Performance counters are defined to have width less than 64 bits. The
vPMU code maintains the counters in u64 variables but assumes the value
to fit within the defined width. However, for Intel non-full-width
counters (MSR_IA32_PERFCTRx) the value receieved from the guest is
truncated to 32 bits and then sign-extended to full 64 bits. If a
negative value is set, it's sign-extended to 64 bits, but then in
kvm_pmu_incr_counter() it's incremented, truncated, and compared to the
previous value for overflow detection.
That previous value is not truncated, so it always evaluates bigger than
the truncated new one, and a PMI is injected. If the PMI handler writes
a negative counter value itself, the vCPU never quits the PMI loop.
Turns out that Linux PMI handler actually does write the counter with
the value just read with RDPMC, so when no full-width support is exposed
via MSR_IA32_PERF_CAPABILITIES, and the guest initializes the counter to
a negative value, it locks up.
This has been observed in the field, for example, when the guest configures
atop to use perfevents and runs two instances of it simultaneously.
To address the problem, maintain the invariant that the counter value
always fits in the defined bit width, by truncating the received value
in the respective set_msr methods. For better readability, factor the
out into a helper function, pmc_write_counter(), shared by vmx and svm
parts.
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Cc: stable@vger.kernel.org
Signed-off-by: Roman Kagan <rkagan@amazon.de>
Link: https://lore.kernel.org/all/20230504120042.785651-1-rkagan@amazon.de
Tested-by: Like Xu <likexu@tencent.com>
[sean: tweak changelog, s/set/write in the helper]
Signed-off-by: Sean Christopherson <seanjc@google.com>
If AMD Performance Monitoring Version 2 (PerfMonV2) is detected by
the guest, it can use a new scheme to manage the Core PMCs using the
new global control and status registers.
In addition to benefiting from the PerfMonV2 functionality in the same
way as the host (higher precision), the guest also can reduce the number
of vm-exits by lowering the total number of MSRs accesses.
In terms of implementation details, amd_is_valid_msr() is resurrected
since three newly added MSRs could not be mapped to one vPMC.
The possibility of emulating PerfMonV2 on the mainframe has also
been eliminated for reasons of precision.
Co-developed-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: drop "Based on the observed HW." comments]
Link: https://lore.kernel.org/r/20230603011058.1038821-12-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Cap the number of general purpose counters enumerated on AMD to what KVM
actually supports, i.e. don't allow userspace to coerce KVM into thinking
there are more counters than actually exist, e.g. by enumerating
X86_FEATURE_PERFCTR_CORE in guest CPUID when its not supported.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: massage changelog]
Link: https://lore.kernel.org/r/20230603011058.1038821-10-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Disable PMU support when running on AMD and perf reports fewer than four
general purpose counters. All AMD PMUs must define at least four counters
due to AMD's legacy architecture hardcoding the number of counters
without providing a way to enumerate the number of counters to software,
e.g. from AMD's APM:
The legacy architecture defines four performance counters (PerfCtrn)
and corresponding event-select registers (PerfEvtSeln).
Virtualizing fewer than four counters can lead to guest instability as
software expects four counters to be available. Rather than bleed AMD
details into the common code, just define a const unsigned int and
provide a convenient location to document why Intel and AMD have different
mins (in particular, AMD's lack of any way to enumerate less than four
counters to the guest).
Keep the minimum number of counters at Intel at one, even though old P6
and Core Solo/Duo processor effectively require a minimum of two counters.
KVM can, and more importantly has up until this point, supported a vPMU so
long as the CPU has at least one counter. Perf's support for P6/Core CPUs
does require two counters, but perf will happily chug along with a single
counter when running on a modern CPU.
Cc: Jim Mattson <jmattson@google.com>
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
[sean: set Intel min to '1', not '2']
Link: https://lore.kernel.org/r/20230603011058.1038821-8-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Move the Intel PMU implementation of pmc_is_enabled() to common x86 code
as pmc_is_globally_enabled(), and drop AMD's implementation. AMD PMU
currently supports only v1, and thus not PERF_GLOBAL_CONTROL, thus the
semantics for AMD are unchanged. And when support for AMD PMU v2 comes
along, the common behavior will also Just Work.
