This adds bpf_program__attach_netkit() API to libbpf. Overall it is very
similar to tcx. The API looks as following:
LIBBPF_API struct bpf_link *
bpf_program__attach_netkit(const struct bpf_program *prog, int ifindex,
const struct bpf_netkit_opts *opts);
The struct bpf_netkit_opts is done in similar way as struct bpf_tcx_opts
for supporting bpf_mprog control parameters. The attach location for the
primary and peer device is derived from the program section "netkit/primary"
and "netkit/peer", respectively.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Martin KaFai Lau <martin.lau@kernel.org>
Link: https://lore.kernel.org/r/20231024214904.29825-4-daniel@iogearbox.net
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Add ring__avail_data_size for querying the currently available data in
the ringbuffer, similar to the BPF_RB_AVAIL_DATA flag in
bpf_ringbuf_query. This is racy during ongoing operations but is still
useful for overall information on how a ringbuffer is behaving.
Signed-off-by: Martin Kelly <martin.kelly@crowdstrike.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230925215045.2375758-8-martin.kelly@crowdstrike.com
For bpf_object__pin_programs() there is bpf_object__unpin_programs().
Likewise bpf_object__unpin_maps() for bpf_object__pin_maps().
But no bpf_object__unpin() for bpf_object__pin(). Adding the former adds
symmetry to the API.
It's also convenient for cleanup in application code. It's an API I
would've used if it was available for a repro I was writing earlier.
Signed-off-by: Daniel Xu <dxu@dxuuu.xyz>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Song Liu <song@kernel.org>
Link: https://lore.kernel.org/bpf/b2f9d41da4a350281a0b53a804d11b68327e14e5.1692832478.git.dxu@dxuuu.xyz
Adding bpf_program__attach_uprobe_multi function that
allows to attach multiple uprobes with uprobe_multi link.
The user can specify uprobes with direct arguments:
binary_path/func_pattern/pid
or with struct bpf_uprobe_multi_opts opts argument fields:
const char **syms;
const unsigned long *offsets;
const unsigned long *ref_ctr_offsets;
const __u64 *cookies;
User can specify 2 mutually exclusive set of inputs:
1) use only path/func_pattern/pid arguments
2) use path/pid with allowed combinations of:
syms/offsets/ref_ctr_offsets/cookies/cnt
- syms and offsets are mutually exclusive
- ref_ctr_offsets and cookies are optional
Any other usage results in error.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230809083440.3209381-15-jolsa@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Implement tcx BPF link support for libbpf.
The bpf_program__attach_fd() API has been refactored slightly in order to pass
bpf_link_create_opts pointer as input.
A new bpf_program__attach_tcx() has been added on top of this which allows for
passing all relevant data via extensible struct bpf_tcx_opts.
The program sections tcx/ingress and tcx/egress correspond to the hook locations
for tc ingress and egress, respectively.
For concrete usage examples, see the extensive selftests that have been
developed as part of this series.
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230719140858.13224-5-daniel@iogearbox.net
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Introduce new netlink attribute NETDEV_A_DEV_XDP_ZC_MAX_SEGS that will
carry maximum fragments that underlying ZC driver is able to handle on
TX side. It is going to be included in netlink response only when driver
supports ZC. Any value higher than 1 implies multi-buffer ZC support on
underlying device.
Signed-off-by: Maciej Fijalkowski <maciej.fijalkowski@intel.com>
Link: https://lore.kernel.org/r/20230719132421.584801-11-maciej.fijalkowski@intel.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This patch updates bpf_map__set_value_size() so that if the given map is
memory mapped, it will attempt to resize the mapped region. Initial
contents of the mapped region are preserved. BTF is not required, but
after the mapping is resized an attempt is made to adjust the associated
BTF information if the following criteria is met:
- BTF info is present
- the map is a datasec
- the final variable in the datasec is an array
... the resulting BTF info will be updated so that the final array
variable is associated with a new BTF array type sized to cover the
requested size.
Note that the initial resizing of the memory mapped region can succeed
while the subsequent BTF adjustment can fail. In this case, BTF info is
dropped from the map by clearing the key and value type.
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Stanislav Fomichev <sdf@google.com>
Link: https://lore.kernel.org/bpf/20230524004537.18614-2-inwardvessel@gmail.com
This patch prevents races on the print function pointer, allowing the
libbpf_set_print() function to become thread-safe.
