Stale Data.
They are a class of MMIO-related weaknesses which can expose stale data
by propagating it into core fill buffers. Data which can then be leaked
using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too.
-----BEGIN PGP SIGNATURE-----
iQJGBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKXMkMTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoWGPD/idalLIhhV5F2+hZIKm0WSnsBxAOh9K
7y8xBxpQQ5FUfW3vm7Pg3ro6VJp7w2CzKoD4lGXzGHriusn3qst3vkza9Ay8xu8g
RDwKe6hI+p+Il9BV9op3f8FiRLP9bcPMMReW/mRyYsOnJe59hVNwRAL8OG40PY4k
hZgg4Psfvfx8bwiye5efjMSe4fXV7BUCkr601+8kVJoiaoszkux9mqP+cnnB5P3H
zW1d1jx7d6eV1Y063h7WgiNqQRYv0bROZP5BJkufIoOHUXDpd65IRF3bDnCIvSEz
KkMYJNXb3qh7EQeHS53NL+gz2EBQt+Tq1VH256qn6i3mcHs85HvC68gVrAkfVHJE
QLJE3MoXWOqw+mhwzCRrEXN9O1lT/PqDWw8I4M/5KtGG/KnJs+bygmfKBbKjIVg4
2yQWfMmOgQsw3GWCRjgEli7aYbDJQjany0K/qZTq54I41gu+TV8YMccaWcXgDKrm
cXFGUfOg4gBm4IRjJ/RJn+mUv6u+/3sLVqsaFTs9aiib1dpBSSUuMGBh548Ft7g2
5VbFVSDaLjB2BdlcG7enlsmtzw0ltNssmqg7jTK/L7XNVnvxwUoXw+zP7RmCLEYt
UV4FHXraMKNt2ZketlomC8ui2hg73ylUp4pPdMXCp7PIXp9sVamRTbpz12h689VJ
/s55bWxHkR6S
=LBxT
-----END PGP SIGNATURE-----
Merge tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 MMIO stale data fixes from Thomas Gleixner:
"Yet another hw vulnerability with a software mitigation: Processor
MMIO Stale Data.
They are a class of MMIO-related weaknesses which can expose stale
data by propagating it into core fill buffers. Data which can then be
leaked using the usual speculative execution methods.
Mitigations include this set along with microcode updates and are
similar to MDS and TAA vulnerabilities: VERW now clears those buffers
too"
* tag 'x86-bugs-2022-06-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation/mmio: Print SMT warning
KVM: x86/speculation: Disable Fill buffer clear within guests
x86/speculation/mmio: Reuse SRBDS mitigation for SBDS
x86/speculation/srbds: Update SRBDS mitigation selection
x86/speculation/mmio: Add sysfs reporting for Processor MMIO Stale Data
x86/speculation/mmio: Enable CPU Fill buffer clearing on idle
x86/bugs: Group MDS, TAA & Processor MMIO Stale Data mitigations
x86/speculation/mmio: Add mitigation for Processor MMIO Stale Data
x86/speculation: Add a common function for MD_CLEAR mitigation update
x86/speculation/mmio: Enumerate Processor MMIO Stale Data bug
Documentation: Add documentation for Processor MMIO Stale Data
SGX enclave is accounted to the wrong memory control group.
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcd1MTHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoaalD/0TdNTH+LiM0BpEZ4VHIAFhE9mgfaU/
1HIZcXEvAzPqS+iLMYAPo2dS7hNKv1GCCD8HcuOdEwC/CyTdrcpvhCNeQXCagF38
BHtzVCMFd/Y6U7ERNVsaHiuHFSkF+3QHef4Gzljzblgj1FK7s55z9tlQmE3pElOg
UGfRoD32ODUtQPmOCjlOhFjsUUtFpdpXFCbjPPFdOqJ80LbdKR2s/0IBpHMk1xoz
ESmS10tVC3a5np1/4Ge8vRCZnewOpulL/Is84Q8MbCvxI8NQh9pD7Imom/wRjSAS
19N+sWh7ywuUtAOVqJ23dDc6SOL3yjM4HbmsEYRGPsgzuJ5crezLcrKgCFeGmz/4
4zbU3R9hzzXQy8ZqNjbj71FKswfUDcMLb26GA/62d2N6zR7O0TSzfIrpIYp+GwJ3
5KaM0LiKoW/LXGfwEdEBWpCkK1OKgMXmZ5IQlr5bRz3Qihqzkk65Dgfo66XRt+jb
DhMHW+cMfLwSX72QER6LyP2jPfUSCZgy5Pn8LfXUH30fc084gyrAPq2eqtVnf0lf
Hq5/r1nMosPE0CtxHM1vNRj5M052nQxXhDhdsTcoO6PVBrvEjJbkanj3XbNRk66T
FDWGWmdtDC2su6p0ezwbARMxYnsSS40GVsp/DoOu+SHxlAm9VkomY+QDJ2FuoJnb
K0XfW5vV9MEsvw==
=cuLD
-----END PGP SIGNATURE-----
Merge tag 'x86-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX fix from Thomas Gleixner:
"A single fix for x86/SGX to prevent that memory which is allocated for
an SGX enclave is accounted to the wrong memory control group"
* tag 'x86-urgent-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Set active memcg prior to shmem allocation
- Disable late microcode loading by default. Unless the HW people get
their act together and provide a required minimum version in the
microcode header for making a halfways informed decision its just
lottery and broken.
- Warn and taint the kernel when microcode is loaded late
- Remove the old unused microcode loader interface
- Remove a redundant perf callback from the microcode loader
-----BEGIN PGP SIGNATURE-----
iQJHBAABCgAxFiEEQp8+kY+LLUocC4bMphj1TA10mKEFAmKcdjETHHRnbHhAbGlu
dXRyb25peC5kZQAKCRCmGPVMDXSYoUUTD/92cLMB0g7XP8yFN+ZiHl7uoaDtE0UR
WfapnMNL3tKKVnuwEMg83AjtyQ+O1JNZ6iS5K8jmiBnBByg6EQccz8pfe3jUQ6Ar
gOLWV1F4tRbJD2NqqiWOo/l5qs5hJaz/QeE+oyCP0fvw6DOZixepG5RzveFSSwAa
G2Q03GsGEu84SXlVAjagMSU6tYlBnlZBfKRB8NiNxkW8CLcJY0NfDCunbN6icEbH
AQHXeviM3GWMKJA9R9DeSvYq9PbN5o2UVmcFQWsDAzZ8Ne2qCqskjoGNjuQ9s+72
G35fm5d7dtIcrYg4PSJN0JDJP4HbcfSjhUrbdH4iAClTkGnNQERfuDV9O92/lYJE
hd9c8yCegD0NWQ4dMNNrM5PSbWbQK7ajqRYVvqqouJZpH+IDtajA1jxEe+1msB8P
xmXQDcdSMOyVs+Bw3Djf3tt8Qqhu4jxnf3y711oLklPwwh9lq9SvaWiX9ZFoYgdn
1HVtQUAOdgDmncs5BQ8dpuwtoYXH5p31n0wh57emyFXl7wA93eWouuFczQ6mSol9
LLdd9c+q9mBFIo0ult+fVhEOTDJF+27s3YXOpge6BAqei/SQIU4c5oq51CukV7ap
TPzWAayq0lsAwXn1k6r86Zkewh1C2SQTyk1J3zMehZlSVpwSWbEQASYlKywmh6YB
N+6/0XtHDAVK5Q==
=DQjr
-----END PGP SIGNATURE-----
Merge tag 'x86-microcode-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 microcode updates from Thomas Gleixner:
- Disable late microcode loading by default. Unless the HW people get
their act together and provide a required minimum version in the
microcode header for making a halfways informed decision its just
lottery and broken.
- Warn and taint the kernel when microcode is loaded late
- Remove the old unused microcode loader interface
- Remove a redundant perf callback from the microcode loader
* tag 'x86-microcode-2022-06-05' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/microcode: Remove unnecessary perf callback
x86/microcode: Taint and warn on late loading
x86/microcode: Default-disable late loading
x86/microcode: Rip out the OLD_INTERFACE
When the system runs out of enclave memory, SGX can reclaim EPC pages
by swapping to normal RAM. These backing pages are allocated via a
per-enclave shared memory area. Since SGX allows unlimited over
commit on EPC memory, the reclaimer thread can allocate a large
number of backing RAM pages in response to EPC memory pressure.
When the shared memory backing RAM allocation occurs during
the reclaimer thread context, the shared memory is charged to
the root memory control group, and the shmem usage of the enclave
is not properly accounted for, making cgroups ineffective at
limiting the amount of RAM an enclave can consume.
For example, when using a cgroup to launch a set of test
enclaves, the kernel does not properly account for 50% - 75% of
shmem page allocations on average. In the worst case, when
nearly all allocations occur during the reclaimer thread, the
kernel accounts less than a percent of the amount of shmem used
by the enclave's cgroup to the correct cgroup.
SGX stores a list of mm_structs that are associated with
an enclave. Pick one of them during reclaim and charge that
mm's memcg with the shmem allocation. The one that gets picked
is arbitrary, but this list almost always only has one mm. The
cases where there is more than one mm with different memcg's
are not worth considering.
Create a new function - sgx_encl_alloc_backing(). This function
is used whenever a new backing storage page needs to be
allocated. Previously the same function was used for page
allocation as well as retrieving a previously allocated page.
Prior to backing page allocation, if there is a mm_struct associated
with the enclave that is requesting the allocation, it is set
as the active memory control group.
[ dhansen: - fix merge conflict with ELDU fixes
- check against actual ksgxd_tsk, not ->mm ]
Cc: stable@vger.kernel.org
Signed-off-by: Kristen Carlson Accardi <kristen@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Acked-by: Roman Gushchin <roman.gushchin@linux.dev>
Link: https://lkml.kernel.org/r/20220520174248.4918-1-kristen@linux.intel.com
Similar to MDS and TAA, print a warning if SMT is enabled for the MMIO
Stale Data vulnerability.
Signed-off-by: Josh Poimboeuf <jpoimboe@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
c93dc84cbe ("perf/x86: Add a microcode revision check for SNB-PEBS")
checks whether the microcode revision has fixed PEBS issues.
This can happen either:
1. At PEBS init time, where the early microcode has been loaded already
2. During late loading, in the microcode_check() callback.
So remove the unnecessary call in the microcode loader init routine.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-5-bp@alien8.de
Warn before it is attempted and taint the kernel. Late loading microcode
can lead to malfunction of the kernel when the microcode update changes
behaviour. There is no way for the kernel to determine whether its safe or
not.