Signed-off-by: Like Xu <likexu@tencent.com>
Co-developed-by: Sean Christopherson <seanjc@google.com>
Link: https://lore.kernel.org/r/20230603011058.1038821-6-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Fix a "reprogam" => "reprogram" typo in kvm_pmu_request_counter_reprogam().
Fixes: 68fb4757e8 ("KVM: x86/pmu: Defer reprogram_counter() to kvm_pmu_handle_event()")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20230310113349.31799-1-likexu@tencent.com
[sean: trim the changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Limit kvm_pmu_cap.num_counters_gp during kvm_init_pmu_capability() based
on the vendor PMU capabilities so that consuming num_counters_gp naturally
does the right thing. This fixes a mostly theoretical bug where KVM could
over-report its PMU support in KVM_GET_SUPPORTED_CPUID for leaf 0xA, e.g.
if the number of counters reported by perf is greater than KVM's
hardcoded internal limit. Incorporating input from the AMD PMU also
avoids over-reporting MSRs to save when running on AMD.
Link: https://lore.kernel.org/r/20230124234905.3774678-2-seanjc@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
When checking if a pmu event the guest is attempting to program should
be filtered, only consider the event select + unit mask in that
decision. Use an architecture specific mask to mask out all other bits,
including bits 35:32 on Intel. Those bits are not part of the event
select and should not be considered in that decision.
Fixes: 66bb8a065f ("KVM: x86: PMU Event Filter")
Signed-off-by: Aaron Lewis <aaronlewis@google.com>
Link: https://lore.kernel.org/r/20221220161236.555143-2-aaronlewis@google.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Define pr_fmt using KBUILD_MODNAME for all KVM x86 code so that printks
use consistent formatting across common x86, Intel, and AMD code. In
addition to providing consistent print formatting, using KBUILD_MODNAME,
e.g. kvm_amd and kvm_intel, allows referencing SVM and VMX (and SEV and
SGX and ...) as technologies without generating weird messages, and
without causing naming conflicts with other kernel code, e.g. "SEV: ",
"tdx: ", "sgx: " etc.. are all used by the kernel for non-KVM subsystems.
Opportunistically move away from printk() for prints that need to be
modified anyways, e.g. to drop a manual "kvm: " prefix.
Opportunistically convert a few SGX WARNs that are similarly modified to
WARN_ONCE; in the very unlikely event that the WARNs fire, odds are good
that they would fire repeatedly and spam the kernel log without providing
unique information in each print.
Note, defining pr_fmt yields undesirable results for code that uses KVM's
printk wrappers, e.g. vcpu_unimpl(). But, that's a pre-existing problem
as SVM/kvm_amd already defines a pr_fmt, and thankfully use of KVM's
wrappers is relatively limited in KVM x86 code.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Reviewed-by: Paul Durrant <paul@xen.org>
Message-Id: <20221130230934.1014142-35-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Defer reprogramming counters and handling overflow via KVM_REQ_PMU
when incrementing counters. KVM skips emulated WRMSR in the VM-Exit
fastpath, the fastpath runs with IRQs disabled, skipping instructions
can increment and reprogram counters, reprogramming counters can
sleep, and sleeping is disallowed while IRQs are disabled.
[*] BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
[*] in_atomic(): 1, irqs_disabled(): 1, non_block: 0, pid: 2981888, name: CPU 15/KVM
[*] preempt_count: 1, expected: 0
[*] RCU nest depth: 0, expected: 0
[*] INFO: lockdep is turned off.
