During fiemap, when determining if a data extent is shared or not, if we
don't find the extent is directly shared, then we need to determine if
it's shared through subtrees. For that we need to resolve the indirect
reference we found in order to figure out the path in the inode's fs tree,
which is a path starting at the fs tree's root node and going down to the
leaf that contains the file extent item that points to the data extent.
We then proceed to determine if any extent buffer in that path is shared
with other trees or not.
Currently whenever we find the data extent that a file extent item points
to is not directly shared, we always resolve the path in the fs tree, and
then check if any extent buffer in the path is shared. This is a lot of
work and when we have file extent items that belong to the same leaf, we
have the same path, so we only need to calculate it once.
This change does that, it keeps track of the current and previous leaf,
and when we find that a data extent is not directly shared, we try to
compute the fs tree path only once and then use it for every other file
extent item in the same leaf, using the existing cached path result for
the leaf as long as the cache results are valid.
This saves us from doing expensive b+tree searches in the fs tree of our
target inode, as well as other minor work.
The following test was run on a non-debug kernel (Debian's default kernel
config):
$ cat test-with-snapshots.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
# Use compression to quickly create files with a lot of extents
# (each with a size of 128K).
mount -o compress=lzo $DEV $MNT
# 40G gives 327680 extents, each with a size of 128K.
xfs_io -f -c "pwrite -S 0xab -b 1M 0 40G" $MNT/foobar
# Add some more files to increase the size of the fs and extent
# trees (in the real world there's a lot of files and extents
# from other files).
xfs_io -f -c "pwrite -S 0xcd -b 1M 0 20G" $MNT/file1
xfs_io -f -c "pwrite -S 0xef -b 1M 0 20G" $MNT/file2
xfs_io -f -c "pwrite -S 0x73 -b 1M 0 20G" $MNT/file3
# Create a snapshot so all the extents become indirectly shared
# through subtrees, with a generation less than or equals to the
# generation used to create the snapshot.
btrfs subvolume snapshot -r $MNT $MNT/snap1
umount $MNT
mount -o compress=lzo $DEV $MNT
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata not cached)"
echo
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds (metadata cached)"
umount $MNT
Result before applying this patch:
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 1204 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 729 milliseconds (metadata cached)
Result after applying this patch:
(...)
/mnt/sdi/foobar: 327680 extents found
fiemap took 732 milliseconds (metadata not cached)
/mnt/sdi/foobar: 327680 extents found
fiemap took 421 milliseconds (metadata cached)
That's a -46.1% total reduction for the metadata not cached case, and
a -42.2% reduction for the cached metadata case.
The test is somewhat limited in the sense the gains may be higher in
practice, because in the test the filesystem is small, so we have small
fs and extent trees, plus there's no concurrent access to the trees as
well, therefore no lock contention there.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Move the static functions to lookup and store sharedness check of an
extent buffer to a location above find_all_parents(), because in the
next patch the lookup function will be used by find_all_parents().
The store function is also moved just because it's the counter part
to the lookup function and it's best to have their definitions close
together.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During fiemap we process all the file extent items of an inode, by their
file offset order (left to right b+tree order), and then check if the data
extent they point at is shared or not. Until now we didn't cache those
results, we only did it for b+tree nodes/leaves since for each unique
b+tree path we have access to hundreds of file extent items. However, it
is also common to repeat checking the sharedness of a particular data
extent in a very short time window, and the cases that lead to that are
the following:
1) COW writes.
If have a file extent item like this:
[ bytenr X, offset = 0, num_bytes = 512K ]
file offset 0 512K
Then a 4K write into file offset 64K happens, we end up with the
following file extent item layout:
[ bytenr X, offset = 0, num_bytes = 64K ]
file offset 0 64K
[ bytenr Y, offset = 0, num_bytes = 4K ]
file offset 64K 68K
[ bytenr X, offset = 68K, num_bytes = 444K ]
file offset 68K 512K
So during fiemap we well check for the sharedness of the data extent
with bytenr X twice. Typically for COW writes and for at least
moderately updated files, we end up with many file extent items that
point to different sections of the same data extent.
2) Writing into a NOCOW file after a snapshot is taken.