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-4-bp@alien8.de
It is dangerous and it should not be used anyway - there's a nice early
loading already.
Requested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220525161232.14924-3-bp@alien8.de
-----BEGIN PGP SIGNATURE-----
iQFHBAABCAAxFiEEIbPD0id6easf0xsudhRwX5BBoF4FAmKSSbcTHHdlaS5saXVA
a2VybmVsLm9yZwAKCRB2FHBfkEGgXgJyCACeyMOcFws5lyqqdk0R0zGr2KFfKsJn
YQR9nvldT2p/1y0ykvU208UIq0HHmXOb9pD8gOUzGYGp4XlEaC1f4V37mmzgLcRu
vL/HcFqBl2cQEfaQxiXZrmsIIVszwbc57EGqpl93cS2er4hp/NXmredKCId7Mpt8
FjxjgVGzdhEUKbJZYjkDM5pYAnJ9QVwuK3MaarKMK86Oj1P5YtKgIb4ZSt/NHvsC
Mukx3nivSH29XfK3fRsFDJUQr9WNYh1cmTtyhB0tWVXQCYFc4angZRtCJwyXzkp2
P5GBIQoMZcXX2XWkUBTtA1w5g/aZZsBExb3YGhQjsQP+jb6MtDnvOEo9
=Z2E+
-----END PGP SIGNATURE-----
Merge tag 'hyperv-next-signed-20220528' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux
Pull hyperv updates from Wei Liu:
- Harden hv_sock driver (Andrea Parri)
- Harden Hyper-V PCI driver (Andrea Parri)
- Fix multi-MSI for Hyper-V PCI driver (Jeffrey Hugo)
- Fix Hyper-V PCI to reduce boot time (Dexuan Cui)
- Remove code for long EOL'ed Hyper-V versions (Michael Kelley, Saurabh
Sengar)
- Fix balloon driver error handling (Shradha Gupta)
- Fix a typo in vmbus driver (Julia Lawall)
- Ignore vmbus IMC device (Michael Kelley)
- Add a new error message to Hyper-V DRM driver (Saurabh Sengar)
* tag 'hyperv-next-signed-20220528' of git://git.kernel.org/pub/scm/linux/kernel/git/hyperv/linux: (28 commits)
hv_balloon: Fix balloon_probe() and balloon_remove() error handling
scsi: storvsc: Removing Pre Win8 related logic
Drivers: hv: vmbus: fix typo in comment
PCI: hv: Fix synchronization between channel callback and hv_pci_bus_exit()
PCI: hv: Add validation for untrusted Hyper-V values
PCI: hv: Fix interrupt mapping for multi-MSI
PCI: hv: Reuse existing IRTE allocation in compose_msi_msg()
drm/hyperv: Remove support for Hyper-V 2008 and 2008R2/Win7
video: hyperv_fb: Remove support for Hyper-V 2008 and 2008R2/Win7
scsi: storvsc: Remove support for Hyper-V 2008 and 2008R2/Win7
Drivers: hv: vmbus: Remove support for Hyper-V 2008 and Hyper-V 2008R2/Win7
x86/hyperv: Disable hardlockup detector by default in Hyper-V guests
drm/hyperv: Add error message for fb size greater than allocated
PCI: hv: Do not set PCI_COMMAND_MEMORY to reduce VM boot time
PCI: hv: Fix hv_arch_irq_unmask() for multi-MSI
Drivers: hv: vmbus: Refactor the ring-buffer iterator functions
Drivers: hv: vmbus: Accept hv_sock offers in isolated guests
hv_sock: Add validation for untrusted Hyper-V values
hv_sock: Copy packets sent by Hyper-V out of the ring buffer
hv_sock: Check hv_pkt_iter_first_raw()'s return value
...
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQSbo+XnGs+rwLz9XGXfioYZHlFsZwUCYpFPcQAKCRDfioYZHlFs
Z9A3AQCdfoT5sY3OK+I/3oTvJ//6lw2MtXrnXFM046ICKPi9sgD8CzR9mRAHA+vj
kxOtJEU2bA9naninXGORsDUndiNkwQo=
=gVIn
-----END PGP SIGNATURE-----
Merge tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and DAX updates from Dan Williams:
"New support for clearing memory errors when a file is in DAX mode,
alongside with some other fixes and cleanups.
Previously it was only possible to clear these errors using a truncate
or hole-punch operation to trigger the filesystem to reallocate the
block, now, any page aligned write can opportunistically clear errors
as well.
This change spans x86/mm, nvdimm, and fs/dax, and has received the
appropriate sign-offs. Thanks to Jane for her work on this.
Summary:
- Add support for clearing memory error via pwrite(2) on DAX
- Fix 'security overwrite' support in the presence of media errors
- Miscellaneous cleanups and fixes for nfit_test (nvdimm unit tests)"
* tag 'libnvdimm-for-5.19' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm:
pmem: implement pmem_recovery_write()
pmem: refactor pmem_clear_poison()
dax: add .recovery_write dax_operation
dax: introduce DAX_RECOVERY_WRITE dax access mode
mce: fix set_mce_nospec to always unmap the whole page
x86/mce: relocate set{clear}_mce_nospec() functions
acpi/nfit: rely on mce->misc to determine poison granularity
testing: nvdimm: asm/mce.h is not needed in nfit.c
testing: nvdimm: iomap: make __nfit_test_ioremap a macro
nvdimm: Allow overwrite in the presence of disabled dimms
tools/testing/nvdimm: remove unneeded flush_workqueue
- don't over-decrypt memory (Robin Murphy)
- takes min align mask into account for the swiotlb max mapping size
(Tianyu Lan)
- use GFP_ATOMIC in dma-debug (Mikulas Patocka)
- fix DMA_ATTR_NO_KERNEL_MAPPING on xen/arm (me)
- don't fail on highmem CMA pages in dma_direct_alloc_pages (me)
- cleanup swiotlb initialization and share more code with swiotlb-xen
(me, Stefano Stabellini)
-----BEGIN PGP SIGNATURE-----
iQI/BAABCgApFiEEgdbnc3r/njty3Iq9D55TZVIEUYMFAmKObTQLHGhjaEBsc3Qu
ZGUACgkQD55TZVIEUYObmA//dIcDB/q4iFGD+WJh4MhM+asx0ZsdF2OJz42WEhgT
Z9duOrgcneEQundCamqJP9rNTs980LHDA8uWQC5rZEc9vxuRVOdS7bSgYRUwWh6B
r0ZjOsvQCn+ChoZML8uyk4rfmEINq+EvJuec3G5fgecZOhPuJS2i2uzzv5cHwqgP
ChC0fwyZlkfdECXgvZXbEoCJLfTgGNlziN6Ai8dirSoqgEQUoCsY89/M7OiEBvV2
R4XUWD7OvQERfB4t6xLuUHyzf9PAuWB+OiblRVNeAmK3lMjxVrc3k4kIowgklnzD
8hfmphAa9Zou3zdfi6Gd4fiQRHRVOwKVp1rtqUmJ+lPSiwyMzu64z9ld2+2qac0h
V4sSr/yJkhxnBT4/0MkTChvhnRobisackpUzNRpiM4ck7cNVb7eAvkISsbH+pWI9
aEexPhbyskjlV+GOyM4QL4ygG0dpXY0HSyoh6uaSVsaXMycnWIsJCPidXxV1HGV0
q2/RLHuHwYxia8cYCF01/DQvwOKSjwbU0zModxtRezGD5GYh2C0a+SrA1aX+qiTu
yGJCs2UHtSQstAt78tTVp499YeDeL/oGSQkPAu8zyRkSczzF+CncGTuXyoJbAWyK
otcgERWljgZ4scxjfu1uacfoVhKQ7nOu7hiJokL0U80FESAennLC3ZlocvB9h/ff
HNA=
=n2rk
-----END PGP SIGNATURE-----
Merge tag 'dma-mapping-5.19-2022-05-25' of git://git.infradead.org/users/hch/dma-mapping
Pull dma-mapping updates from Christoph Hellwig:
- don't over-decrypt memory (Robin Murphy)
- takes min align mask into account for the swiotlb max mapping size
(Tianyu Lan)
- use GFP_ATOMIC in dma-debug (Mikulas Patocka)
- fix DMA_ATTR_NO_KERNEL_MAPPING on xen/arm (me)
- don't fail on highmem CMA pages in dma_direct_alloc_pages (me)
- cleanup swiotlb initialization and share more code with swiotlb-xen
(me, Stefano Stabellini)
* tag 'dma-mapping-5.19-2022-05-25' of git://git.infradead.org/users/hch/dma-mapping: (23 commits)
dma-direct: don't over-decrypt memory
swiotlb: max mapping size takes min align mask into account
swiotlb: use the right nslabs-derived sizes in swiotlb_init_late
swiotlb: use the right nslabs value in swiotlb_init_remap
swiotlb: don't panic when the swiotlb buffer can't be allocated
dma-debug: change allocation mode from GFP_NOWAIT to GFP_ATIOMIC
dma-direct: don't fail on highmem CMA pages in dma_direct_alloc_pages
swiotlb-xen: fix DMA_ATTR_NO_KERNEL_MAPPING on arm
x86: remove cruft from <asm/dma-mapping.h>
swiotlb: remove swiotlb_init_with_tbl and swiotlb_init_late_with_tbl
swiotlb: merge swiotlb-xen initialization into swiotlb
swiotlb: provide swiotlb_init variants that remap the buffer
swiotlb: pass a gfp_mask argument to swiotlb_init_late
swiotlb: add a SWIOTLB_ANY flag to lift the low memory restriction
swiotlb: make the swiotlb_init interface more useful
x86: centralize setting SWIOTLB_FORCE when guest memory encryption is enabled
x86: remove the IOMMU table infrastructure
MIPS/octeon: use swiotlb_init instead of open coding it
arm/xen: don't check for xen_initial_domain() in xen_create_contiguous_region
swiotlb: rename swiotlb_late_init_with_default_size
...
- Update ACPICA code in the kernel to upstream revision 20220331
including the following changes:
* Add support for the Windows 11 _OSI string (Mario Limonciello)
* Add the CFMWS subtable to the CEDT table (Lawrence Hileman).
* iASL: NHLT: Treat Terminator as specific_config (Piotr Maziarz).
* iASL: NHLT: Fix parsing undocumented bytes at the end of Endpoint
Descriptor (Piotr Maziarz).