[*] irq event stamp: 0
[*] hardirqs last enabled at (0): [<0000000000000000>] 0x0
[*] hardirqs last disabled at (0): [<ffffffff8121222a>] copy_process+0x146a/0x62d0
[*] softirqs last enabled at (0): [<ffffffff81212269>] copy_process+0x14a9/0x62d0
[*] softirqs last disabled at (0): [<0000000000000000>] 0x0
[*] Preemption disabled at:
[*] [<ffffffffc2063fc1>] vcpu_enter_guest+0x1001/0x3dc0 [kvm]
[*] CPU: 17 PID: 2981888 Comm: CPU 15/KVM Kdump: 5.19.0-rc1-g239111db364c-dirty #2
[*] Call Trace:
[*] <TASK>
[*] dump_stack_lvl+0x6c/0x9b
[*] __might_resched.cold+0x22e/0x297
[*] __mutex_lock+0xc0/0x23b0
[*] perf_event_ctx_lock_nested+0x18f/0x340
[*] perf_event_pause+0x1a/0x110
[*] reprogram_counter+0x2af/0x1490 [kvm]
[*] kvm_pmu_trigger_event+0x429/0x950 [kvm]
[*] kvm_skip_emulated_instruction+0x48/0x90 [kvm]
[*] handle_fastpath_set_msr_irqoff+0x349/0x3b0 [kvm]
[*] vmx_vcpu_run+0x268e/0x3b80 [kvm_intel]
[*] vcpu_enter_guest+0x1d22/0x3dc0 [kvm]
Add a field to kvm_pmc to track the previous counter value in order
to defer overflow detection to kvm_pmu_handle_event() (the counter must
be paused before handling overflow, and that may increment the counter).
Opportunistically shrink sizeof(struct kvm_pmc) a bit.
Suggested-by: Wanpeng Li <wanpengli@tencent.com>
Fixes: 9cd803d496 ("KVM: x86: Update vPMCs when retiring instructions")
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-6-likexu@tencent.com
[sean: avoid re-triggering KVM_REQ_PMU on overflow, tweak changelog]
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Batch reprogramming PMU counters by setting KVM_REQ_PMU and thus
deferring reprogramming kvm_pmu_handle_event() to avoid reprogramming
a counter multiple times during a single VM-Exit.
Deferring programming will also allow KVM to fix a bug where immediately
reprogramming a counter can result in sleeping (taking a mutex) while
interrupts are disabled in the VM-Exit fastpath.
Introduce kvm_pmu_request_counter_reprogam() to make it obvious that
KVM is _requesting_ a reprogram and not actually doing the reprogram.
Opportunistically refine related comments to avoid misunderstandings.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-5-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220923001355.3741194-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The AMD PerfMonV2 specification allows for a maximum of 16 GP counters,
but currently only 6 pairs of MSRs are accepted by KVM.
While AMD64_NUM_COUNTERS_CORE is already equal to 6, increasing without
adjusting msrs_to_save_all[] could result in out-of-bounds accesses.
Therefore introduce a macro (named KVM_AMD_PMC_MAX_GENERIC) to
refer to the number of counters supported by KVM.
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220919091008.60695-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If the number of AMD gp counters continues to grow, the code will
be very clumsy and the switch-case design of inline get_gp_pmc_amd()
will also bloat the kernel text size.
The target code is taught to manage two groups of MSRs, each
representing a different version of the AMD PMU counter MSRs.
The MSR addresses of each group are contiguous, with no holes,
and there is no intersection between two sets of addresses,
but they are discrete in functionality by design like this:
[Group A : All counter MSRs are tightly bound to all event select MSRs ]
MSR_K7_EVNTSEL0 0xc0010000
MSR_K7_EVNTSELi 0xc0010000 + i
...
MSR_K7_EVNTSEL3 0xc0010003
MSR_K7_PERFCTR0 0xc0010004
MSR_K7_PERFCTRi 0xc0010004 + i
...
MSR_K7_PERFCTR3 0xc0010007
[Group B : The counter MSRs are interleaved with the event select MSRs ]
MSR_F15H_PERF_CTL0 0xc0010200
MSR_F15H_PERF_CTR0 (0xc0010200 + 1)
...
MSR_F15H_PERF_CTLi (0xc0010200 + 2 * i)
MSR_F15H_PERF_CTRi (0xc0010200 + 2 * i + 1)
...