This happens if the target extent was created in a generation older
than the generation where the last snapshot for the root (the tree the
inode belongs to) was made.
This leads to a scenario like the previous one.
3) Writing into sections of a preallocated extent.
For example if a file has the following layout:
[ bytenr X, offset = 0, num_bytes = 1M, type = prealloc ]
0 1M
After doing a 4K write into file offset 0 and another 4K write into
offset 512K, we get the following layout:
[ bytenr X, offset = 0, num_bytes = 4K, type = regular ]
0 4K
[ bytenr X, offset = 4K, num_bytes = 508K, type = prealloc ]
4K 512K
[ bytenr X, offset = 512K, num_bytes = 4K, type = regular ]
512K 516K
[ bytenr X, offset = 516K, num_bytes = 508K, type = prealloc ]
516K 1M
So we end up with 4 consecutive file extent items pointing to the data
extent at bytenr X.
4) Hole punching in the middle of an extent.
For example if a file has the following file extent item:
[ bytenr X, offset = 0, num_bytes = 8M ]
0 8M
And then hole is punched for the file range [4M, 6M[, we our file
extent item split into two:
[ bytenr X, offset = 0, num_bytes = 4M ]
0 4M
[ 2M hole, implicit or explicit depending on NO_HOLES feature ]
4M 6M
[ bytenr X, offset = 6M, num_bytes = 2M ]
6M 8M
Again, we end up with two file extent items pointing to the same
data extent.
5) When reflinking (clone and deduplication) within the same file.
This is probably the least common case of all.
In cases 1, 2, 4 and 4, when we have multiple file extent items that point
to the same data extent, their distance is usually short, typically
separated by a few slots in a b+tree leaf (or across sibling leaves). For
case 5, the distance can vary a lot, but it's typically the less common
case.
This change caches the result of the sharedness checks for data extents,
but only for the last 8 extents that we notice that our inode refers to
with multiple file extent items. Whenever we want to check if a data
extent is shared, we lookup the cache which consists of doing a linear
scan of an 8 elements array, and if we find the data extent there, we
return the result and don't check the extent tree and delayed refs.
The array/cache is small so that doing the search has no noticeable
negative impact on the performance in case we don't have file extent items
within a distance of 8 slots that point to the same data extent.
Slots in the cache/array are overwritten in a simple round robin fashion,
as that approach fits very well.
Using this simple approach with only the last 8 data extents seen is
effective as usually when multiple file extents items point to the same
data extent, their distance is within 8 slots. It also uses very little
memory and the time to cache a result or lookup the cache is negligible.
The following test was run on non-debug kernel (Debian's default kernel
config) to measure the impact in the case of COW writes (first example
given above), where we run fiemap after overwriting 33% of the blocks of
a file:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
umount $DEV &> /dev/null
mkfs.btrfs -f $DEV
mount $DEV $MNT
FILE_SIZE=$((1 * 1024 * 1024 * 1024))
# Create the file full of 1M extents.
xfs_io -f -s -c "pwrite -b 1M -S 0xab 0 $FILE_SIZE" $MNT/foobar
block_count=$((FILE_SIZE / 4096))
# Overwrite about 33% of the file blocks.
overwrite_count=$((block_count / 3))
echo -e "\nOverwriting $overwrite_count 4K blocks (out of $block_count)..."
RANDOM=123
for ((i = 1; i <= $overwrite_count; i++)); do
off=$(((RANDOM % block_count) * 4096))
xfs_io -c "pwrite -S 0xcd $off 4K" $MNT/foobar > /dev/null
echo -ne "\r$i blocks overwritten..."
done
echo -e "\n"
# Unmount and mount to clear all cached metadata.
umount $MNT
mount $DEV $MNT
start=$(date +%s%N)
filefrag $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds"
umount $MNT
Result before applying this patch:
fiemap took 128 milliseconds
Result after applying this patch:
fiemap took 92 milliseconds (-28.1%)
The test is somewhat limited in the sense the gains may be higher in
practice, because in the test the filesystem is small, so we have small
fs and extent trees, plus there's no concurrent access to the trees as
well, therefore no lock contention there.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At find_parent_nodes(), at its last step, when iterating over all direct
references, we are checking if we have a share context and if we have
a reference with a different root from the one in the share context.