* iASL: NHLT: Rename linux specific strucures to device_info (Piotr
Maziarz).
* Add new ACPI 6.4 semantics to Load() and LoadTable() (Bob Moore).
* Clean up double word in comment (Tom Rix).
* Update copyright notices to the year 2022 (Bob Moore).
* Remove some tabs and // comments - automated cleanup (Bob Moore).
* Replace zero-length array with flexible-array member (Gustavo A. R.
Silva).
* Interpreter: Add units to time variable names (Paul Menzel).
* Add support for ARM Performance Monitoring Unit Table (Besar
Wicaksono).
* Inform users about ACPI spec violation related to sleep length (Paul
Menzel).
* iASL/MADT: Add OEM-defined subtable (Bob Moore).
* Interpreter: Fix some typo mistakes (Selvarasu Ganesan).
* Updates for revision E.d of IORT (Shameer Kolothum).
* Use ACPI_FORMAT_UINT64 for 64-bit output (Bob Moore).
- Improve debug messages in the ACPI device PM code (Rafael Wysocki).
- Block ASUS B1400CEAE from suspend to idle by default (Mario
Limonciello).
- Improve handling of PCI devices that are in D3cold during system
initialization (Rafael Wysocki).
- Fix BERT error region memory mapping (Lorenzo Pieralisi).
- Add support for NVIDIA 16550-compatible port subtype to the SPCR
parsing code (Jeff Brasen).
- Use static for BGRT_SHOW kobj_attribute defines (Tom Rix).
- Fix missing prototype warning for acpi_agdi_init() (Ilkka Koskinen).
- Fix missing ERST record ID in the APEI code (Liu Xinpeng).
- Make APEI error injection to refuse to inject into the zero
page (Tony Luck).
- Correct description of INT3407 / INT3532 DPTF attributes in sysfs
(Sumeet Pawnikar).
- Add support for high frequency impedance notification to the DPTF
driver (Sumeet Pawnikar).
- Make mp_config_acpi_gsi() a void function (Li kunyu).
- Unify Package () representation for properties in the ACPI device
properties documentation (Andy Shevchenko).
- Include UUID in _DSM evaluation warning (Michael Niewöhner).
-----BEGIN PGP SIGNATURE-----
iQJGBAABCAAwFiEE4fcc61cGeeHD/fCwgsRv/nhiVHEFAmKL2NUSHHJqd0Byand5
c29ja2kubmV0AAoJEILEb/54YlRxozgP/2RDYurr4b7welCumisfd26V8ldPTGfh
hZLQaNMYnzlPyoazOMkp6fi4PTaVxVjz75DJw7gjIYXO+ChMscZNHHvpHGXk6R+Q
H3wM1E6w7jf6Tffg8SuhC38Q1Oh3JBLqPXrzKmuku6Wma6GtqAKtCcxCIb6jj9Bc
l6xU+FT5MHz2AKtHRqDPrMYYY/v7w7Krnu7EbsWnqYgKjfYyE5CJZocPm5bLcqI4
ZMYcyca8wZu68cj0nR79O1sc1UY4RWDupNTzro8m6Nl2fSWzh+o6aWdjNXqY9fHb
TM3s4nIHH3WVppZSZutX0wnuz4NRFlRNF85m0NXDM5hKoy/hsahTjrWhtKcrKXzv
2G/1NoxMBgpr55oSvPPrFUnj/Dne4mnM9ftp7cGZj9lwEWg9qXSbBSRa3XYAATps
GoxIyd+cP5lGXtur/eqV/HfDQqJ4L7TlVL2HjH1UcH0AdL4D1CF5Ybjfb60xSVC1
MYRGZTCibWz3YL4191YebmalOFmvQohldC/U/RZgOlPL8QygaSo1+Unn7xp0txng
vtbePiEpaUAGzjlvwi8NscWXCOekspc0GImfkEgsvMrDOJJPqRlUl//m2zGsZzDK
VV9SRhy28Xm5oxJnayHFRDXHEBQUVYwsL4k8X1wiYBsq36X98C0tpF+5VXNyZS7i
UKUSJQpKptu6
=XH6/
-----END PGP SIGNATURE-----
Merge tag 'acpi-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull ACPI updates from Rafael Wysocki:
"These update the ACPICA kernel code to upstream revision 20220331,
improve handling of PCI devices that are in D3cold during system
initialization, add support for a few features, fix bugs and clean up
code.
Specifics:
- Update ACPICA code in the kernel to upstream revision 20220331
including the following changes:
- Add support for the Windows 11 _OSI string (Mario Limonciello)
- Add the CFMWS subtable to the CEDT table (Lawrence Hileman).
- iASL: NHLT: Treat Terminator as specific_config (Piotr
Maziarz).
- iASL: NHLT: Fix parsing undocumented bytes at the end of
Endpoint Descriptor (Piotr Maziarz).
- iASL: NHLT: Rename linux specific strucures to device_info
(Piotr Maziarz).
- Add new ACPI 6.4 semantics to Load() and LoadTable() (Bob
Moore).
- Clean up double word in comment (Tom Rix).
- Update copyright notices to the year 2022 (Bob Moore).
- Remove some tabs and // comments - automated cleanup (Bob
Moore).
- Replace zero-length array with flexible-array member (Gustavo
A. R. Silva).
- Interpreter: Add units to time variable names (Paul Menzel).
- Add support for ARM Performance Monitoring Unit Table (Besar
Wicaksono).
- Inform users about ACPI spec violation related to sleep length
(Paul Menzel).
- iASL/MADT: Add OEM-defined subtable (Bob Moore).
- Interpreter: Fix some typo mistakes (Selvarasu Ganesan).
- Updates for revision E.d of IORT (Shameer Kolothum).
- Use ACPI_FORMAT_UINT64 for 64-bit output (Bob Moore).
- Improve debug messages in the ACPI device PM code (Rafael Wysocki).
- Block ASUS B1400CEAE from suspend to idle by default (Mario
Limonciello).
- Improve handling of PCI devices that are in D3cold during system
initialization (Rafael Wysocki).
- Fix BERT error region memory mapping (Lorenzo Pieralisi).
- Add support for NVIDIA 16550-compatible port subtype to the SPCR
parsing code (Jeff Brasen).
- Use static for BGRT_SHOW kobj_attribute defines (Tom Rix).
- Fix missing prototype warning for acpi_agdi_init() (Ilkka
Koskinen).
- Fix missing ERST record ID in the APEI code (Liu Xinpeng).
- Make APEI error injection to refuse to inject into the zero page
(Tony Luck).
- Correct description of INT3407 / INT3532 DPTF attributes in sysfs
(Sumeet Pawnikar).
- Add support for high frequency impedance notification to the DPTF
driver (Sumeet Pawnikar).
- Make mp_config_acpi_gsi() a void function (Li kunyu).
- Unify Package () representation for properties in the ACPI device
properties documentation (Andy Shevchenko).
- Include UUID in _DSM evaluation warning (Michael Niewöhner)"
* tag 'acpi-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (41 commits)
Revert "ACPICA: executer/exsystem: Warn about sleeps greater than 10 ms"
ACPI: utils: include UUID in _DSM evaluation warning
ACPI: PM: Block ASUS B1400CEAE from suspend to idle by default
x86: ACPI: Make mp_config_acpi_gsi() a void function
ACPI: DPTF: Add support for high frequency impedance notification
ACPI: AGDI: Fix missing prototype warning for acpi_agdi_init()
ACPI: bus: Avoid non-ACPI device objects in walks over children
ACPI: DPTF: Correct description of INT3407 / INT3532 attributes
ACPI: BGRT: use static for BGRT_SHOW kobj_attribute defines
ACPI, APEI, EINJ: Refuse to inject into the zero page
ACPI: PM: Always print final debug message in acpi_device_set_power()
ACPI: SPCR: Add support for NVIDIA 16550-compatible port subtype
ACPI: docs: enumeration: Unify Package () for properties (part 2)
ACPI: APEI: Fix missing ERST record id
ACPICA: Update version to 20220331
ACPICA: exsystem.c: Use ACPI_FORMAT_UINT64 for 64-bit output
ACPICA: IORT: Updates for revision E.d
ACPICA: executer/exsystem: Fix some typo mistakes
ACPICA: iASL/MADT: Add OEM-defined subtable
ACPICA: executer/exsystem: Warn about sleeps greater than 10 ms
...
Platform PMU changes:
=====================
- x86/intel:
- Add new Intel Alder Lake and Raptor Lake support
- x86/amd:
- AMD Zen4 IBS extensions support
- Add AMD PerfMonV2 support
- Add AMD Fam19h Branch Sampling support
Generic changes:
================
- signal: Deliver SIGTRAP on perf event asynchronously if blocked
Perf instrumentation can be driven via SIGTRAP, but this causes a problem
when SIGTRAP is blocked by a task & terminate the task.
Allow user-space to request these signals asynchronously (after they get
unblocked) & also give the information to the signal handler when this
happens:
" To give user space the ability to clearly distinguish synchronous from
asynchronous signals, introduce siginfo_t::si_perf_flags and
TRAP_PERF_FLAG_ASYNC (opted for flags in case more binary information is
required in future).
The resolution to the problem is then to (a) no longer force the signal
(avoiding the terminations), but (b) tell user space via si_perf_flags
if the signal was synchronous or not, so that such signals can be
handled differently (e.g. let user space decide to ignore or consider
the data imprecise). "
- Unify/standardize the /sys/devices/cpu/events/* output format.
- Misc fixes & cleanups.
