vmalloc kernel command
line parameter.
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com>
Reviewed-by: Claudio Imbrenda <imbrenda@linux.ibm.com>
Reviewed-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <hca@linux.ibm.com>
- Add support for IBM z15 machines.
- Add SHA3 and CCA AES cipher key support in zcrypt and pkey refactoring.
- Move to arch_stack_walk infrastructure for the stack unwinder.
- Various kasan fixes and improvements.
- Various command line parsing fixes.
- Improve decompressor phase debuggability.
- Lift no bss usage restriction for the early code.
- Use refcount_t for reference counters for couple of places in
mm code.
- Logging improvements and return code fix in vfio-ccw code.
- Couple of zpci fixes and minor refactoring.
- Remove some outdated documentation.
- Fix secure boot detection.
- Other various minor code clean ups.
-----BEGIN PGP SIGNATURE-----
iQEzBAABCAAdFiEE3QHqV+H2a8xAv27vjYWKoQLXFBgFAl1/pRoACgkQjYWKoQLX
FBjxLQf/Y1nlmoc8URLqaqfNTczIvUzdfXuahI7L75RoIIiqHtcHBrVwauSr7Lma
XVRzK/+6q0UPISrOIZEEtQKsMMM7rGuUv/+XTyrOB/Tsc31kN2EIRXltfXI/lkb8
BZdgch4Xs2rOD7y6TvqpYJsXYXsnLMWwCk8V+48V/pok4sEgMDgh0bTQRHPHYmZ6
1cv8ZQ0AeuVxC6ChM30LhajGRPkYd8RQ82K7fU7jxT0Tjzu66SyrW3pTwA5empBD
RI2yBZJ8EXwJyTCpvN8NKiBgihDs9oUZl61Dyq3j64Mb1OuNUhxXA/8jmtnGn0ok
O9vtImCWzExhjSMkvotuhHEC05nEEQ==
=LCgE
-----END PGP SIGNATURE-----
Merge tag 's390-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
Pull s390 updates from Vasily Gorbik:
- Add support for IBM z15 machines.
- Add SHA3 and CCA AES cipher key support in zcrypt and pkey
refactoring.
- Move to arch_stack_walk infrastructure for the stack unwinder.
- Various kasan fixes and improvements.
- Various command line parsing fixes.
- Improve decompressor phase debuggability.
- Lift no bss usage restriction for the early code.
- Use refcount_t for reference counters for couple of places in mm
code.
- Logging improvements and return code fix in vfio-ccw code.
- Couple of zpci fixes and minor refactoring.
- Remove some outdated documentation.
- Fix secure boot detection.
- Other various minor code clean ups.
* tag 's390-5.4-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: (48 commits)
s390: remove pointless drivers-y in drivers/s390/Makefile
s390/cpum_sf: Fix line length and format string
s390/pci: fix MSI message data
s390: add support for IBM z15 machines
s390/crypto: Support for SHA3 via CPACF (MSA6)
s390/startup: add pgm check info printing
s390/crypto: xts-aes-s390 fix extra run-time crypto self tests finding
vfio-ccw: fix error return code in vfio_ccw_sch_init()
s390: vfio-ap: fix warning reset not completed
s390/base: remove unused s390_base_mcck_handler
s390/sclp: Fix bit checked for has_sipl
s390/zcrypt: fix wrong handling of cca cipher keygenflags
s390/kasan: add kdump support
s390/setup: avoid using strncmp with hardcoded length
s390/sclp: avoid using strncmp with hardcoded length
s390/module: avoid using strncmp with hardcoded length
s390/pci: avoid using strncmp with hardcoded length
s390/kaslr: reserve memory for kasan usage
s390/mem_detect: provide single get_mem_detect_end
s390/cmma: reuse kstrtobool for option value parsing
...
Try to print out startup pgm check info including exact linux kernel
version, pgm interruption code and ilc, psw and general registers. Like
the following:
Linux version 5.3.0-rc7-07282-ge7b4d41d61bd-dirty (gor@tuxmaker) #3 SMP PREEMPT Thu Sep 5 16:07:34 CEST 2019
Kernel fault: interruption code 0005 ilc:2
PSW : 0000000180000000 0000000000012e52
R:0 T:0 IO:0 EX:0 Key:0 M:0 W:0 P:0 AS:0 CC:0 PM:0 RI:0 EA:3
GPRS: 0000000000000000 00ffffffffffffff 0000000000000000 0000000000019a58
000000000000bf68 0000000000000000 0000000000000000 0000000000000000
0000000000000000 0000000000000000 000000000001a041 0000000000000000
0000000004c9c000 0000000000010070 0000000000012e42 000000000000beb0
This info makes it apparent that kernel startup failed and might help
to understand what went wrong without actual standalone dump.