However that logic is pointless because of two reasons:
1) After the previous patch in the series (subject "btrfs: remove roots
ulist when checking data extent sharedness"), the roots argument is
always NULL when using a share check context (struct share_check), so
this code is never triggered;
2) Even before that previous patch, we could not hit this code because
if we had a reference with a root different from the one in our share
context, then we would have exited earlier when doing either of the
following:
- Adding a second direct ref to the direct refs red black tree
resulted in extent_is_shared() returning true when called from
add_direct_ref() -> add_prelim_ref(), after processing delayed
references or while processing references in the extent tree;
- When adding a second reference to the indirect refs red black
tree (same as above, extent_is_shared() returns true);
- If we only have one indirect reference and no direct references,
then when resolving it at resolve_indirect_refs() we immediately
return that the target extent is shared, therefore never reaching
that loop that iterates over all direct references at
find_parent_nodes();
- If we have 1 indirect reference and 1 direct reference, then we
also exit early because extent_is_shared() ends up returning true
when called through add_prelim_ref() (by add_direct_ref() or
add_indirect_ref()) or add_delayed_refs(). Same applies as when
having a combination of direct, indirect and indirect with missing
key references.
This logic had been obsoleted since commit 3ec4d3238a ("btrfs:
allow backref search checks for shared extents"), which introduced the
early exits in case an extent is shared.
So just remove that logic, and assert at find_parent_nodes() that when we
have a share context we don't have a roots ulist and that we haven't found
the extent to be directly shared after processing delayed references and
all references from the extent tree.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently btrfs_is_data_extent_shared() is passing a ulist for the roots
argument of find_parent_nodes(), however it does not use that ulist for
anything and for this context that list always ends up with at most one
element.
Since find_parent_nodes() is able to deal with a NULL ulist for its roots
argument, make btrfs_is_data_extent_shared() pass it NULL and avoid the
burden of allocating memory for the unnused roots ulist, initializing it,
releasing it and allocating one struct ulist_node for it during the call
to find_parent_nodes().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When calling btrfs_is_data_extent_shared() we pass two ulists that were
allocated by the caller. This is because the single caller, fiemap, calls
btrfs_is_data_extent_shared() multiple times and the ulists can be reused,
instead of allocating new ones before each call and freeing them after
each call.
Now that we have a context structure/object that we pass to
btrfs_is_data_extent_shared(), we can move those ulists to it, and hide
their allocation and the context's allocation in a helper function, as
well as the freeing of the ulists and the context object. This allows to
reduce the number of parameters passed to btrfs_is_data_extent_shared(),
the need to pass the ulists from extent_fiemap() to fiemap_process_hole()
and having the caller deal with allocating and releasing the ulists.
Also rename one of the ulists from 'tmp' / 'tmp_ulist' to 'refs', since
that's a much better name as it reflects what the list is used for (and
matching the argument name for find_parent_nodes()).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Right now we are using a struct btrfs_backref_shared_cache to pass state
across multiple btrfs_is_data_extent_shared() calls. The structure's name
closely follows its current purpose, which is to cache previous checks
for the sharedness of metadata extents. However we will start using the
structure for more things other than caching sharedness checks, so rename
it to struct btrfs_backref_share_check_ctx.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently we pass a root and an inode number as arguments for
btrfs_is_data_extent_shared() and the inode number is always from an
inode that belongs to that root (it wouldn't make sense otherwise).
In every context that we call btrfs_is_data_extent_shared() (fiemap only),
we have an inode available, so directly pass the inode to the function
instead of a root and inode number. This reduces the number of parameters
and it makes the function's signature conform to most other functions we
have.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing backref walking to determine if an extent is shared, we are
testing if the inode number, stored in the 'inum' field of struct
share_check, is 0. However that can never be case, since the all instances
of the structure are created at btrfs_is_data_extent_shared(), which
always initializes it with the inode number from a fs tree (and the number
for any inode from any tree can never be 0). So remove the checks.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When doing backref walking to determine if an extent is shared, we are
testing the root_objectid of the given share_check struct is 0, but that
is an impossible case, since btrfs_is_data_extent_shared() always
initializes the root_objectid field with the id of the given root, and
no root can have an objectid of 0. So remove those checks.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
When allocating an extent buffer, at __alloc_extent_buffer(), there's no
point in explicitly assigning zero to the bflags field of the new extent
buffer because we allocated it with kmem_cache_zalloc().