Signed-off-by: Ingo Molnar <mingo@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQJFBAABCgAvFiEEBpT5eoXrXCwVQwEKEnMQ0APhK1gFAmKLuiURHG1pbmdvQGtl
cm5lbC5vcmcACgkQEnMQ0APhK1ioSRAAgM3PneFHn5MFiuV/8ZfP3xMHNUOYOCgN
JhALRcUhDdL4N9pS0DSImfXvAlYPJ/TZK8qBRNDsRgygp5vjrbr9zH2HdZBW1gyV
qi3bpuNS+METnfNyumAoBeOYbMIvpm3NDUX+w68Xvkd1g8ykyno8Zc2H2hj3IDsW
cK3ErP0CZLsnBZsymy29/bxCYhfxsED6J06hOa8R3Tvl4XYg/27Z+tEuZ4GYeFS8
VikulYB9RhRWUbhkzwjyRSbTWyvsuXP+xD28ymUIxXaNCDOwxK8uYtVepUFIBO8X
cZgtwT2faV3y5ZAnz02M+/JZl+Jz5EPm037vNQp9aJsTuAbAGnxh/hL0cBVuDqhv
Nh9wkqS8FqwAbtpvg/IeamzqN5z/Yn2Q/Jyk/4oWipmeddXWUL7sYVoSduTGJJkz
cZz2ciNQbnOCzv0ZSjihrGMqPaT+/wI/iLW3ouLoZXpfTtVVRiiLuI1DDAZ1rd2r
D6djV8JjHIs71V/6E9ahVATxq8yMdikd7u734rA5K3XSxIBTYrdshbOhddzgeE7d
chQ7XvpQXDoFrZtxkHXP5iIeNF7fU9MWNWaEcsrZaWEB/8UpD6eL2if1Kl8mog+h
J4+zR1LWRHh8TNRfos3yCP2PSbbS6LPVsYLJzP+bb+pxgqdJ+urxfmxoCtY5trNI
zHT52xfdxSo=
=UqYA
-----END PGP SIGNATURE-----
Merge tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull perf events updates from Ingo Molnar:
"Platform PMU changes:
- x86/intel:
- Add new Intel Alder Lake and Raptor Lake support
- x86/amd:
- AMD Zen4 IBS extensions support
- Add AMD PerfMonV2 support
- Add AMD Fam19h Branch Sampling support
Generic changes:
- signal: Deliver SIGTRAP on perf event asynchronously if blocked
Perf instrumentation can be driven via SIGTRAP, but this causes a
problem when SIGTRAP is blocked by a task & terminate the task.
Allow user-space to request these signals asynchronously (after
they get unblocked) & also give the information to the signal
handler when this happens:
"To give user space the ability to clearly distinguish
synchronous from asynchronous signals, introduce
siginfo_t::si_perf_flags and TRAP_PERF_FLAG_ASYNC (opted for
flags in case more binary information is required in future).
The resolution to the problem is then to (a) no longer force the
signal (avoiding the terminations), but (b) tell user space via
si_perf_flags if the signal was synchronous or not, so that such
signals can be handled differently (e.g. let user space decide
to ignore or consider the data imprecise). "
- Unify/standardize the /sys/devices/cpu/events/* output format.
- Misc fixes & cleanups"
* tag 'perf-core-2022-05-23' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (32 commits)
perf/x86/amd/core: Fix reloading events for SVM
perf/x86/amd: Run AMD BRS code only on supported hw
perf/x86/amd: Fix AMD BRS period adjustment
perf/x86/amd: Remove unused variable 'hwc'
perf/ibs: Fix comment
perf/amd/ibs: Advertise zen4_ibs_extensions as pmu capability attribute
perf/amd/ibs: Add support for L3 miss filtering
perf/amd/ibs: Use ->is_visible callback for dynamic attributes
perf/amd/ibs: Cascade pmu init functions' return value
perf/x86/uncore: Add new Alder Lake and Raptor Lake support
perf/x86/uncore: Clean up uncore_pci_ids[]
perf/x86/cstate: Add new Alder Lake and Raptor Lake support
perf/x86/msr: Add new Alder Lake and Raptor Lake support
perf/x86: Add new Alder Lake and Raptor Lake support
perf/amd/ibs: Use interrupt regs ip for stack unwinding
perf/x86/amd/core: Add PerfMonV2 overflow handling
perf/x86/amd/core: Add PerfMonV2 counter control
perf/x86/amd/core: Detect available counters
perf/x86/amd/core: Detect PerfMonV2 support
x86/msr: Add PerfCntrGlobal* registers
...
Highlights:
- New drivers:
- Intel "In Field Scan" (IFS) support
- Winmate FM07/FM07P buttons
- Mellanox SN2201 support
- AMD PMC driver enhancements
- Lots of various other small fixes and hardware-id additions
The following is an automated git shortlog grouped by driver:
Documentation:
- In-Field Scan
Documentation/ABI:
- Add new attributes for mlxreg-io sysfs interfaces
- sysfs-class-firmware-attributes: Misc. cleanups
- sysfs-class-firmware-attributes: Fix Sphinx errors
- sysfs-driver-intel_sdsi: Fix sphinx warnings
acerhdf:
- Cleanup str_starts_with()
amd-pmc:
- Fix build error unused-function
- Shuffle location of amd_pmc_get_smu_version()
- Avoid reading SMU version at probe time
- Move FCH init to first use
- Move SMU logging setup out of init
- Fix compilation without CONFIG_SUSPEND
amd_hsmp:
- Add HSMP protocol version 5 messages
asus-nb-wmi:
- Add keymap for MyASUS key
asus-wmi:
- Update unknown code message
- Use kobj_to_dev()
- Fix driver not binding when fan curve control probe fails
- Potential buffer overflow in asus_wmi_evaluate_method_buf()
barco-p50-gpio:
- Fix duplicate included linux/io.h
dell-laptop:
- Add quirk entry for Latitude 7520
gigabyte-wmi:
- Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI
- added support for B660 GAMING X DDR4 motherboard
hp-wmi:
- Correct code style related issues
intel-hid:
- fix _DSM function index handling
intel-uncore-freq:
- Prevent driver loading in guests
intel_cht_int33fe:
- Set driver data
platform/mellanox:
- Add support for new SN2201 system
platform/surface:
- aggregator: Fix initialization order when compiling as builtin module
- gpe: Add support for Surface Pro 8
platform/x86/dell:
- add buffer allocation/free functions for SMI calls
platform/x86/intel:
- Fix 'rmmod pmt_telemetry' panic
- pmc/core: Use kobj_to_dev()
- pmc/core: change pmc_lpm_modes to static
platform/x86/intel/ifs:
- Add CPU_SUP_INTEL dependency
- add ABI documentation for IFS
- Add IFS sysfs interface
- Add scan test support
- Authenticate and copy to secured memory
- Check IFS Image sanity
- Read IFS firmware image
- Add stub driver for In-Field Scan
platform/x86/intel/sdsi:
- Fix bug in multi packet reads
- Poll on ready bit for writes
- Handle leaky bucket
platform_data/mlxreg:
- Add field for notification callback
pmc_atom:
- dont export pmc_atom_read - no modular users
- remove unused pmc_atom_write()
samsung-laptop:
- use kobj_to_dev()
- Fix an unsigned comparison which can never be negative
stop_machine:
- Add stop_core_cpuslocked() for per-core operations
think-lmi:
- certificate support clean ups
thinkpad_acpi:
- Correct dual fan probe
- Add a s2idle resume quirk for a number of laptops
- Convert btusb DMI list to quirks
tools/power/x86/intel-speed-select:
- Fix warning for perf_cap.cpu
- Display error on turbo mode disabled
- fix build failure when using -Wl,--as-needed
toshiba_acpi:
- use kobj_to_dev()
trace:
- platform/x86/intel/ifs: Add trace point to track Intel IFS operations
winmate-fm07-keys:
- Winmate FM07/FM07P buttons
wmi:
- replace usage of found with dedicated list iterator variable
x86/microcode/intel:
- Expose collect_cpu_info_early() for IFS
x86/msr-index:
- Define INTEGRITY_CAPABILITIES MSR
-----BEGIN PGP SIGNATURE-----
iQFIBAABCAAyFiEEuvA7XScYQRpenhd+kuxHeUQDJ9wFAmKKlA0UHGhkZWdvZWRl
QHJlZGhhdC5jb20ACgkQkuxHeUQDJ9w0Iwf+PYoq7qtU6j6N2f8gL2s65JpKiSPP
CkgnCzTP+khvNnTWMQS8RW9VE6YrHXmN/+d3UAvRrHsOYm3nyZT5aPju9xJ6Xyfn
5ZdMVvYxz7cm3lC6ay8AQt0Cmy6im/+lzP5vA5K68IYh0fPX/dvuOU57pNvXYFfk
Yz5/Gm0t0C4CKVqkcdU/zkNawHP+2+SyQe+Ua2srz7S3DAqUci0lqLr/w9Xk2Yij
nCgEWFB1Qjd2NoyRRe44ksLQ0dXpD4ADDzED+KPp6VTGnw61Eznf9319Z5ONNa/O
VAaSCcDNKps8d3ZpfCpLb3Rs4ztBCkRnkLFczJBgPsBiuDmyTT2/yeEtNg==
=HdEG
-----END PGP SIGNATURE-----
Merge tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86
Pull x86 platform driver updates from Hans de Goede:
"This includes some small changes to kernel/stop_machine.c and arch/x86
which are deps of the new Intel IFS support.
Highlights:
- New drivers:
- Intel "In Field Scan" (IFS) support
- Winmate FM07/FM07P buttons
- Mellanox SN2201 support
- AMD PMC driver enhancements
- Lots of various other small fixes and hardware-id additions"
* tag 'platform-drivers-x86-v5.19-1' of git://git.kernel.org/pub/scm/linux/kernel/git/pdx86/platform-drivers-x86: (54 commits)
platform/x86/intel/ifs: Add CPU_SUP_INTEL dependency
platform/x86: intel_cht_int33fe: Set driver data
platform/x86: intel-hid: fix _DSM function index handling
platform/x86: toshiba_acpi: use kobj_to_dev()
platform/x86: samsung-laptop: use kobj_to_dev()
platform/x86: gigabyte-wmi: Add support for Z490 AORUS ELITE AC and X570 AORUS ELITE WIFI
tools/power/x86/intel-speed-select: Fix warning for perf_cap.cpu
tools/power/x86/intel-speed-select: Display error on turbo mode disabled
Documentation: In-Field Scan
platform/x86/intel/ifs: add ABI documentation for IFS
trace: platform/x86/intel/ifs: Add trace point to track Intel IFS operations
platform/x86/intel/ifs: Add IFS sysfs interface
platform/x86/intel/ifs: Add scan test support
platform/x86/intel/ifs: Authenticate and copy to secured memory
platform/x86/intel/ifs: Check IFS Image sanity
platform/x86/intel/ifs: Read IFS firmware image
platform/x86/intel/ifs: Add stub driver for In-Field Scan
stop_machine: Add stop_core_cpuslocked() for per-core operations
x86/msr-index: Define INTEGRITY_CAPABILITIES MSR
x86/microcode/intel: Expose collect_cpu_info_early() for IFS
...
pressure:
SGX uses normal RAM allocated from special shmem files as backing storage
when it runs out of SGX memory (EPC). The code was overly aggressive when
freeing shmem pages and was inadvertently freeing perfectly good data.
This resulted in failures in the SGX instructions used to swap data back
into SGX memory.