Signed-off-by: JP Kobryn <inwardvessel@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230325010845.46000-1-inwardvessel@gmail.com
Introduce bpf_link__update_map(), which allows to atomically update
underlying struct_ops implementation for given struct_ops BPF link.
Also add old_map_fd to struct bpf_link_update_opts to handle
BPF_F_REPLACE feature.
Signed-off-by: Kui-Feng Lee <kuifeng@meta.com>
Link: https://lore.kernel.org/r/20230323032405.3735486-7-kuifeng@meta.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
By default, libbpf will attach the kprobe/uprobe BPF program in the
latest mode that supported by kernel. In this patch, we add the support
to let users manually attach kprobe/uprobe in legacy or perf mode.
There are 3 mode that supported by the kernel to attach kprobe/uprobe:
LEGACY: create perf event in legacy way and don't use bpf_link
PERF: create perf event with perf_event_open() and don't use bpf_link
Signed-off-by: Menglong Dong <imagedong@tencent.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Reviewed-by: Biao Jiang <benbjiang@tencent.com>
Link: create perf event with perf_event_open() and use bpf_link
Link: https://lore.kernel.org/bpf/20230113093427.1666466-1-imagedong@tencent.com/
Link: https://lore.kernel.org/bpf/20230306064833.7932-2-imagedong@tencent.com
Users now can manually choose the mode with
bpf_program__attach_uprobe_opts()/bpf_program__attach_kprobe_opts().
Add option to set when the perf buffer should wake up, by default the
perf buffer becomes signaled for every event that is being pushed to it.
In case of a high throughput of events it will be more efficient to wake
up only once you have X events ready to be read.
So your application can wakeup once and drain the entire perf buffer.
Signed-off-by: Jon Doron <jond@wiz.io>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230207081916.3398417-1-arilou@gmail.com
Extend bpf_xdp_query routine in order to get XDP/XSK supported features
of netdev over route netlink interface.
Extend libbpf netlink implementation in order to support netlink_generic
protocol.
Co-developed-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Co-developed-by: Marek Majtyka <alardam@gmail.com>
Signed-off-by: Marek Majtyka <alardam@gmail.com>
Signed-off-by: Lorenzo Bianconi <lorenzo@kernel.org>
Link: https://lore.kernel.org/r/a72609ef4f0de7fee5376c40dbf54ad7f13bfb8d.1675245258.git.lorenzo@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This fixes the doxygen format documentation above the
user_ring_buffer__* APIs. There has to be a newline
before the @brief, otherwise doxygen won't render them
for libbpf.readthedocs.org.
Signed-off-by: Grant Seltzer <grantseltzer@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230126024749.522278-1-grantseltzer@gmail.com
Currently, many API functions are not described in the document.
Add add API description of the following four API functions:
- libbpf_set_print;
- bpf_object__open;
- bpf_object__load;
- bpf_object__close.
Signed-off-by: Xin Liu <liuxin350@huawei.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20221224112058.12038-1-liuxin350@huawei.com
When attach_prog_fd field was removed in libbpf 1.0 and replaced with
`long: 0` placeholder, it actually shifted all the subsequent fields by
8 byte. This is due to `long: 0` promising to adjust next field's offset
to long-aligned offset. But in this case we were already long-aligned
as pin_root_path is a pointer. So `long: 0` had no effect, and thus
didn't feel the gap created by removed attach_prog_fd.
Non-zero bitfield should have been used instead. I validated using
pahole. Originally kconfig field was at offset 40. With `long: 0` it's
at offset 32, which is wrong. With this change it's back at offset 40.
While technically libbpf 1.0 is allowed to break backwards
compatibility and applications should have been recompiled against
libbpf 1.0 headers, but given how trivial it is to preserve memory
layout, let's fix this.
Reported-by: Grant Seltzer Richman <grantseltzer@gmail.com>
Fixes: 146bf811f5 ("libbpf: remove most other deprecated high-level APIs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220923230559.666608-1-andrii@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
Now that all of the logic is in place in the kernel to support user-space
produced ring buffers, we can add the user-space logic to libbpf. This
patch therefore adds the following public symbols to libbpf:
struct user_ring_buffer *
user_ring_buffer__new(int map_fd,
const struct user_ring_buffer_opts *opts);
void *user_ring_buffer__reserve(struct user_ring_buffer *rb, __u32 size);
void *user_ring_buffer__reserve_blocking(struct user_ring_buffer *rb,
__u32 size, int timeout_ms);
void user_ring_buffer__submit(struct user_ring_buffer *rb, void *sample);
void user_ring_buffer__discard(struct user_ring_buffer *rb,
void user_ring_buffer__free(struct user_ring_buffer *rb);
A user-space producer must first create a struct user_ring_buffer * object
with user_ring_buffer__new(), and can then reserve samples in the
ring buffer using one of the following two symbols:
void *user_ring_buffer__reserve(struct user_ring_buffer *rb, __u32 size);
void *user_ring_buffer__reserve_blocking(struct user_ring_buffer *rb,
__u32 size, int timeout_ms);
With user_ring_buffer__reserve(), a pointer to a 'size' region of the ring
buffer will be returned if sufficient space is available in the buffer.