So just remove the redundant initialization, it saves one mov instruction
in the generated assembly code for x86_64 ("movq $0x0,0x10(%rax)").
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At btrfs_clone_extent_buffer(), before allocating the pages array for the
new extent buffer we are calling memset() to zero out the pages array of
the extent buffer. This is pointless however, because the extent buffer
already has every element in its pages array pointing to NULL, as it was
allocated with kmem_cache_zalloc(). The memset() was introduced with
commit dd137dd1f2 ("btrfs: factor out allocating an array of pages"),
but even before that commit we already depended on the pages array being
initialized to NULL for the error paths that need to call
btrfs_release_extent_buffer().
So remove the memset(), it's useless and slightly increases the object
text size.
Before this change:
$ size fs/btrfs/extent_io.o
text data bss dec hex filename
70580 5469 40 76089 12939 fs/btrfs/extent_io.o
After this change:
$ size fs/btrfs/extent_io.o
text data bss dec hex filename
70564 5469 40 76073 12929 fs/btrfs/extent_io.o
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
During fiemap and lseek (hole and data seeking), there's no point in
iterating the inode's io tree to count delalloc bits if the inode's
delalloc bytes counter has a value of zero, as that counter is updated
whenever we set a range for delalloc or clear a range from delalloc.
So skip the counting and io tree iteration if the inode's delalloc bytes
counter has a value of zero. This helps save time when processing a file
range corresponding to a hole or prealloc (unwritten) extent.
This patch is part of a series comprised of the following patches:
btrfs: get the next extent map during fiemap/lseek more efficiently
btrfs: skip unnecessary extent map searches during fiemap and lseek
btrfs: skip unnecessary delalloc search during fiemap and lseek
The following test was performed on a release kernel (Debian's default
kernel config) before and after applying those 3 patches.
# Wrapper to call fiemap in extent count only mode.
# (struct fiemap::fm_extent_count set to 0)
$ cat fiemap.c
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <sys/ioctl.h>
#include <linux/fs.h>
#include <linux/fiemap.h>
int main(int argc, char **argv)
{
struct fiemap fiemap = { 0 };
int fd;
if (argc != 2) {
printf("usage: %s <path>\n", argv[0]);
return 1;
}
fd = open(argv[1], O_RDONLY);
if (fd < 0) {
fprintf(stderr, "error opening file: %s\n",
strerror(errno));
return 1;
}
/* fiemap.fm_extent_count set to 0, to count extents only. */
fiemap.fm_length = FIEMAP_MAX_OFFSET;
if (ioctl(fd, FS_IOC_FIEMAP, &fiemap) < 0) {
fprintf(stderr, "fiemap error: %s\n",
strerror(errno));
return 1;
}
close(fd);
printf("fm_mapped_extents = %d\n", fiemap.fm_mapped_extents);
return 0;
}
$ gcc -o fiemap fiemap.c
And the wrapper shell script that creates a file with many holes and runs
fiemap against it:
$ cat test.sh
#!/bin/bash
DEV=/dev/sdi
MNT=/mnt/sdi
mkfs.btrfs -f $DEV
mount $DEV $MNT
FILE_SIZE=$((1 * 1024 * 1024 * 1024))
echo -n > $MNT/foobar
for ((off = 0; off < $FILE_SIZE; off += 8192)); do
xfs_io -c "pwrite -S 0xab $off 4K" $MNT/foobar > /dev/null
done
# flush all delalloc
sync
start=$(date +%s%N)
./fiemap $MNT/foobar
end=$(date +%s%N)
dur=$(( (end - start) / 1000000 ))
echo "fiemap took $dur milliseconds"
umount $MNT
Result before applying patchset:
fm_mapped_extents = 131072
fiemap took 63 milliseconds
Result after applying patchset:
fm_mapped_extents = 131072
fiemap took 39 milliseconds (-38.1%)
Running the same test for a 512M file instead of a 1G file, gave the
following results.