This turned out to be really hard to trigger in mainline. It was
originally encountered testing the out-of-tree "SGX2" patches, but later
reproduced on mainline.
Fix the data loss by being more careful about truncating pages out of
the backing storage and more judiciously setting pages dirty.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEV76QKkVc4xCGURexaDWVMHDJkrAFAmKLqcgACgkQaDWVMHDJ
krA7rA//ZgNgOTzCp/jdntz2KSp9MPhwaSJg0MUnsa7wt0T/3sPXaEAu9wgSZod7
xqxH17LKUc27SyALtPrkvm68aVZ/Z0Nhq2gDndspXd/Zcl/CD/Cy+GI+ZpdNoYhz
Fuqiq1TrszzzqBksgiEal9S874+jum2uWqYBMHB45ODp+E7F479Zm42hI3dSp1VN
6n5zOi5u+unHgDRQ/rwMovu2XU61ZXrycqkbZvu4P4tRbEUH+EhAMKG2RyZOB2V9
XNqr1vBJ122CWMIxcdzEUEofPFFwVEtC9jK+rdgUW1ZYAPJDjVvcnXx7dpA9PHLb
DytBSWyeISllJKbea1pIMsdCT/IE4I3s0US2ZA3Ru7YAMgUIi+IGu++JJ2dWdDvx
GoJz6yBVw4r6cl7kLUfbtIUPsJLYkEMpTM4XODsxMwzd2/Jdbe2UfQskzEn9Auvc
1qGRspu/3VbqE5WFz5Npd94+B+8BOo7kKLcizBHqmX8U2PBkMnhRatxDMCu8frfL
DlrjosgUgMYQRkEp3Zugo33O8F2EAE0T1I9g7N4sullX0jGnFifjgiPipnWcnIB9
RnF5NHdrTMPwqhvzz+3o1yJgve56juZxESqn1khEIQEqgUtxFaEnrmYzdLlVkoGg
XbuY7TNp1hDC3s9OHeiCL2oUaSmyh0eKCokLiAuWowVzbuU69BU=
=pTAC
-----END PGP SIGNATURE-----
Merge tag 'x86_sgx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 SGX updates from Dave Hansen:
"A set of patches to prevent crashes in SGX enclaves under heavy memory
pressure:
SGX uses normal RAM allocated from special shmem files as backing
storage when it runs out of SGX memory (EPC). The code was overly
aggressive when freeing shmem pages and was inadvertently freeing
perfectly good data. This resulted in failures in the SGX instructions
used to swap data back into SGX memory.
This turned out to be really hard to trigger in mainline. It was
originally encountered testing the out-of-tree "SGX2" patches, but
later reproduced on mainline.
Fix the data loss by being more careful about truncating pages out of
the backing storage and more judiciously setting pages dirty"
* tag 'x86_sgx_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/sgx: Ensure no data in PCMD page after truncate
x86/sgx: Fix race between reclaimer and page fault handler
x86/sgx: Obtain backing storage page with enclave mutex held
x86/sgx: Mark PCMD page as dirty when modifying contents
x86/sgx: Disconnect backing page references from dirty status
- Remove function export
- Correct asm constraint
- Fix __setup handlers retval
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKL6VkACgkQEsHwGGHe
VUqs6g/+Ikpd4Mrou4P5Ul8QNdN9mEzwUfW6i8VpoA3h1L6mKkZxbUsbSz9xInjw
MAhrcevujW6GwdQdus2sUcSlX+jxl6c/IlMdf8RegNPY/JBPDX4dRA7rPetvZEDm
ZiIYVTiEzJoOzPDJeO7a3v5EHPsY6CjsCFhGz7hjIcrwQjzCLkL5MqG+WDAtebe+
QVdbllD2RlZNPDyHYE5Lqh1h+Y0e4n6kS7LCWxexfHlNOZ5KBRVyIJvz/xOZFZ1/
9oX0UDD2gfH5chLs8GKsr7cZYERMtNlKBPoxGzl8iKF4iUeiksdj3P5y+mdcFaDG
YbM7aXewmbyLyiCkh1zXU6Mw3lK1VfUtVXtEYj+qXf1jWp59ctNEJkc6/VAcaKh7
oS7MNG7Y44B8XwdH7MiqDE7eVCnqEjIR+BIiwjyXNLFP1AXZMAXuBzXPF/vZ3Gyf
3N5vzO4VNEN6Oa1TReSspKwYvq2uPtHMjLX2rT6Py2ru32mj2dCc5E7GD83RKL8V
vDIz4VGOZyGfjp6gClMBsyK4mYwSwgXbnOci7DJn56mMf2qzBJITILXc31zz4gX2
E9kiBu/4Mwjnrx9QRpCNXu7iddBA3YM2NMtNlwBcCgZOFaFz/yOx9TpnugF17WHQ
VVtQi8wlcsS+F05Y11b7euusMQyk1EpWabIrw8UQd+61Dwpz58Q=
=/WGB
-----END PGP SIGNATURE-----
Merge tag 'x86_misc_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull misc x86 updates from Borislav Petkov:
"A variety of fixes which don't fit any other tip bucket:
- Remove unnecessary function export
- Correct asm constraint
- Fix __setup handlers retval"
* tag 'x86_misc_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/mm: Cleanup the control_va_addr_alignment() __setup handler
x86: Fix return value of __setup handlers
x86/delay: Fix the wrong asm constraint in delay_loop()
x86/amd_nb: Unexport amd_cache_northbridges()
- Make life miserable for apps using split locks by slowing them down
considerably while the rest of the system remains responsive. The hope
is it will hurt more and people will really fix their misaligned locks
apps. As a result, free a TIF bit.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKL5PQACgkQEsHwGGHe
VUrz1Q//QjAKyKsAwCzGSPergtnZp9drimSuNsZAz6/xL8wFnn2nfWJTxugNF5jg
n0Hal2oUGC8lg13mliB7NuDNu4RUWpkFzTzcIbPT8K9h7CUBdQPzqS7E3/p4s/eG
ZCHp8psBGNp8+/+/LFfu9yhzYsAH9ji5KWmOzTVx9UdP3ovgR8BuCI7FCVJSfRz7
cY690XgvcuKoXKckVNaCcoQXPJxykfk4Y1yt1TpITqivFbs2I0vLgzEhoRcTAhPA
nX3pR3uy6oaA6rZAapRt8lbLWOwIEWoI0Tt1v+r5p28+nFiCRfm1XdPYK6CDBlox
UuMBK4WyvSKjKHLu3wEdLCvYbs1kw2l9pXvS3hrqsKhbdeXKrxrNZ3zshwFMAYap
MY/nSTsKSWUUgMgUbWI084csapGFB+hxwY8OVr6JXbxE8YYD/yCbPGOe1cLI7MMt
/H3F6vNqSzdp1N3mAaaKVxiiT21lHIn6oJuSZcDE5sOvBwvpXsOp/w3FxhJCOX49
PXrZLZmSHkDQSbh1XnvT/a+rq3XX1TFXFz71HYZf1yDk+xTijECglNtGnGSdj2Za
iOw6M8VduV5Wy3ED9ubonruuHEJn6njpx/MH1B9+mAZsuLBpmuYFBxOn6AHOkXSb
MVJD4flHXj0ugYm4Q5Y3yi24iWLsRI9utTOU079VL6i6DmFXeZc=
=svvI
-----END PGP SIGNATURE-----
Merge tag 'x86_splitlock_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 splitlock updates from Borislav Petkov:
- Add Raptor Lake to the set of CPU models which support splitlock
- Make life miserable for apps using split locks by slowing them down
considerably while the rest of the system remains responsive. The
hope is it will hurt more and people will really fix their misaligned
locks apps. As a result, free a TIF bit.
* tag 'x86_splitlock_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/split_lock: Enable the split lock feature on Raptor Lake
x86/split-lock: Remove unused TIF_SLD bit
x86/split_lock: Make life miserable for split lockers
frequency invariance code along with removing the need for unnecessary IPIs
- Finally remove a.out support
- The usual trivial cleanups and fixes all over x86
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLn48ACgkQEsHwGGHe
VUpbkg/+PELrc0y/qxLM/+dyftKYY16Rhk6ZVAXfwqlh5ldyVQcLMUgKwDqYyTn2
XmgdI3cTcFlH2K7j6ANWLu0I9NPaviimUcEdMVcXt7aY5mGWk/q4hIyCYM8d41sV
qKx4OjNSdyoofG6MtwFLJDuoeVg99Bqgvm4nP9BuxL0dZJ2hfcUZ7MTxYCx9ZYjK
/3trx0NV287Yg/wm91EU0nLQzy9xbGS7WCmMnse6uxiUdm2vXbBt8oNFF4f747Dj
0cArfNrMgYq4Cv5bgt/Ki0NU/n4EOGDpJUSyQwlnjDKeN81ESPy7IWtTQ6cE/rJK
BZeUIPiGiYHwtqXv0UTAPGLG8cAqKeab8u0xAOyrFVDkTc0+WlPJRsUAOmRRGIGE
M8ZjoxrLeuFgxw6vKpVjaA+mDRj3qEpSH+IrTcekS98PN7gmVzvq03GobgGbT7YB
xmtbThJa+514FfUVckkyC0+A56BknUIgVxwFPqrthE2atzYTbH67hW4U0yVWXXr7
2VI7ttozBrYVgHCWhD9eoT0uhyD74Vl6pqHnqzY9ShIfKVUGvMgKHHg04nLLtF7W
hm87xV3Q5UEmXhTmDzT1rUZ99mBUxGbWxk227I9raMugIh7pp9wIr57+7O0LRYfX
TdnE2+tL8RMi7+XzRH5iLhnwkrvahBESeHSQ7GVI1Y2zMmmFN+0=
=Dks/
-----END PGP SIGNATURE-----
Merge tag 'x86_cleanups_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 cleanups from Borislav Petkov:
- Serious sanitization and cleanup of the whole APERF/MPERF and
frequency invariance code along with removing the need for
unnecessary IPIs
- Finally remove a.out support
- The usual trivial cleanups and fixes all over x86
* tag 'x86_cleanups_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (21 commits)
x86: Remove empty files
x86/speculation: Add missing srbds=off to the mitigations= help text
x86/prctl: Remove pointless task argument
x86/aperfperf: Make it correct on 32bit and UP kernels
x86/aperfmperf: Integrate the fallback code from show_cpuinfo()
x86/aperfmperf: Replace arch_freq_get_on_cpu()
x86/aperfmperf: Replace aperfmperf_get_khz()
x86/aperfmperf: Store aperf/mperf data for cpu frequency reads
x86/aperfmperf: Make parts of the frequency invariance code unconditional
x86/aperfmperf: Restructure arch_scale_freq_tick()
x86/aperfmperf: Put frequency invariance aperf/mperf data into a struct
x86/aperfmperf: Untangle Intel and AMD frequency invariance init
x86/aperfmperf: Separate AP/BP frequency invariance init
x86/smp: Move APERF/MPERF code where it belongs
x86/aperfmperf: Dont wake idle CPUs in arch_freq_get_on_cpu()
x86/process: Fix kernel-doc warning due to a changed function name
x86: Remove a.out support
x86/mm: Replace nodes_weight() with nodes_empty() where appropriate
x86: Replace cpumask_weight() with cpumask_empty() where appropriate
x86/pkeys: Remove __arch_set_user_pkey_access() declaration
...