user_ring_buffer__reserve_blocking() provides similar semantics, but will
block for up to 'timeout_ms' in epoll_wait if there is insufficient space
in the buffer. This function has the guarantee from the kernel that it will
receive at least one event-notification per invocation to
bpf_ringbuf_drain(), provided that at least one sample is drained, and the
BPF program did not pass the BPF_RB_NO_WAKEUP flag to bpf_ringbuf_drain().
Once a sample is reserved, it must either be committed to the ring buffer
with user_ring_buffer__submit(), or discarded with
user_ring_buffer__discard().
Signed-off-by: David Vernet <void@manifault.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220920000100.477320-4-void@manifault.com
Add SEC("ksyscall")/SEC("ksyscall/<syscall_name>") and corresponding
kretsyscall variants (for return kprobes) to allow users to kprobe
syscall functions in kernel. These special sections allow to ignore
complexities and differences between kernel versions and host
architectures when it comes to syscall wrapper and corresponding
__<arch>_sys_<syscall> vs __se_sys_<syscall> differences, depending on
whether host kernel has CONFIG_ARCH_HAS_SYSCALL_WRAPPER (though libbpf
itself doesn't rely on /proc/config.gz for detecting this, see
BPF_KSYSCALL patch for how it's done internally).
Combined with the use of BPF_KSYSCALL() macro, this allows to just
specify intended syscall name and expected input arguments and leave
dealing with all the variations to libbpf.
In addition to SEC("ksyscall+") and SEC("kretsyscall+") add
bpf_program__attach_ksyscall() API which allows to specify syscall name
at runtime and provide associated BPF cookie value.
At the moment SEC("ksyscall") and bpf_program__attach_ksyscall() do not
handle all the calling convention quirks for mmap(), clone() and compat
syscalls. It also only attaches to "native" syscall interfaces. If host
system supports compat syscalls or defines 32-bit syscalls in 64-bit
kernel, such syscall interfaces won't be attached to by libbpf.
These limitations may or may not change in the future. Therefore it is
recommended to use SEC("kprobe") for these syscalls or if working with
compat and 32-bit interfaces is required.
Tested-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220714070755.3235561-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support for writing a custom event reader, by exposing the ring
buffer.
With the new API perf_buffer__buffer() you will get access to the
raw mmaped()'ed per-cpu underlying memory of the ring buffer.
This region contains both the perf buffer data and header
(struct perf_event_mmap_page), which manages the ring buffer
state (head/tail positions, when accessing the head/tail position
it's important to take into consideration SMP).
With this type of low level access one can implement different types of
consumers here are few simple examples where this API helps with:
1. perf_event_read_simple is allocating using malloc, perhaps you want
to handle the wrap-around in some other way.
2. Since perf buf is per-cpu then the order of the events is not
guarnteed, for example:
Given 3 events where each event has a timestamp t0 < t1 < t2,
and the events are spread on more than 1 CPU, then we can end
up with the following state in the ring buf:
CPU[0] => [t0, t2]
CPU[1] => [t1]
When you consume the events from CPU[0], you could know there is
a t1 missing, (assuming there are no drops, and your event data
contains a sequential index).
So now one can simply do the following, for CPU[0], you can store
the address of t0 and t2 in an array (without moving the tail, so
there data is not perished) then move on the CPU[1] and set the
address of t1 in the same array.
So you end up with something like:
void **arr[] = [&t0, &t1, &t2], now you can consume it orderely
and move the tails as you process in order.
3. Assuming there are multiple CPUs and we want to start draining the
messages from them, then we can "pick" with which one to start with
according to the remaining free space in the ring buffer.