Result before applying patchset:
fm_mapped_extents = 65536
fiemap took 29 milliseconds
Result after applying patchset:
fm_mapped_extents = 65536
fiemap took 20 milliseconds (-31.0%)
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
If we have no outstanding extents it means we don't have any extent maps
corresponding to delalloc that is flushing, as when an ordered extent is
created we increment the number of outstanding extents to 1 and when we
remove the ordered extent we decrement them by 1. So skip extent map tree
searches if the number of outstanding ordered extents is 0, saving time as
the tree is not empty if we have previously made some reads or flushed
delalloc, as in those cases it can have a very large number of extent maps
for files with many extents.
This helps save time when processing a file range corresponding to a hole
or prealloc (unwritten) extent.
The next patch in the series has a performance test in its changelog and
its subject is:
"btrfs: skip unnecessary delalloc search during fiemap and lseek"
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
At find_delalloc_subrange(), when we need to get the next extent map, we
do a full search on the extent map tree (a red black tree). This is fine
but it's a lot more efficient to simply use rb_next(), which typically
requires iterating over less nodes of the tree and never needs to compare
the ranges of nodes with the one we are looking for.
So add a public helper to extent_map.{h,c} to get the extent map that
immediately follows another extent map, using rb_next(), and use that
helper at find_delalloc_subrange().
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
For Btrfs RAID56, we have a caching system for btrfs raid bios (rbio).
We call cache_rbio_pages() to mark a qualified rbio ready for cache.
The timing happens at:
- finish_rmw()
At this timing, we have already read all necessary sectors, along with
the rbio sectors, we have covered all data stripes.
- __raid_recover_end_io()
At this timing, we have rebuild the rbio, thus all data sectors
involved (either from stripe or bio list) are uptodate now.
Thus at the timing of cache_rbio_pages(), we should have all data
sectors uptodate.
This patch will make it explicit that all data sectors are uptodate at
cache_rbio_pages() timing, mostly to prepare for the incoming
verification at RMW time.
This patch will add:
- Extra ASSERT()s in cache_rbio_pages()
This is to make sure all data sectors, which are not covered by bio,
are already uptodate.
- Extra ASSERT()s in steal_rbio()
Since only cached rbio can be stolen, thus every data sector should
already be uptodate in the source rbio.
- Update __raid_recover_end_io() to update recovered sector->uptodate
Previously __raid_recover_end_io() will only mark failed sectors
uptodate if it's doing an RMW.
But this can trigger new ASSERT()s, as for recovery case, a recovered
failed sector will not be marked uptodate, and trigger ASSERT() in
later cache_rbio_pages() call.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently inside alloc_rbio(), we allocate a larger memory to contain
the following members:
- struct btrfs_raid_rbio itself
- stripe_pages array
- bio_sectors array
- stripe_sectors array
- finish_pointers array
Then update rbio pointers to point the extra space after the rbio
structure itself.
Thus it introduced a complex CONSUME_ALLOC() macro to help the thing.
This is too hacky, and is going to make later pointers expansion harder.
This patch will change it to use regular kcalloc() for each pointer
inside btrfs_raid_bio, making the later expansion much easier.
And introduce a helper free_raid_bio_pointers() to free up all the
pointer members in btrfs_raid_bio, which will be used in both
free_raid_bio() and error path of alloc_rbio().
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The cleanup involves two things:
- Remove the "__" prefix
There is no naming confliction.
- Remove the forward declaration
There is no special function call involved.
Signed-off-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Inside of FB, as well as some user reports, we've had a consistent
problem of occasional ENOSPC transaction aborts. Inside FB we were
seeing ~100-200 ENOSPC aborts per day in the fleet, which is a really
low occurrence rate given the size of our fleet, but it's not nothing.
There are two causes of this particular problem.
First is delayed allocation. The reservation system for delalloc
assumes that contiguous dirty ranges will result in 1 file extent item.