are not really needed anymore
- Misc fixes and cleanups
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLdfgACgkQEsHwGGHe
VUpB5Q//TIGVgmnSd0YYxY2cIe047lfcd34D+3oEGk0d2FidtirP/tjgBqIXRuY5
UncoveqBuI/6/7bodP/ANg9DNVXv2489eFYyZtEOLSGnfzV2AU10aw95cuQQG+BW
YIc6bGSsgfiNo8Vtj4L3xkVqxOrqaCYnh74GTSNNANht3i8KH8Qq9n3qZTuMiF6R
fH9xWak3TZB2nMzHdYrXh0sSR6eBHN3KYSiT0DsdlU9PUlavlSPFYQRiAlr6FL6J
BuYQdlUaCQbINvaviGW4SG7fhX32RfF/GUNaBajB40TO6H98KZLpBBvstWQ841xd
/o44o5wbghoGP1ne8OKwP+SaAV2bE6twd5eO1lpwcpXnQfATvjQ2imxvOiRhy5LY
pFPt/hko9gKWJ6SI0SQ4tiKJALFPLWD6561scHU6PoriFhv0SRIaPmJyEsDYynMz
bCXaPPsoovRwwwBfAxxQjljIlhQSBVt3gWZ8NWD1tYbNaqM+WK7xKBaONGh3OCw3
iK7lsbbljtM0zmANImYyeo7+Hr1NVOmMiK2WZYbxhxgzH3l8v/6EbDt3I70WU57V
9apCU3/nk/HFpX65SdW5qmuiWLVdH9NXrEqbvaUB4ApT18MdUUugewBhcGnf3Umu
wEtltzziqcIkxzDoXXpBGWpX31S7PsM2XVDqYC7dwuNttgEw2Fc=
=7AUX
-----END PGP SIGNATURE-----
Merge tag 'x86_cpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 CPU feature updates from Borislav Petkov:
- Remove a bunch of chicken bit options to turn off CPU features which
are not really needed anymore
- Misc fixes and cleanups
* tag 'x86_cpu_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip:
x86/speculation: Add missing prototype for unpriv_ebpf_notify()
x86/pm: Fix false positive kmemleak report in msr_build_context()
x86/speculation/srbds: Do not try to turn mitigation off when not supported
x86/cpu: Remove "noclflush"
x86/cpu: Remove "noexec"
x86/cpu: Remove "nosmep"
x86/cpu: Remove CONFIG_X86_SMAP and "nosmap"
x86/cpu: Remove "nosep"
x86/cpu: Allow feature bit names from /proc/cpuinfo in clearcpuid=
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a SNP
guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on.
-----BEGIN PGP SIGNATURE-----
iQIzBAABCgAdFiEEzv7L6UO9uDPlPSfHEsHwGGHeVUoFAmKLU2AACgkQEsHwGGHe
VUpb/Q//f4LGiJf4nw1flzpe90uIsHNwAafng3NOjeXmhI/EcOlqPf23WHPCgg3Z
2umfa4sRZyj4aZubDd7tYAoq4qWrQ7pO7viWCNTh0InxBAILOoMPMuq2jSAbq0zV
ASUJXeQ2bqjYxX4JV4N5f3HT2l+k68M0mpGLN0H+O+LV9pFS7dz7Jnsg+gW4ZP25
PMPLf6FNzO/1tU1aoYu80YDP1ne4eReLrNzA7Y/rx+S2NAetNwPn21AALVgoD4Nu
vFdKh4MHgtVbwaQuh0csb/+4vD+tDXAhc8lbIl+Abl9ZxJaDWtAJW5D9e2CnsHk1
NOkHwnrzizzhtGK1g56YPUVRFAWhZYMOI1hR0zGPLQaVqBnN4b+iahPeRiV0XnGE
PSbIHSfJdeiCkvLMCdIAmpE5mRshhRSUfl1CXTCdetMn8xV/qz/vG6bXssf8yhTV
cfLGPHU7gfVmsbR9nk5a8KZ78PaytxOxfIDXvCy8JfQwlIWtieaCcjncrj+sdMJy
0fdOuwvi4jma0cyYuPolKiS1Hn4ldeibvxXT7CZQlIx6jZShMbpfpTTJs11XdtHm
PdDAc1TY3AqI33mpy9DhDQmx/+EhOGxY3HNLT7evRhv4CfdQeK3cPVUWgo4bGNVv
ZnFz7nvmwpyufltW9K8mhEZV267174jXGl6/idxybnlVE7ESr2Y=
=Y8kW
-----END PGP SIGNATURE-----
Merge tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull AMD SEV-SNP support from Borislav Petkov:
"The third AMD confidential computing feature called Secure Nested
Paging.
Add to confidential guests the necessary memory integrity protection
against malicious hypervisor-based attacks like data replay, memory
remapping and others, thus achieving a stronger isolation from the
hypervisor.
At the core of the functionality is a new structure called a reverse
map table (RMP) with which the guest has a say in which pages get
assigned to it and gets notified when a page which it owns, gets
accessed/modified under the covers so that the guest can take an
appropriate action.
In addition, add support for the whole machinery needed to launch a
SNP guest, details of which is properly explained in each patch.
And last but not least, the series refactors and improves parts of the
previous SEV support so that the new code is accomodated properly and
not just bolted on"
* tag 'x86_sev_for_v5.19_rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (60 commits)
x86/entry: Fixup objtool/ibt validation
x86/sev: Mark the code returning to user space as syscall gap
x86/sev: Annotate stack change in the #VC handler
x86/sev: Remove duplicated assignment to variable info
x86/sev: Fix address space sparse warning
x86/sev: Get the AP jump table address from secrets page
x86/sev: Add missing __init annotations to SEV init routines
virt: sevguest: Rename the sevguest dir and files to sev-guest
virt: sevguest: Change driver name to reflect generic SEV support
x86/boot: Put globals that are accessed early into the .data section
x86/boot: Add an efi.h header for the decompressor
virt: sevguest: Fix bool function returning negative value
virt: sevguest: Fix return value check in alloc_shared_pages()
x86/sev-es: Replace open-coded hlt-loop with sev_es_terminate()
virt: sevguest: Add documentation for SEV-SNP CPUID Enforcement
virt: sevguest: Add support to get extended report
virt: sevguest: Add support to derive key
virt: Add SEV-SNP guest driver
x86/sev: Register SEV-SNP guest request platform device
x86/sev: Provide support for SNP guest request NAEs
...
Merge APEI material, changes related to DPTF, ACPI-related x86 cleanup
and documentation improvement for 5.19-rc1:
- Fix missing ERST record ID in the APEI code (Liu Xinpeng).
- Make APEI error injection to refuse to inject into the zero
page (Tony Luck).
- Correct description of INT3407 / INT3532 DPTF attributes in sysfs
(Sumeet Pawnikar).
- Add support for high frequency impedance notification to the DPTF
driver (Sumeet Pawnikar).
- Make mp_config_acpi_gsi() a void function (Li kunyu).
- Unify Package () representation for properties in the ACPI device
properties documentation (Andy Shevchenko).
* acpi-apei:
ACPI, APEI, EINJ: Refuse to inject into the zero page
ACPI: APEI: Fix missing ERST record id
* acpi-dptf:
ACPI: DPTF: Add support for high frequency impedance notification
ACPI: DPTF: Correct description of INT3407 / INT3532 attributes
* acpi-x86:
x86: ACPI: Make mp_config_acpi_gsi() a void function
* acpi-docs:
ACPI: docs: enumeration: Unify Package () for properties (part 2)
The Shared Buffers Data Sampling (SBDS) variant of Processor MMIO Stale
Data vulnerabilities may expose RDRAND, RDSEED and SGX EGETKEY data.
Mitigation for this is added by a microcode update.
As some of the implications of SBDS are similar to SRBDS, SRBDS mitigation
infrastructure can be leveraged by SBDS. Set X86_BUG_SRBDS and use SRBDS
mitigation.
Mitigation is enabled by default; use srbds=off to opt-out. Mitigation
status can be checked from below file:
/sys/devices/system/cpu/vulnerabilities/srbds
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Currently, Linux disables SRBDS mitigation on CPUs not affected by
MDS and have the TSX feature disabled. On such CPUs, secrets cannot
be extracted from CPU fill buffers using MDS or TAA. Without SRBDS
mitigation, Processor MMIO Stale Data vulnerabilities can be used to
extract RDRAND, RDSEED, and EGETKEY data.
Do not disable SRBDS mitigation by default when CPU is also affected by
Processor MMIO Stale Data vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Add the sysfs reporting file for Processor MMIO Stale Data
vulnerability. It exposes the vulnerability and mitigation state similar
to the existing files for the other hardware vulnerabilities.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
When the CPU is affected by Processor MMIO Stale Data vulnerabilities,
Fill Buffer Stale Data Propagator (FBSDP) can propagate stale data out
of Fill buffer to uncore buffer when CPU goes idle. Stale data can then
be exploited with other variants using MMIO operations.
Mitigate it by clearing the Fill buffer before entering idle state.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Co-developed-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
MDS, TAA and Processor MMIO Stale Data mitigations rely on clearing CPU
buffers. Moreover, status of these mitigations affects each other.
During boot, it is important to maintain the order in which these
mitigations are selected. This is especially true for
md_clear_update_mitigation() that needs to be called after MDS, TAA and
Processor MMIO Stale Data mitigation selection is done.
Introduce md_clear_select_mitigation(), and select all these mitigations
from there. This reflects relationships between these mitigations and
ensures proper ordering.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst.