Signed-off-by: Jon Doron <jond@wiz.io>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220715181122.149224-1-arilou@gmail.com
Remove support for legacy features and behaviors that previously had to
be disabled by calling libbpf_set_strict_mode():
- legacy BPF map definitions are not supported now;
- RLIMIT_MEMLOCK auto-setting, if necessary, is always on (but see
libbpf_set_memlock_rlim());
- program name is used for program pinning (instead of section name);
- cleaned up error returning logic;
- entry BPF programs should have SEC() always.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220627211527.2245459-15-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove all the public APIs that are related to creating multi-instance
bpf_programs through custom preprocessing callback and generally working
with them.
Also remove all the bpf_{object,map,program}__[set_]priv() APIs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220627211527.2245459-10-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Remove a bunch of high-level bpf_object/bpf_map/bpf_program related
APIs. All the APIs related to private per-object/map/prog state,
program preprocessing callback, and generally everything multi-instance
related is removed in a separate patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220627211527.2245459-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Drop low-level APIs as well as high-level (and very confusingly named)
BPF object loading bpf_prog_load_xattr() and bpf_prog_load_deprecated()
APIs.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20220627211527.2245459-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This change fixes a couple of typos that were encountered while studying
the source code.
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Song Liu <songliubraving@fb.com>
Link: https://lore.kernel.org/bpf/20220601154025.3295035-1-deso@posteo.net
This change introduces a new function, libbpf_bpf_link_type_str, to the
public libbpf API. The function allows users to get a string
representation for a bpf_link_type enum variant.
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523230428.3077108-11-deso@posteo.net
This change introduces a new function, libbpf_bpf_attach_type_str, to
the public libbpf API. The function allows users to get a string
representation for a bpf_attach_type variant.
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523230428.3077108-8-deso@posteo.net
This change introduces a new function, libbpf_bpf_map_type_str, to the
public libbpf API. The function allows users to get a string
representation for a bpf_map_type enum variant.
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523230428.3077108-5-deso@posteo.net
This change introduces a new function, libbpf_bpf_prog_type_str, to the
public libbpf API. The function allows users to get a string
representation for a bpf_prog_type variant.
Signed-off-by: Daniel Müller <deso@posteo.net>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Quentin Monnet <quentin@isovalent.com>
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20220523230428.3077108-2-deso@posteo.net
Add high-level API wrappers for most common and typical BPF map
operations that works directly on instances of struct bpf_map * (so
you don't have to call bpf_map__fd()) and validate key/value size
expectations.
These helpers require users to specify key (and value, where
appropriate) sizes when performing lookup/update/delete/etc. This forces
user to actually think and validate (for themselves) those. This is
a good thing as user is expected by kernel to implicitly provide correct
key/value buffer sizes and kernel will just read/write necessary amount
of data. If it so happens that user doesn't set up buffers correctly
(which bit people for per-CPU maps especially) kernel either randomly
overwrites stack data or return -EFAULT, depending on user's luck and
circumstances. These high-level APIs are meant to prevent such
unpleasant and hard to debug bugs.
This patch also adds bpf_map_delete_elem_flags() low-level API and
requires passing flags to bpf_map__delete_elem() API for consistency
across all similar APIs, even though currently kernel doesn't expect
any extra flags for BPF_MAP_DELETE_ELEM operation.
List of map operations that get these high-level APIs:
- bpf_map_lookup_elem;
- bpf_map_update_elem;
- bpf_map_delete_elem;
- bpf_map_lookup_and_delete_elem;
- bpf_map_get_next_key.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220512220713.2617964-1-andrii@kernel.org
Adding bpf_program__set_insns that allows to set new instructions
for a BPF program.
This is a very advanced libbpf API and users need to know what
they are doing. This should be used from prog_prepare_load_fn
callback only.
We can have changed instructions after calling prog_prepare_load_fn
callback, reloading them.
One of the users of this new API will be perf's internal BPF prologue
generation.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220510074659.2557731-2-jolsa@kernel.org
Add a cookie field to the attributes of bpf_link_create().
Add bpf_program__attach_trace_opts() to attach a cookie to a link.
Signed-off-by: Kui-Feng Lee <kuifeng@fb.com>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20220510205923.3206889-5-kuifeng@fb.com
Add bpf_map__set_autocreate() API that allows user to opt-out from
libbpf automatically creating BPF map during BPF object load.
This is a useful feature when building CO-RE-enabled BPF application
that takes advantage of some new-ish BPF map type (e.g., socket-local
storage) if kernel supports it, but otherwise uses some alternative way
(e.g., extra HASH map). In such case, being able to disable the creation
of a map that kernel doesn't support allows to successfully create and
load BPF object file with all its other maps and programs.