However if there is memory pressure that results in fragmented writeout,
or there is fragmentation in the block groups, this won't necessarily be
true. Consider the case where we do a single 256MiB write to a file and
then close it. We will have 1 reservation for the inode update, the
reservations for the checksum updates, and 1 reservation for the file
extent item. At some point later we decide to write this entire range
out, but we're so fragmented that we break this into 100 different file
extents. Since we've already closed the file and are no longer writing
to it there's nothing to trigger a refill of the delalloc block rsv to
satisfy the 99 new file extent reservations we need. At this point we
exhaust our delalloc reservation, and we begin to steal from the global
reserve. If you have enough of these cases going in parallel you can
easily exhaust the global reserve, get an ENOSPC at
btrfs_alloc_tree_block() time, and then abort the transaction.
The other case is the delayed refs reserve. The delayed refs reserve
updates its size based on outstanding delayed refs and dirty block
groups. However we only refill this block reserve when returning
excess reservations and when we call btrfs_start_transaction(root, X).
We will reserve 2*X credits at transaction start time, and fill in X
into the delayed refs reserve to make sure it stays topped off.
Generally this works well, but clearly has downsides. If we do a
particularly delayed ref heavy operation we may never catch up in our
reservations. Additionally running delayed refs generates more delayed
refs, and at that point we may be committing the transaction and have no
way to trigger a refill of our delayed refs rsv. Then a similar thing
occurs with the delalloc reserve.
Generally speaking we well over-reserve in all of our block rsvs. If we
reserve 1 credit we're usually reserving around 264k of space, but we'll
often not use any of that reservation, or use a few blocks of that
reservation. We can be reasonably sure that as long as you were able to
reserve space up front for your operation you'll be able to find space
on disk for that reservation.
So introduce a new flushing state, BTRFS_RESERVE_FLUSH_EMERGENCY. This
gets used in the case that we've exhausted our reserve and the global
reserve. It simply forces a reservation if we have enough actual space
on disk to make the reservation, which is almost always the case. This
keeps us from hitting ENOSPC aborts in these odd occurrences where we've
not kept up with the delayed work.
Fixing this in a complete way is going to be relatively complicated and
time consuming. This patch is what I discussed with Filipe earlier this
year, and what I put into our kernels inside FB. With this patch we're
down to 1-2 ENOSPC aborts per week, which is a significant reduction.
This is a decent stop gap until we can work out a more wholistic
solution to these two corner cases.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These are wrapped in CONFIG_FS_VERITY, but we can have the definitions
without verity enabled. Move these definitions up with the other
accessor helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This uses btrfs_header_nritems, which I will be moving out of ctree.h.
In order to avoid needing to include the relevant header in ctree.h,
simply move this helper function into ctree.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ rename parameters ]
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the free-space-cache.c code, remove it from ctree.h and
inode.c, create new init/exit functions for the cachep, and move it
locally to free-space-cache.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the ctree code, remove it from ctree.h and inode.c,
create new init/exit functions for the cachep, and move it locally to
ctree.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is local to the transaction code, remove it from ctree.h and
inode.c, create new helpers in the transaction to handle the init work
and move the cachep locally to transaction.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This isn't used outside of inode.c, there's no reason to define it in
btrfs_inode.h. Drop the inline and add __cold as it's for errors that
are not in any hot path.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This code is used in space-info.c, move the definitions to space-info.h.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This function uses functions that are not defined in block-group.h, move
it into block-group.c in order to keep the header clean.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
These definitions are used for discard statistics, move them out of
ctree.h and put them in free-space-cache.h.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This is only used locally in scrub.c, move it out of ctree.h into
scrub.c.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We have maximum link and name length limits, move these to btrfs_tree.h
as they're on disk limitations.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments ]
Signed-off-by: David Sterba <dsterba@suse.com>
This inline helper calls btrfs_fs_compat_ro(), which is defined in
another header. To avoid weird header dependency problems move this
helper into disk-io.c with the rest of the global root helpers.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The bulk of our on-disk definitions exist in btrfs_tree.h, which user
space can use. Keep things consistent and move the rest of the on disk
definitions out of ctree.h into btrfs_tree.h. Note I did have to update
all u8's to __u8, but otherwise this is a strict copy and paste.