Printing code runs on its own stack of 1 page (at unused 0x5000), which
should be sufficient for sclp_early_printk usage (typical stack usage
observed has been around 512 bytes).
The code has pgm check recursion prevention, despite pgm check info
printing failure (follow on pgm check) or success it restores original
faulty psw and gprs and does disabled wait.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Add __swsusp_reset_dma declaration to avoid the following sparse warnings:
arch/s390/kernel/setup.c:107:15: warning: symbol '__swsusp_reset_dma' was not declared. Should it be static?
arch/s390/boot/startup.c:52:15: warning: symbol '__swsusp_reset_dma' was not declared. Should it be static?
Add verify_facilities declaration to avoid the following sparse warning:
arch/s390/boot/als.c:105:6: warning: symbol 'verify_facilities' was not declared. Should it be static?
Include "boot.h" into arch/s390/boot/kaslr.c to expose get_random_base
function declaration and avoid the following sparse warning:
arch/s390/boot/kaslr.c:90:15: warning: symbol 'get_random_base' was not declared. Should it be static?
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Extend "parmarea" to include an offset of the version string, which is
stored as 8-byte big endian value.
To retrieve version string from bzImage reliably, one should check the
presence of "S390EP" ascii string at 0x10008 (available since v3.2),
then read the version string offset from 0x10428 (which has been 0
since v3.2 up to now). The string is null terminated.
Could be retrieved with the following "file" command magic (requires
file v5.34):
8 string \x02\x00\x00\x18\x60\x00\x00\x50\x02\x00\x00\x68\x60\x00\x00\x50\x40\x40\x40\x40\x40\x40\x40\x40 Linux S390
>0x10008 string S390EP
>>0x10428 bequad >0
>>>(0x10428.Q) string >\0 \b, version %s
Reported-by: Petr Tesarik <ptesarik@suse.com>
Suggested-by: Petr Tesarik <ptesarik@suse.com>
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com>
This patch adds support for relocating the kernel to a random address.
The random kernel offset is obtained from cpacf, using either TRNG, PRNO,
or KMC_PRNG, depending on supported MSA level.
KERNELOFFSET is added to vmcoreinfo, for crash --kaslr support.
Signed-off-by: Gerald Schaefer <gerald.schaefer@de.ibm.com>
Reviewed-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Read the IPL Report block provided by secure-boot, add the entries
of the certificate list to the system key ring and print the list
of components.
PR: Adjust to Vasilys bootdata_preserved patch set. Preserve ipl_cert_list
for later use in kexec_file.
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Philipp Rudo <prudo@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add a warning about removing required architecture level set facilities
via "facilities=" command line option.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Add "facilities=" command line option which allows to override
facility bits returned by stfle. The main purpose of that is debugging
aids which allows to test specific kernel behaviour depending on
specific facilities presence. It also affects CPU alternatives.
"facilities=" command line option format is comma separated list of
integer values to be additionally set or cleared (if value is starting
with "!"). Values ranges are also supported. e.g.:
facilities=!130-160,159,167-169
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
To distinguish zfcpdump case and to be able to parse some of the kernel
command line arguments early (e.g. mem=) ipl block retrieval and command
line construction code is moved to the early boot phase.
"memory_end" is set up correctly respecting "mem=" and hsa_size in case
of the zfcpdump.
arch/s390/boot/string.c is introduced to provide string handling and
command line parsing functions to early boot phase code for the compressed
kernel image case.
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Move memory detection to early boot phase. To store online memory
regions "struct mem_detect_info" has been introduced together with
for_each_mem_detect_block iterator. mem_detect_info is later converted
to memblock.
Also introduces sclp_early_get_meminfo function to get maximum physical
memory and maximum increment number.
Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com>
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Decompressor's head.S provided "data mover" sole purpose of which has
been to safely move uncompressed kernel at 0x100000 and jump to it.
With current bzImage layout entire decompressor's code guaranteed to be
in a safe location under 0x100000, and hence could not be overwritten
during kernel move. For that reason head.S could be replaced with simple
memmove function. To do so introduce early boot code phase which is
executed from arch/s390/boot/head.S after "verify_facilities" and takes
care of optional kernel image decompression and transition to it.
Reviewed-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
Signed-off-by: Vasily Gorbik <gor@linux.ibm.com>
Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>