It's still up to user to make sure that no "live" code in any of their BPF
programs are referencing such map instance, which can be achieved by
guarding such code with CO-RE relocation check or by using .rodata
global variables.
If user fails to properly guard such code to turn it into "dead code",
libbpf will helpfully post-process BPF verifier log and will provide
more meaningful error and map name that needs to be guarded properly. As
such, instead of:
; value = bpf_map_lookup_elem(&missing_map, &zero);
4: (85) call unknown#2001000000
invalid func unknown#2001000000
... user will see:
; value = bpf_map_lookup_elem(&missing_map, &zero);
4: <invalid BPF map reference>
BPF map 'missing_map' is referenced but wasn't created
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220428041523.4089853-4-andrii@kernel.org
This adds documentation for the following API functions:
- bpf_program__set_expected_attach_type()
- bpf_program__set_type()
- bpf_program__set_attach_target()
- bpf_program__attach()
- bpf_program__pin()
- bpf_program__unpin()
Signed-off-by: Grant Seltzer <grantseltzer@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220420161226.86803-3-grantseltzer@gmail.com
This adds an error return to the following API functions:
- bpf_program__set_expected_attach_type()
- bpf_program__set_type()
In both cases, the error occurs when the BPF object has
already been loaded when the function is called. In this
case -EBUSY is returned.
Signed-off-by: Grant Seltzer <grantseltzer@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20220420161226.86803-1-grantseltzer@gmail.com
Wire up libbpf USDT support APIs without yet implementing all the
nitty-gritty details of USDT discovery, spec parsing, and BPF map
initialization.
User-visible user-space API is simple and is conceptually very similar
to uprobe API.
bpf_program__attach_usdt() API allows to programmatically attach given
BPF program to a USDT, specified through binary path (executable or
shared lib), USDT provider and name. Also, just like in uprobe case, PID
filter is specified (0 - self, -1 - any process, or specific PID).
Optionally, USDT cookie value can be specified. Such single API
invocation will try to discover given USDT in specified binary and will
use (potentially many) BPF uprobes to attach this program in correct
locations.
Just like any bpf_program__attach_xxx() APIs, bpf_link is returned that
represents this attachment. It is a virtual BPF link that doesn't have
direct kernel object, as it can consist of multiple underlying BPF
uprobe links. As such, attachment is not atomic operation and there can
be brief moment when some USDT call sites are attached while others are
still in the process of attaching. This should be taken into
consideration by user. But bpf_program__attach_usdt() guarantees that
in the case of success all USDT call sites are successfully attached, or
all the successfuly attachments will be detached as soon as some USDT
call sites failed to be attached. So, in theory, there could be cases of
failed bpf_program__attach_usdt() call which did trigger few USDT
program invocations. This is unavoidable due to multi-uprobe nature of
USDT and has to be handled by user, if it's important to create an
illusion of atomicity.
USDT BPF programs themselves are marked in BPF source code as either
SEC("usdt"), in which case they won't be auto-attached through
skeleton's <skel>__attach() method, or it can have a full definition,
which follows the spirit of fully-specified uprobes:
SEC("usdt/<path>:<provider>:<name>"). In the latter case skeleton's
attach method will attempt auto-attachment. Similarly, generic
bpf_program__attach() will have enought information to go off of for
parameterless attachment.
USDT BPF programs are actually uprobes, and as such for kernel they are
marked as BPF_PROG_TYPE_KPROBE.
Another part of this patch is USDT-related feature probing:
- BPF cookie support detection from user-space;
- detection of kernel support for auto-refcounting of USDT semaphore.
The latter is optional. If kernel doesn't support such feature and USDT
doesn't rely on USDT semaphores, no error is returned. But if libbpf
detects that USDT requires setting semaphores and kernel doesn't support
this, libbpf errors out with explicit pr_warn() message. Libbpf doesn't
support poking process's memory directly to increment semaphore value,
like BCC does on legacy kernels, due to inherent raciness and danger of
such process memory manipulation. Libbpf let's kernel take care of this
properly or gives up.
Logistically, all the extra USDT-related infrastructure of libbpf is put
into a separate usdt.c file and abstracted behind struct usdt_manager.
Each bpf_object has lazily-initialized usdt_manager pointer, which is
only instantiated if USDT programs are attempted to be attached. Closing
BPF object frees up usdt_manager resources. usdt_manager keeps track of
USDT spec ID assignment and few other small things.