Most of the definitions are mainly for internal use and are not
guaranteed stable public API and may change as we need. Compilation
failures by user applications can happen.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ reformat comments, style fixups ]
Signed-off-by: David Sterba <dsterba@suse.com>
The last user of this definition was removed in patch f26c923860
("btrfs: remove reada infrastructure") so we can remove this definition.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
This hasn't been used since 138a12d865 ("btrfs: rip out
btrfs_space_info::total_bytes_pinned") so it is safe to remove.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
The last users of these helpers were removed in 5297199a8b ("btrfs:
remove inode number cache feature") so delete these helpers.
The point was for mount options that were applicable after transaction
commit so they could not be applied immediately. We don't have such
options anymore and if we do the patch can be reverted.
Reviewed-by: Qu Wenruo <wqu@suse.com>
Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Since leaf is already NULL, and no other branch will go to fail_unlock,
the fail_unlock label is useless and can be removed
Signed-off-by: Peng Hao <flyingpeng@tencent.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
We don't use a cached state here at all, which generally makes sense as
async reads are going to unlock at endio time. However for blocking
reads we will call wait_extent_bit() for our range. Since the
lock_extent() stuff will return the cached_state for the start of the
range this is a helpful optimization to have for this case, we'll have
the exact state we want to wait on. Add a cached state here and simply
throw it away if we're a non-blocking read, otherwise we'll get a small
improvement by eliminating some tree searches.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Currently if we fail to lock a range we'll return the start of the range
that we failed to lock. We'll then search down to this range and wait
on any extent states in this range.
However we can avoid this search altogether if we simply cache the
extent_state that had the contention. We can pass this into
wait_extent_bit() and start from that extent_state without doing the
search. In the most optimistic case we can avoid all searches, more
likely we'll avoid the initial search and have to perform the search
after we wait on the failed state, or worst case we must search both
times which is what currently happens.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
All of the relocation code avoids using the cached state, despite
everywhere using the normal
lock_extent()
// do something
unlock_extent()
pattern. Fix this by plumbing a cached state throughout all of these
functions in order to allow for less tree searches.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Now that try_lock_extent() takes a cached_state, plumb the cached_state
through btrfs_try_lock_ordered_range() and then use a cached_state in
btrfs_check_nocow_lock everywhere to avoid extra tree searches on the
extent_io_tree.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
With nowait becoming more pervasive throughout our codebase go ahead and
add a cached_state to try_lock_extent(). This allows us to be faster
about clearing the locked area if we have contention, and then gives us
the same optimization for unlock if we are able to lock the range.
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Josef Bacik <josef@toxicpanda.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Some discs containing the UDF file system are unable to be mounted,
failing with the following message:
UDF-fs: error (device sr0): udf_fill_super: minUDFReadRev=260
(max is 250)
The UDF 2.60 specification [0] states in the section Basic Restrictions
& Requirements (page 10):
The Minimum UDF Read Revision value shall be at most #0250 for all
media with a UDF 2.60 file system. This indicates that a UDF 2.50
implementation can read all UDF 2.60 media. Media that do not have a
Metadata Partition may use a value lower than #250.
The conclusion is that the discs failing to mount were burned with a
faulty software, which didn't follow the specification. This can be
worked around by increasing UDF_MAX_READ_VERSION to 0x260, to match the
Minimum Read Revision. No other changes are required, as reading UDF
2.60 is backward compatible with UDF 2.50.
[0] http://www.osta.org/specs/pdf/udf260.pdf
Signed-off-by: Bartosz Taudul <wolf@nereid.pl>
Signed-off-by: Jan Kara <jack@suse.cz>
In the if (dev_of_node(dev) && !pdata) path, the "err" may be assigned a
value of 0, so the error return code -EINVAL may be incorrectly set
to 0. To fix set valid return code before calling to goto.