MSR_F15H_PERF_CTL5 (0xc0010200 + 2 * 5)
MSR_F15H_PERF_CTR5 (0xc0010200 + 2 * 5 + 1)
Rewrite get_gp_pmc_amd() in this way: first determine which group of
registers is accessed, then determine if it matches its requested type,
applying different scaling ratios respectively, and finally get pmc_idx
to pass into amd_pmc_idx_to_pmc().
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-8-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Access PMU counters on AMD by directly indexing the array of general
purpose counters instead of translating the PMC index to an MSR index.
AMD only supports gp counters, there's no need to translate a PMC index
to an MSR index and back to a PMC index.
Opportunistically apply array_index_nospec() to reduce the attack
surface for speculative execution and remove the dead code.
Signed-off-by: Like Xu <likexu@tencent.com>
Link: https://lore.kernel.org/r/20220831085328.45489-7-likexu@tencent.com
Signed-off-by: Sean Christopherson <seanjc@google.com>
Revert the hack to allow host-initiated accesses to all "PMU" MSRs,
as intel_is_valid_msr() returns true for _all_ MSRs, regardless of whether
or not it has a snowball's chance in hell of actually being a PMU MSR.
That mostly gets papered over by the actual get/set helpers only handling
MSRs that they knows about, except there's the minor detail that
kvm_pmu_{g,s}et_msr() eat reads and writes when the PMU is disabled.
I.e. KVM will happy allow reads and writes to _any_ MSR if the PMU is
disabled, either via module param or capability.
This reverts commit d1c88a4020.
Fixes: d1c88a4020 ("KVM: x86: always allow host-initiated writes to PMU MSRs")
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-5-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Eating reads and writes to all "PMU" MSRs when there is no PMU is wildly
broken as it results in allowing accesses to _any_ MSR on Intel CPUs
as intel_is_valid_msr() returns true for all host_initiated accesses.
A revert of commit d1c88a4020 ("KVM: x86: always allow host-initiated
writes to PMU MSRs") will soon follow.
This reverts commit 8e6a58e28b.
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220611005755.753273-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, as is the case for
MSR_K7_EVNTSEL0 or MSR_F15H_PERF_CTL0, it has to be always retrievable
and settable with KVM_GET_MSR and KVM_SET_MSR.
Accept a zero value for these MSRs to obey the contract.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220601031925.59693-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
All gp or fixed counters have been reprogrammed using PERF_TYPE_RAW,
which means that the table that maps perf_hw_id to event select values is
no longer useful, at least for AMD.
For Intel, the logic to check if the pmu event reported by Intel cpuid is
not available is still required, in which case pmc_perf_hw_id() could be
renamed to hw_event_is_unavail() and a bool value is returned to replace
the semantics of "PERF_COUNT_HW_MAX+1".
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-12-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since reprogram_counter(), reprogram_{gp, fixed}_counter() currently have
the same incoming parameter "struct kvm_pmc *pmc", the callers can simplify
the conetxt by using uniformly exported interface, which makes reprogram_
{gp, fixed}_counter() static and eliminates EXPORT_SYMBOL_GPL.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-8-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Because inside reprogram_gp_counter() it is bound to assign the requested
eventel to pmc->eventsel, this assignment step can be moved forward, thus
simplifying the passing of parameters to "struct kvm_pmc *pmc" only.
No functional change intended.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220518132512.37864-6-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Whenever an MSR is part of KVM_GET_MSR_INDEX_LIST, it has to be always
retrievable and settable with KVM_GET_MSR and KVM_SET_MSR. Accept
the PMU MSRs unconditionally in intel_is_valid_msr, if the access was
host-initiated.