These vulnerabilities are broadly categorized as:
Device Register Partial Write (DRPW):
Some endpoint MMIO registers incorrectly handle writes that are
smaller than the register size. Instead of aborting the write or only
copying the correct subset of bytes (for example, 2 bytes for a 2-byte
write), more bytes than specified by the write transaction may be
written to the register. On some processors, this may expose stale
data from the fill buffers of the core that created the write
transaction.
Shared Buffers Data Sampling (SBDS):
After propagators may have moved data around the uncore and copied
stale data into client core fill buffers, processors affected by MFBDS
can leak data from the fill buffer.
Shared Buffers Data Read (SBDR):
It is similar to Shared Buffer Data Sampling (SBDS) except that the
data is directly read into the architectural software-visible state.
An attacker can use these vulnerabilities to extract data from CPU fill
buffers using MDS and TAA methods. Mitigate it by clearing the CPU fill
buffers using the VERW instruction before returning to a user or a
guest.
On CPUs not affected by MDS and TAA, user application cannot sample data
from CPU fill buffers using MDS or TAA. A guest with MMIO access can
still use DRPW or SBDR to extract data architecturally. Mitigate it with
VERW instruction to clear fill buffers before VMENTER for MMIO capable
guests.
Add a kernel parameter mmio_stale_data={off|full|full,nosmt} to control
the mitigation.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Processor MMIO Stale Data mitigation uses similar mitigation as MDS and
TAA. In preparation for adding its mitigation, add a common function to
update all mitigations that depend on MD_CLEAR.
[ bp: Add a newline in md_clear_update_mitigation() to separate
statements better. ]
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Processor MMIO Stale Data is a class of vulnerabilities that may
expose data after an MMIO operation. For more details please refer to
Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
Add the Processor MMIO Stale Data bug enumeration. A microcode update
adds new bits to the MSR IA32_ARCH_CAPABILITIES, define them.
Signed-off-by: Pawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
A PCMD (Paging Crypto MetaData) page contains the PCMD
structures of enclave pages that have been encrypted and
moved to the shmem backing store. When all enclave pages
sharing a PCMD page are loaded in the enclave, there is no
need for the PCMD page and it can be truncated from the
backing store.
A few issues appeared around the truncation of PCMD pages. The
known issues have been addressed but the PCMD handling code could
be made more robust by loudly complaining if any new issue appears
in this area.
Add a check that will complain with a warning if the PCMD page is not
actually empty after it has been truncated. There should never be data
in the PCMD page at this point since it is was just checked to be empty
and truncated with enclave mutex held and is updated with the
enclave mutex held.
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lkml.kernel.org/r/6495120fed43fafc1496d09dd23df922b9a32709.1652389823.git.reinette.chatre@intel.com
Haitao reported encountering a WARN triggered by the ENCLS[ELDU]
instruction faulting with a #GP.
The WARN is encountered when the reclaimer evicts a range of
pages from the enclave when the same pages are faulted back right away.
Consider two enclave pages (ENCLAVE_A and ENCLAVE_B)
sharing a PCMD page (PCMD_AB). ENCLAVE_A is in the
enclave memory and ENCLAVE_B is in the backing store. PCMD_AB contains
just one entry, that of ENCLAVE_B.
Scenario proceeds where ENCLAVE_A is being evicted from the enclave
while ENCLAVE_B is faulted in.
sgx_reclaim_pages() {
...
/*
* Reclaim ENCLAVE_A
*/
mutex_lock(&encl->lock);
/*
* Get a reference to ENCLAVE_A's
* shmem page where enclave page
* encrypted data will be stored
* as well as a reference to the
* enclave page's PCMD data page,
* PCMD_AB.
* Release mutex before writing
* any data to the shmem pages.
*/
sgx_encl_get_backing(...);
encl_page->desc |= SGX_ENCL_PAGE_BEING_RECLAIMED;
mutex_unlock(&encl->lock);
/*
* Fault ENCLAVE_B
*/
sgx_vma_fault() {
mutex_lock(&encl->lock);
/*
* Get reference to
* ENCLAVE_B's shmem page
* as well as PCMD_AB.
*/
sgx_encl_get_backing(...)
/*
* Load page back into
* enclave via ELDU.
*/
/*
* Release reference to
* ENCLAVE_B' shmem page and
* PCMD_AB.
*/
sgx_encl_put_backing(...);
/*
* PCMD_AB is found empty so
* it and ENCLAVE_B's shmem page
* are truncated.
*/
/* Truncate ENCLAVE_B backing page */
sgx_encl_truncate_backing_page();
/* Truncate PCMD_AB */
sgx_encl_truncate_backing_page();
mutex_unlock(&encl->lock);
...
}
mutex_lock(&encl->lock);
encl_page->desc &=
~SGX_ENCL_PAGE_BEING_RECLAIMED;
/*
* Write encrypted contents of
* ENCLAVE_A to ENCLAVE_A shmem
* page and its PCMD data to
* PCMD_AB.
*/
sgx_encl_put_backing(...)
/*
* Reference to PCMD_AB is
* dropped and it is truncated.
* ENCLAVE_A's PCMD data is lost.
*/
mutex_unlock(&encl->lock);
}
What happens next depends on whether it is ENCLAVE_A being faulted
in or ENCLAVE_B being evicted - but both end up with ENCLS[ELDU] faulting
with a #GP.
If ENCLAVE_A is faulted then at the time sgx_encl_get_backing() is called
a new PCMD page is allocated and providing the empty PCMD data for
ENCLAVE_A would cause ENCLS[ELDU] to #GP
If ENCLAVE_B is evicted first then a new PCMD_AB would be allocated by the
reclaimer but later when ENCLAVE_A is faulted the ENCLS[ELDU] instruction
would #GP during its checks of the PCMD value and the WARN would be
encountered.
Noting that the reclaimer sets SGX_ENCL_PAGE_BEING_RECLAIMED at the time
it obtains a reference to the backing store pages of an enclave page it
is in the process of reclaiming, fix the race by only truncating the PCMD
page after ensuring that no page sharing the PCMD page is in the process
of being reclaimed.
Cc: stable@vger.kernel.org
Fixes: 08999b2489 ("x86/sgx: Free backing memory after faulting the enclave page")
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lkml.kernel.org/r/ed20a5db516aa813873268e125680041ae11dfcf.1652389823.git.reinette.chatre@intel.com
Haitao reported encountering a WARN triggered by the ENCLS[ELDU]
instruction faulting with a #GP.
The WARN is encountered when the reclaimer evicts a range of
pages from the enclave when the same pages are faulted back
right away.
The SGX backing storage is accessed on two paths: when there
are insufficient free pages in the EPC the reclaimer works
to move enclave pages to the backing storage and as enclaves
access pages that have been moved to the backing storage
they are retrieved from there as part of page fault handling.
An oversubscribed SGX system will often run the reclaimer and
page fault handler concurrently and needs to ensure that the
backing store is accessed safely between the reclaimer and
the page fault handler. This is not the case because the
reclaimer accesses the backing store without the enclave mutex
while the page fault handler accesses the backing store with
the enclave mutex.
Consider the scenario where a page is faulted while a page sharing
a PCMD page with the faulted page is being reclaimed. The
consequence is a race between the reclaimer and page fault
handler, the reclaimer attempting to access a PCMD at the
same time it is truncated by the page fault handler. This
could result in lost PCMD data. Data may still be
lost if the reclaimer wins the race, this is addressed in
the following patch.
The reclaimer accesses pages from the backing storage without
holding the enclave mutex and runs the risk of concurrently
accessing the backing storage with the page fault handler that
does access the backing storage with the enclave mutex held.
In the scenario below a PCMD page is truncated from the backing
store after all its pages have been loaded in to the enclave
at the same time the PCMD page is loaded from the backing store
when one of its pages are reclaimed:
sgx_reclaim_pages() { sgx_vma_fault() {
...
mutex_lock(&encl->lock);
...
__sgx_encl_eldu() {
...
if (pcmd_page_empty) {
/*
* EPC page being reclaimed /*
* shares a PCMD page with an * PCMD page truncated
* enclave page that is being * while requested from
* faulted in. * reclaimer.
*/ */
sgx_encl_get_backing() <----------> sgx_encl_truncate_backing_page()
}
mutex_unlock(&encl->lock);
} }
In this scenario there is a race between the reclaimer and the page fault
handler when the reclaimer attempts to get access to the same PCMD page
that is being truncated. This could result in the reclaimer writing to
the PCMD page that is then truncated, causing the PCMD data to be lost,
or in a new PCMD page being allocated. The lost PCMD data may still occur
after protecting the backing store access with the mutex - this is fixed
in the next patch. By ensuring the backing store is accessed with the mutex
held the enclave page state can be made accurate with the
SGX_ENCL_PAGE_BEING_RECLAIMED flag accurately reflecting that a page
is in the process of being reclaimed.
Consistently protect the reclaimer's backing store access with the
enclave's mutex to ensure that it can safely run concurrently with the
page fault handler.
Cc: stable@vger.kernel.org
Fixes: 1728ab54b4 ("x86/sgx: Add a page reclaimer")
Reported-by: Haitao Huang <haitao.huang@intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lkml.kernel.org/r/fa2e04c561a8555bfe1f4e7adc37d60efc77387b.1652389823.git.reinette.chatre@intel.com
Recent commit 08999b2489 ("x86/sgx: Free backing memory
after faulting the enclave page") expanded __sgx_encl_eldu()
to clear an enclave page's PCMD (Paging Crypto MetaData)
from the PCMD page in the backing store after the enclave
page is restored to the enclave.
Since the PCMD page in the backing store is modified the page
should be marked as dirty to ensure the modified data is retained.
Cc: stable@vger.kernel.org
Fixes: 08999b2489 ("x86/sgx: Free backing memory after faulting the enclave page")
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lkml.kernel.org/r/00cd2ac480db01058d112e347b32599c1a806bc4.1652389823.git.reinette.chatre@intel.com
SGX uses shmem backing storage to store encrypted enclave pages
and their crypto metadata when enclave pages are moved out of
enclave memory. Two shmem backing storage pages are associated with
each enclave page - one backing page to contain the encrypted
enclave page data and one backing page (shared by a few
enclave pages) to contain the crypto metadata used by the
processor to verify the enclave page when it is loaded back into
the enclave.
sgx_encl_put_backing() is used to release references to the
backing storage and, optionally, mark both backing store pages
as dirty.
Managing references and dirty status together in this way results
in both backing store pages marked as dirty, even if only one of
the backing store pages are changed.
Additionally, waiting until the page reference is dropped to set
the page dirty risks a race with the page fault handler that
may load outdated data into the enclave when a page is faulted
right after it is reclaimed.