Fixes: 35da60941e ("pstore/ram: add Device Tree bindings")
Signed-off-by: Wang Yufen <wangyufen@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/1669969374-46582-1-git-send-email-wangyufen@huawei.com
UBSAN reported a shift-out-of-bounds warning:
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:88 [inline]
dump_stack_lvl+0x8d/0xcf lib/dump_stack.c:106
ubsan_epilogue+0xa/0x44 lib/ubsan.c:151
__ubsan_handle_shift_out_of_bounds+0x1e7/0x208 lib/ubsan.c:322
check_special_flags fs/binfmt_misc.c:241 [inline]
create_entry fs/binfmt_misc.c:456 [inline]
bm_register_write+0x9d3/0xa20 fs/binfmt_misc.c:654
vfs_write+0x11e/0x580 fs/read_write.c:582
ksys_write+0xcf/0x120 fs/read_write.c:637
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x34/0x80 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
RIP: 0033:0x4194e1
Since the type of Node's flags is unsigned long, we should define these
macros with same type too.
Signed-off-by: Liu Shixin <liushixin2@huawei.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20221102025123.1117184-1-liushixin2@huawei.com
address post-6.0 issues, which is hopefully a sign that things are
converging.
-----BEGIN PGP SIGNATURE-----
iHUEABYKAB0WIQTTMBEPP41GrTpTJgfdBJ7gKXxAjgUCY4pQpQAKCRDdBJ7gKXxA
jquxAP9Lqif7CGDgdq8uWY2hHS/Ujc3k7Ohgyzs37olnCuU8KwEA6/J7SpjsBgtY
OfzvnwxpCTh8Kfzu/oNckIHo/EEiIA8=
=o6qT
-----END PGP SIGNATURE-----
Merge tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm
Pull misc hotfixes from Andrew Morton:
"15 hotfixes, 11 marked cc:stable.
Only three or four of the latter address post-6.0 issues, which is
hopefully a sign that things are converging"
* tag 'mm-hotfixes-stable-2022-12-02' of git://git.kernel.org/pub/scm/linux/kernel/git/akpm/mm:
revert "kbuild: fix -Wimplicit-function-declaration in license_is_gpl_compatible"
Kconfig.debug: provide a little extra FRAME_WARN leeway when KASAN is enabled
drm/amdgpu: temporarily disable broken Clang builds due to blown stack-frame
mm/khugepaged: invoke MMU notifiers in shmem/file collapse paths
mm/khugepaged: fix GUP-fast interaction by sending IPI
mm/khugepaged: take the right locks for page table retraction
mm: migrate: fix THP's mapcount on isolation
mm: introduce arch_has_hw_nonleaf_pmd_young()
mm: add dummy pmd_young() for architectures not having it
mm/damon/sysfs: fix wrong empty schemes assumption under online tuning in damon_sysfs_set_schemes()
tools/vm/slabinfo-gnuplot: use "grep -E" instead of "egrep"
nilfs2: fix NULL pointer dereference in nilfs_palloc_commit_free_entry()
hugetlb: don't delete vma_lock in hugetlb MADV_DONTNEED processing
madvise: use zap_page_range_single for madvise dontneed
mm: replace VM_WARN_ON to pr_warn if the node is offline with __GFP_THISNODE
The console_lock is used in part to guarantee safe list iteration.
The console_list_lock should be used because list synchronization
responsibility will be removed from the console_lock in a later
change.
Note, the console_lock is still needed to serialize the device()
callback with other console operations.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20221116162152.193147-35-john.ogness@linutronix.de
The console_lock is held throughout the start/show/stop procedure
to print out device/driver information about all registered
consoles. Since the console_lock is being used for multiple reasons,
explicitly document these reasons. This will be useful when the
console_lock is split into fine-grained locking.
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20221116162152.193147-11-john.ogness@linutronix.de
Replace the open coded single linked list with a hlist so a conversion
to SRCU protected list walks can reuse the existing primitives.
Co-developed-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: John Ogness <john.ogness@linutronix.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Reviewed-by: Sergey Senozhatsky <senozhatsky@chromium.org>
Reviewed-by: Petr Mladek <pmladek@suse.com>
Signed-off-by: Petr Mladek <pmladek@suse.com>
Link: https://lore.kernel.org/r/20221116162152.193147-3-john.ogness@linutronix.de
The type should be struct posix_acl * instead of void *.
Cc: Christian Brauner <brauner@kernel.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Uros Bizjak <ubizjak@gmail.com>
Signed-off-by: Christian Brauner (Microsoft) <brauner@kernel.org>