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
-----BEGIN PGP SIGNATURE-----
iQJDBAABCgAtFiEEn9UcU+C1Yxj9lZw9I9DQutE9ekMFAmKGAGsPHG1hekBrZXJu
ZWwub3JnAAoJECPQ0LrRPXpDB/gQAMhyZ+wCG0OMEZhwFF6iDfxVEX2Kw8L41NtD
a/e6LDWuIOGihItpRkYROc5myG74D7XckF2Bz3G7HJoU4vhwHOV/XulE26GFizoC
O1GVRekeSUY81wgS1yfo0jojLupBkTjiq3SjTHoDP7GmCM0qDPBtA0QlMRzd2bMs
Kx0+UUXZUHFSTXc7Lp4vqNH+tMp7se+yRx7hxm6PCM5zG+XYJjLxnsZ0qpchObgU
7f6YFojsLUs1SexgiUqJ1RChVQ+FkgICh5HyzORvGtHNNzK6D2sIbsW6nqMGAMql
Kr3A5O/VOkCztSYnLxaa76/HqD21mvUrXvr3grhabNc7rOmuzWV0dDgr6c6wHKHb
uNCtH4d7Ra06gUrEOrfsgLOLn0Zqik89y6aIlMsnTudMg9gMNgFHy1jz4LM7vMkY
FS5AVj059heg2uJcfgTvzzcqneyuBLBmF3dS4coowO6oaj8SycpaEmP5e89zkPMI
1kk8d0e6RmXuCh/2AJ8GxxnKvBPgqp2mMKXOCJ8j4AmHEDX/CKpEBBqIWLKkplUU
8DGiOWJUtRZJg398dUeIpiVLoXJthMODjAnkKkuhiFcQbXomlwgg7YSnNAz6TRED
Z7KR2leC247kapHnnagf02q2wED8pBeyrxbQPNdrHtSJ9Usm4nTkY443HgVTJW3s
aTwPZAQ7
=mh7W
-----END PGP SIGNATURE-----
Merge tag 'kvmarm-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD
KVM/arm64 updates for 5.19
- Add support for the ARMv8.6 WFxT extension
- Guard pages for the EL2 stacks
- Trap and emulate AArch32 ID registers to hide unsupported features
- Ability to select and save/restore the set of hypercalls exposed
to the guest
- Support for PSCI-initiated suspend in collaboration with userspace
- GICv3 register-based LPI invalidation support
- Move host PMU event merging into the vcpu data structure
- GICv3 ITS save/restore fixes
- The usual set of small-scale cleanups and fixes
[Due to the conflict, KVM_SYSTEM_EVENT_SEV_TERM is relocated
from 4 to 6. - Paolo]
Zen renumbered some of the performance counters that correspond to the
well known events in perf_hw_id. This code in KVM was never updated for
that, so guest that attempt to use counters on Zen that correspond to the
pre-Zen perf_hw_id values will silently receive the wrong values.
This has been observed in the wild with rr[0] when running in Zen 3
guests. rr uses the retired conditional branch counter 00d1 which is
incorrectly recognized by KVM as PERF_COUNT_HW_STALLED_CYCLES_BACKEND.
[0] https://rr-project.org/
Signed-off-by: Kyle Huey <me@kylehuey.com>
Message-Id: <20220503050136.86298-1-khuey@kylehuey.com>
Cc: stable@vger.kernel.org
[Check guest family, not host. - Paolo]
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
NMI-watchdog is one of the favorite features of kernel developers,
but it does not work in AMD guest even with vPMU enabled and worse,
the system misrepresents this capability via /proc.
This is a PMC emulation error. KVM does not pass the latest valid
value to perf_event in time when guest NMI-watchdog is running, thus
the perf_event corresponding to the watchdog counter will enter the
old state at some point after the first guest NMI injection, forcing
the hardware register PMC0 to be constantly written to 0x800000000001.
Meanwhile, the running counter should accurately reflect its new value
based on the latest coordinated pmc->counter (from vPMC's point of view)
rather than the value written directly by the guest.
Fixes: 168d918f26 ("KVM: x86: Adjust counter sample period after a wrmsr")
Reported-by: Dongli Cao <caodongli@kingsoft.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Yanan Wang <wangyanan55@huawei.com>
Tested-by: Yanan Wang <wangyanan55@huawei.com>
Reviewed-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220409015226.38619-1-likexu@tencent.com>
Cc: stable@vger.kernel.org
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The pmu_ops should be moved to kvm_x86_init_ops and tagged as __initdata.