Consider what happens if the reclaimer writes a page to the backing
store and the page is immediately faulted back, before the reclaimer
is able to set the dirty bit of the page:
sgx_reclaim_pages() { sgx_vma_fault() {
...
sgx_encl_get_backing();
... ...
sgx_reclaimer_write() {
mutex_lock(&encl->lock);
/* Write data to backing store */
mutex_unlock(&encl->lock);
}
mutex_lock(&encl->lock);
__sgx_encl_eldu() {
...
/*
* Enclave backing store
* page not released
* nor marked dirty -
* contents may not be
* up to date.
*/
sgx_encl_get_backing();
...
/*
* Enclave data restored
* from backing store
* and PCMD pages that
* are not up to date.
* ENCLS[ELDU] faults
* because of MAC or PCMD
* checking failure.
*/
sgx_encl_put_backing();
}
...
/* set page dirty */
sgx_encl_put_backing();
...
mutex_unlock(&encl->lock);
} }
Remove the option to sgx_encl_put_backing() to set the backing
pages as dirty and set the needed pages as dirty right after
receiving important data while enclave mutex is held. This ensures that
the page fault handler can get up to date data from a page and prepares
the code for a following change where only one of the backing pages
need to be marked as dirty.
Cc: stable@vger.kernel.org
Fixes: 1728ab54b4 ("x86/sgx: Add a page reclaimer")
Suggested-by: Dave Hansen <dave.hansen@linux.intel.com>
Signed-off-by: Reinette Chatre <reinette.chatre@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Jarkko Sakkinen <jarkko@kernel.org>
Tested-by: Haitao Huang <haitao.huang@intel.com>
Link: https://lore.kernel.org/linux-sgx/8922e48f-6646-c7cc-6393-7c78dcf23d23@intel.com/
Link: https://lkml.kernel.org/r/fa9f98986923f43e72ef4c6702a50b2a0b3c42e3.1652389823.git.reinette.chatre@intel.com
The set_memory_uc() approach doesn't work well in all cases.
As Dan pointed out when "The VMM unmapped the bad page from
guest physical space and passed the machine check to the guest."
"The guest gets virtual #MC on an access to that page. When
the guest tries to do set_memory_uc() and instructs cpa_flush()
to do clean caches that results in taking another fault / exception
perhaps because the VMM unmapped the page from the guest."
Since the driver has special knowledge to handle NP or UC,
mark the poisoned page with NP and let driver handle it when
it comes down to repair.
Please refer to discussions here for more details.
https://lore.kernel.org/all/CAPcyv4hrXPb1tASBZUg-GgdVs0OOFKXMXLiHmktg_kFi7YBMyQ@mail.gmail.com/
Now since poisoned page is marked as not-present, in order to
avoid writing to a not-present page and trigger kernel Oops,
also fix pmem_do_write().
Fixes: 284ce4011b ("x86/memory_failure: Introduce {set, clear}_mce_nospec()")
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jane Chu <jane.chu@oracle.com>
Acked-by: Tony Luck <tony.luck@intel.com>
Link: https://lore.kernel.org/r/165272615484.103830.2563950688772226611.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
IFS is a CPU feature that allows a binary blob, similar to microcode,
to be loaded and consumed to perform low level validation of CPU
circuitry. In fact, it carries the same Processor Signature
(family/model/stepping) details that are contained in Intel microcode
blobs.
In support of an IFS driver to trigger loading, validation, and running
of these tests blobs, make the functionality of cpu_signatures_match()
and collect_cpu_info_early() available outside of the microcode driver.
Add an "intel_" prefix and drop the "_early" suffix from
collect_cpu_info_early() and EXPORT_SYMBOL_GPL() it. Add
declaration to x86 <asm/cpu.h>
Make cpu_signatures_match() an inline function in x86 <asm/cpu.h>,
and also give it an "intel_" prefix.
No functional change intended.
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jithu Joseph <jithu.joseph@intel.com>
Co-developed-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Tony Luck <tony.luck@intel.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Borislav Petkov <bp@suse.de>
Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Link: https://lore.kernel.org/r/20220506225410.1652287-2-tony.luck@intel.com
Signed-off-by: Hans de Goede <hdegoede@redhat.com>
In newer versions of Hyper-V, the x86/x64 PMU can be virtualized
into guest VMs by explicitly enabling it. Linux kernels are typically
built to automatically enable the hardlockup detector if the PMU is
found. To prevent the possibility of false positives due to the
vagaries of VM scheduling, disable the PMU-based hardlockup detector
by default in a VM on Hyper-V. The hardlockup detector can still be
enabled by overriding the default with the nmi_watchdog=1 option on
the kernel boot line or via sysctl at runtime.
This change mimics the approach taken with KVM guests in
commit 692297d8f9 ("watchdog: introduce the hardlockup_detector_disable()
function").
Linux on ARM64 does not provide a PMU-based hardlockup detector, so
there's no corresponding disable in the Hyper-V init code on ARM64.
Signed-off-by: Michael Kelley <mikelley@microsoft.com>
Link: https://lore.kernel.org/r/1652111063-6535-1-git-send-email-mikelley@microsoft.com
Signed-off-by: Wei Liu <wei.liu@kernel.org>
__setup() handlers should return 1 to obsolete_checksetup() in
init/main.c to indicate that the boot option has been handled. A return
of 0 causes the boot option/value to be listed as an Unknown kernel
parameter and added to init's (limited) argument (no '=') or environment
(with '=') strings. So return 1 from these x86 __setup handlers.
Examples:
Unknown kernel command line parameters "apicpmtimer
BOOT_IMAGE=/boot/bzImage-517rc8 vdso=1 ring3mwait=disable", will be
passed to user space.
Run /sbin/init as init process
with arguments:
/sbin/init
apicpmtimer
with environment:
HOME=/
TERM=linux
BOOT_IMAGE=/boot/bzImage-517rc8
vdso=1
ring3mwait=disable
Fixes: 2aae950b21 ("x86_64: Add vDSO for x86-64 with gettimeofday/clock_gettime/getcpu")
Fixes: 77b52b4c5c ("x86: add "debugpat" boot option")
Fixes: e16fd002af ("x86/cpufeature: Enable RING3MWAIT for Knights Landing")
Fixes: b8ce335906 ("x86_64: convert to clock events")
Reported-by: Igor Zhbanov <i.zhbanov@omprussia.ru>
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Borislav Petkov <bp@suse.de>
Link: https://lore.kernel.org/r/64644a2f-4a20-bab3-1e15-3b2cdd0defe3@omprussia.ru
Link: https://lore.kernel.org/r/20220314012725.26661-1-rdunlap@infradead.org
Raptor Lake supports the split lock detection feature. Add it to
the split_lock_cpu_ids[] array.
Signed-off-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Link: https://lore.kernel.org/r/20220427231059.293086-1-tony.luck@intel.com
CPUID leaf 0x80000022 i.e. ExtPerfMonAndDbg advertises some
new performance monitoring features for AMD processors.
Bit 0 of EAX indicates support for Performance Monitoring
Version 2 (PerfMonV2) features. If found to be set during
PMU initialization, the EBX bits of the same CPUID function
can be used to determine the number of available PMCs for
different PMU types. Additionally, Core PMCs can be managed
using new global control and status registers.
For better utilization of feature words, PerfMonV2 is added
as a scattered feature bit.
Signed-off-by: Sandipan Das <sandipan.das@amd.com>
Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Link: https://lkml.kernel.org/r/c70e497e22f18e7f05b025bb64ca21cc12b17792.1650515382.git.sandipan.das@amd.com
Due to the avoidance of IPIs to idle CPUs arch_freq_get_on_cpu() can return
0 when the last sample was too long ago.
show_cpuinfo() has a fallback to cpufreq_quick_get() and if that fails to
return cpu_khz, but the readout code for the per CPU scaling frequency in
sysfs does not.
Move that fallback into arch_freq_get_on_cpu() so the behaviour is the same
when reading /proc/cpuinfo and /sys/..../cur_scaling_freq.
Suggested-by: "Rafael J. Wysocki" <rafael@kernel.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Doug Smythies <dsmythies@telus.net>
Link: https://lore.kernel.org/r/87pml5180p.ffs@tglx
Reading the current CPU frequency from /sys/..../scaling_cur_freq involves
in the worst case two IPIs due to the ad hoc sampling.
The frequency invariance infrastructure provides the APERF/MPERF samples
already. Utilize them and consolidate this with the /proc/cpuinfo readout.
The sample is considered valid for 20ms. So for idle or isolated NOHZ full
CPUs the function returns 0, which is matching the previous behaviour.
The resulting text size vs. the original APERF/MPERF plus the separate
frequency invariance code:
text: 2411 -> 723
init.text: 0 -> 767
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.934040006@linutronix.de
The frequency invariance infrastructure provides the APERF/MPERF samples
already. Utilize them for the cpu frequency display in /proc/cpuinfo.
The sample is considered valid for 20ms. So for idle or isolated NOHZ full
CPUs the function returns 0, which is matching the previous behaviour.
This gets rid of the mass IPIs and a delay of 20ms for stabilizing observed
by Eric when reading /proc/cpuinfo.
Reported-by: Eric Dumazet <eric.dumazet@gmail.com>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Tested-by: Eric Dumazet <edumazet@google.com>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.875029458@linutronix.de
Now that the MSR readout is unconditional, store the results in the per CPU
data structure along with a jiffies timestamp for the CPU frequency readout
code.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.817702355@linutronix.de
The frequency invariance support is currently limited to x86/64 and SMP,
which is the vast majority of machines.
arch_scale_freq_tick() is called every tick on all CPUs and reads the APERF
and MPERF MSRs. The CPU frequency getters function do the same via dedicated
IPIs.
While it could be argued that on systems where frequency invariance support
is disabled (32bit, !SMP) the per tick read of the APERF and MPERF MSRs can
be avoided, it does not make sense to keep the extra code and the resulting
runtime issues of mass IPIs around.
As a first step split out the non frequency invariance specific
initialization code and the read MSR portion of arch_scale_freq_tick(). The
rest of the code is still conditional and guarded with a static key.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.761988704@linutronix.de
Preparation for sharing code with the CPU frequency portion of the
aperf/mperf code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.706185092@linutronix.de
Preparation for sharing code with the CPU frequency portion of the
aperf/mperf code.
No functional change.
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Paul E. McKenney <paulmck@kernel.org>
Link: https://lore.kernel.org/r/20220415161206.648485667@linutronix.de