Subsequent patches will fill out remaining missing pieces of USDT
initialization and setup logic.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20220404234202.331384-3-andrii@kernel.org
kprobe attach is name-based, using lookups of kallsyms to translate
a function name to an address. Currently uprobe attach is done
via an offset value as described in [1]. Extend uprobe opts
for attach to include a function name which can then be converted
into a uprobe-friendly offset. The calcualation is done in
several steps:
1. First, determine the symbol address using libelf; this gives us
the offset as reported by objdump
2. If the function is a shared library function - and the binary
provided is a shared library - no further work is required;
the address found is the required address
3. Finally, if the function is local, subtract the base address
associated with the object, retrieved from ELF program headers.
The resultant value is then added to the func_offset value passed
in to specify the uprobe attach address. So specifying a func_offset
of 0 along with a function name "printf" will attach to printf entry.
The modes of operation supported are then
1. to attach to a local function in a binary; function "foo1" in
"/usr/bin/foo"
2. to attach to a shared library function in a shared library -
function "malloc" in libc.
[1] https://www.kernel.org/doc/html/latest/trace/uprobetracer.html
Signed-off-by: Alan Maguire <alan.maguire@oracle.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/1648654000-21758-3-git-send-email-alan.maguire@oracle.com
Adding bpf_program__attach_kprobe_multi_opts function for attaching
kprobe program to multiple functions.
struct bpf_link *
bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
const char *pattern,
const struct bpf_kprobe_multi_opts *opts);
User can specify functions to attach with 'pattern' argument that
allows wildcards (*?' supported) or provide symbols or addresses
directly through opts argument. These 3 options are mutually
exclusive.
When using symbols or addresses, user can also provide cookie value
for each symbol/address that can be retrieved later in bpf program
with bpf_get_attach_cookie helper.
struct bpf_kprobe_multi_opts {
size_t sz;
const char **syms;
const unsigned long *addrs;
const __u64 *cookies;
size_t cnt;
bool retprobe;
size_t :0;
};
Symbols, addresses and cookies are provided through opts object
(syms/addrs/cookies) as array pointers with specified count (cnt).
Each cookie value is paired with provided function address or symbol
with the same array index.
The program can be also attached as return probe if 'retprobe' is set.
For quick usage with NULL opts argument, like:
bpf_program__attach_kprobe_multi_opts(prog, "ksys_*", NULL)
the 'prog' will be attached as kprobe to 'ksys_*' functions.
Also adding new program sections for automatic attachment:
kprobe.multi/<symbol_pattern>
kretprobe.multi/<symbol_pattern>
The symbol_pattern is used as 'pattern' argument in
bpf_program__attach_kprobe_multi_opts function.
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Link: https://lore.kernel.org/bpf/20220316122419.933957-10-jolsa@kernel.org
Allow registering and unregistering custom handlers for BPF program.
This allows user applications and libraries to plug into libbpf's
declarative SEC() definition handling logic. This allows to offload
complex and intricate custom logic into external libraries, but still
provide a great user experience.
One such example is USDT handling library, which has a lot of code and
complexity which doesn't make sense to put into libbpf directly, but it
would be really great for users to be able to specify BPF programs with
something like SEC("usdt/<path-to-binary>:<usdt_provider>:<usdt_name>")
and have correct BPF program type set (BPF_PROGRAM_TYPE_KPROBE, as it is
uprobe) and even support BPF skeleton's auto-attach logic.
In some cases, it might be even good idea to override libbpf's default
handling, like for SEC("perf_event") programs. With custom library, it's
possible to extend logic to support specifying perf event specification
right there in SEC() definition without burdening libbpf with lots of
custom logic or extra library dependecies (e.g., libpfm4). With current
patch it's possible to override libbpf's SEC("perf_event") handling and
specify a completely custom ones.
Further, it's possible to specify a generic fallback handling for any
SEC() that doesn't match any other custom or standard libbpf handlers.
This allows to accommodate whatever legacy use cases there might be, if
necessary.
See doc comments for libbpf_register_prog_handler() and
libbpf_unregister_prog_handler() for detailed semantics.
This patch also bumps libbpf development version to v0.8 and adds new
APIs there.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Tested-by: Alan Maguire <alan.maguire@oracle.com>
Reviewed-by: Alan Maguire <alan.maguire@oracle.com>
Link: https://lore.kernel.org/bpf/20220305010129.1549719-3-andrii@kernel.org