That'll save those precious few bytes, and more importantly make
the original ops unreachable, i.e. make it harder to sneak in post-init
modification bugs.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20220329235054.3534728-4-seanjc@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
AMD EPYC CPUs never raise a #GP for a WRMSR to a PerfEvtSeln MSR. Some
reserved bits are cleared, and some are not. Specifically, on
Zen3/Milan, bits 19 and 42 are not cleared.
When emulating such a WRMSR, KVM should not synthesize a #GP,
regardless of which bits are set. However, undocumented bits should
not be passed through to the hardware MSR. So, rather than checking
for reserved bits and synthesizing a #GP, just clear the reserved
bits.
This may seem pedantic, but since KVM currently does not support the
"Host/Guest Only" bits (41:40), it is necessary to clear these bits
rather than synthesizing #GP, because some popular guests (e.g Linux)
will set the "Host Only" bit even on CPUs that don't support
EFER.SVME, and they don't expect a #GP.
For example,
root@Ubuntu1804:~# perf stat -e r26 -a sleep 1
Performance counter stats for 'system wide':
0 r26
1.001070977 seconds time elapsed
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379957] unchecked MSR access error: WRMSR to 0xc0010200 (tried to write 0x0000020000130026) at rIP: 0xffffffff9b276a28 (native_write_msr+0x8/0x30)
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379958] Call Trace:
Feb 23 03:59:58 Ubuntu1804 kernel: [ 405.379963] amd_pmu_disable_event+0x27/0x90
Fixes: ca724305a2 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Reported-by: Lotus Fenn <lotusf@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Like Xu <likexu@tencent.com>
Reviewed-by: David Dunn <daviddunn@google.com>
Message-Id: <20220226234131.2167175-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The third nybble of AMD's event select overlaps with Intel's IN_TX and
IN_TXCP bits. Therefore, we can't use AMD64_RAW_EVENT_MASK on Intel
platforms that support TSX.
Declare a raw_event_mask in the kvm_pmu structure, initialize it in
the vendor-specific pmu_refresh() functions, and use that mask for
PERF_TYPE_RAW configurations in reprogram_gp_counter().
Fixes: 710c476514 ("KVM: x86/pmu: Use AMD64_RAW_EVENT_MASK for PERF_TYPE_RAW")
Signed-off-by: Jim Mattson <jmattson@google.com>
Message-Id: <20220308012452.3468611-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Add a new capability, KVM_CAP_PMU_CAPABILITY, that takes a bitmask of
settings/features to allow userspace to configure PMU virtualization on
a per-VM basis. For now, support a single flag, KVM_PMU_CAP_DISABLE,
to allow disabling PMU virtualization for a VM even when KVM is configured
with enable_pmu=true a module level.
To keep KVM simple, disallow changing VM's PMU configuration after vCPUs
have been created.
Signed-off-by: David Dunn <daviddunn@google.com>
Message-Id: <20220223225743.2703915-2-daviddunn@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The new module parameter to control PMU virtualization should apply
to Intel as well as AMD, for situations where userspace is not trusted.
If the module parameter allows PMU virtualization, there could be a
new KVM_CAP or guest CPUID bits whereby userspace can enable/disable
PMU virtualization on a per-VM basis.
If the module parameter does not allow PMU virtualization, there
should be no userspace override, since we have no precedent for
authorizing that kind of override. If it's false, other counter-based
profiling features (such as LBR including the associated CPUID bits
if any) will not be exposed.
Change its name from "pmu" to "enable_pmu" as we have temporary
variables with the same name in our code like "struct kvm_pmu *pmu".
Fixes: b1d66dad65 ("KVM: x86/svm: Add module param to control PMU virtualization")
Suggested-by : Jim Mattson <jmattson@google.com>
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20220111073823.21885-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Since we set the same semantic event value for the fixed counter in
pmc->eventsel, returning the perf_hw_id for the fixed counter via
find_fixed_event() can be painlessly replaced by pmc_perf_hw_id()
with the help of pmc_is_fixed() check.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-4-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
The find_arch_event() returns a "unsigned int" value,
which is used by the pmc_reprogram_counter() to
program a PERF_TYPE_HARDWARE type perf_event.
The returned value is actually the kernel defined generic
perf_hw_id, let's rename it to pmc_perf_hw_id() with simpler
incoming parameters for better self-explanation.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211130074221.93635-3-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
For Intel, the guest PMU can be disabled via clearing the PMU CPUID.
For AMD, all hw implementations support the base set of four
performance counters, with current mainstream hardware indicating
the presence of two additional counters via X86_FEATURE_PERFCTR_CORE.
In the virtualized world, the AMD guest driver may detect
the presence of at least one counter MSR. Most hypervisor
vendors would introduce a module param (like lbrv for svm)
to disable PMU for all guests.
Another control proposal per-VM is to pass PMU disable information
via MSR_IA32_PERF_CAPABILITIES or one bit in CPUID Fn4000_00[FF:00].
Both of methods require some guest-side changes, so a module
parameter may not be sufficiently granular, but practical enough.
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211117080304.38989-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
If we run the following perf command in an AMD Milan guest:
perf stat \
-e cpu/event=0x1d0/ \
-e cpu/event=0x1c7/ \
-e cpu/umask=0x1f,event=0x18e/ \
-e cpu/umask=0x7,event=0x18e/ \
-e cpu/umask=0x18,event=0x18e/ \
./workload
dmesg will report a #GP warning from an unchecked MSR access
error on MSR_F15H_PERF_CTLx.
This is because according to APM (Revision: 4.03) Figure 13-7,
the bits [35:32] of AMD PerfEvtSeln register is a part of the
event select encoding, which extends the EVENT_SELECT field
from 8 bits to 12 bits.
Opportunistically update pmu->reserved_bits for reserved bit 19.
Reported-by: Jim Mattson <jmattson@google.com>
Fixes: ca724305a2 ("KVM: x86/vPMU: Implement AMD vPMU code for KVM")
Signed-off-by: Like Xu <likexu@tencent.com>
Message-Id: <20211118130320.95997-1-likexu@tencent.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
These function names sound like predicates, and they have siblings,
*is_valid_msr(), which _are_ predicates. Moreover, there are comments
that essentially warn that these functions behave unexpectedly.
Flip the polarity of the return values, so that they become
predicates, and convert the boolean result to a success/failure code
at the outer call site.
Suggested-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Jim Mattson <jmattson@google.com>
Reviewed-by: Sean Christopherson <seanjc@google.com>
Message-Id: <20211105202058.1048757-1-jmattson@google.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
MSR_F15H_PERF_CTL0-5, MSR_F15H_PERF_CTR0-5 MSRs are only available when
X86_FEATURE_PERFCTR_CORE CPUID bit was exposed to the guest. KVM, however,
allows these MSRs unconditionally because kvm_pmu_is_valid_msr() ->
amd_msr_idx_to_pmc() check always passes and because kvm_pmu_set_msr() ->
amd_pmu_set_msr() doesn't fail.
In case of a counter (CTRn), no big harm is done as we only increase
internal PMC's value but in case of an eventsel (CTLn), we go deep into
perf internals with a non-existing counter.
Note, kvm_get_msr_common() just returns '0' when these MSRs don't exist
and this also seems to contradict architectural behavior which is #GP
(I did check one old Opteron host) but changing this status quo is a bit
scarier.
Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com>
Message-Id: <20210323084515.1346540-1-vkuznets@redhat.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Change kvm_pmu_get_msr() to get the msr_data struct, as the host_initiated
field from the struct could be used by get_msr. This also makes this API
consistent with kvm_pmu_set_msr. No functional changes.
Signed-off-by: Wei Wang <wei.w.wang@intel.com>
Message-Id: <20200529074347.124619-2-like.xu@linux.intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
Move svm.c and pmu_amd.c into their own arch/x86/kvm/svm/
subdirectory.
Signed-off-by: Joerg Roedel <jroedel@suse.de>
Message-Id: <20200324094154.32352-2-joro@8bytes.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>