When reviewing local percpu kptr support, Alexei discovered a bug
wherea bpf_kptr_xchg() may succeed even if the map value kptr type and
locally allocated obj type do not match ([1]). Missed struct btf_id
comparison is the reason for the bug. This patch added such struct btf_id
comparison and will flag verification failure if types do not match.
[1] https://lore.kernel.org/bpf/20230819002907.io3iphmnuk43xblu@macbook-pro-8.dhcp.thefacebook.com/#t
Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: 738c96d5e2 ("bpf: Allow local kptrs to be exchanged via bpf_kptr_xchg")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230822050053.2886960-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
syzbot reports a verifier bug which triggers a runtime panic.
The test bpf program is:
0: (62) *(u32 *)(r10 -8) = 553656332
1: (bf) r1 = (s16)r10
2: (07) r1 += -8
3: (b7) r2 = 3
4: (bd) if r2 <= r1 goto pc+0
5: (85) call bpf_trace_printk#-138320
6: (b7) r0 = 0
7: (95) exit
At insn 1, the current implementation keeps 'r1' as a frame pointer,
which caused later bpf_trace_printk helper call crash since frame
pointer address is not valid any more. Note that at insn 4,
the 'pointer vs. scalar' comparison is allowed for privileged
prog run.
To fix the problem with above insn 1, the fix in the patch adopts
similar pattern to existing 'R1 = (u32) R2' handling. For unprivileged
prog run, verification will fail with 'R<num> sign-extension part of pointer'.
For privileged prog run, the dst_reg 'r1' will be marked as
an unknown scalar, so later 'bpf_trace_pointk' helper will complain
since it expected certain pointers.
Reported-by: syzbot+d61b595e9205573133b3@syzkaller.appspotmail.com
Fixes: 8100928c88 ("bpf: Support new sign-extension mov insns")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Link: https://lore.kernel.org/r/20230807175721.671696-1-yonghong.song@linux.dev
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
xdp.h is far more specific and is included in only 67 other
files vs netdevice.h's 1538 include sites.
Make xdp.h include netdevice.h, instead of the other way around.
This decreases the incremental allmodconfig builds size when
xdp.h is touched from 5947 to 662 objects.
Move bpf_prog_run_xdp() to xdp.h, seems appropriate and filter.h
is a mega-header in its own right so it's nice to avoid xdp.h
getting included there as well.
The only unfortunate part is that the typedef for xdp_features_t
has to move to netdevice.h, since its embedded in struct netdevice.
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Acked-by: Jesper Dangaard Brouer <hawk@kernel.org>
Link: https://lore.kernel.org/r/20230803010230.1755386-4-kuba@kernel.org
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
The kernel test robot reported compilation warnings when -Wparentheses is
added to KBUILD_CFLAGS with gcc compiler. The following is the error message:
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_reg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5901:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s64_max >= 0 == s64_min >= 0) {
~~~~~~~~^~~~
.../bpf-next/kernel/bpf/verifier.c: In function ‘coerce_subreg_to_size_sx’:
.../bpf-next/kernel/bpf/verifier.c:5965:14:
error: suggest parentheses around comparison in operand of ‘==’ [-Werror=parentheses]
if (s32_min >= 0 == s32_max >= 0) {
~~~~~~~~^~~~
To fix the issue, add proper parentheses for the above '>=' condition
to silence the warning/error.
I tried a few clang compilers like clang16 and clang18 and they do not emit
such warnings with -Wparentheses.
Reported-by: kernel test robot <lkp@intel.com>
Closes: https://lore.kernel.org/oe-kbuild-all/202307281133.wi0c4SqG-lkp@intel.com/
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Acked-by: Jiri Olsa <jolsa@kernel.org>
Link: https://lore.kernel.org/r/20230728055740.2284534-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit/verifier support for 32bit offset jmp instruction.
If a conditional jmp instruction needs more than 16bit offset,
it can be simulated with a conditional jmp + a 32bit jmp insn.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011231.3716103-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new signed div/mod insns.
The new signed div/mod instructions are encoded with
unsigned div/mod instructions plus insn->off == 1.
Also add basic verifier support to ensure new insns get
accepted.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011219.3714605-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The existing 'be' and 'le' insns will do conditional bswap
depends on host endianness. This patch implements
unconditional bswap insns.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011213.3712808-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Currently, if user accesses a ctx member with signed types,
the compiler will generate an unsigned load followed by
necessary left and right shifts.
With the introduction of sign-extension load, compiler may
just emit a ldsx insn instead. Let us do a final movsx sign
extension to the final unsigned ctx load result to
satisfy original sign extension requirement.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011207.3712528-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension mov insns.
The original 'MOV' insn is extended to support reg-to-reg
signed version for both ALU and ALU64 operations. For ALU mode,
the insn->off value of 8 or 16 indicates sign-extension
from 8- or 16-bit value to 32-bit value. For ALU64 mode,
the insn->off value of 8/16/32 indicates sign-extension
from 8-, 16- or 32-bit value to 64-bit value.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011202.3712300-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add interpreter/jit support for new sign-extension load insns
which adds a new mode (BPF_MEMSX).
Also add verifier support to recognize these insns and to
do proper verification with new insns. In verifier, besides
to deduce proper bounds for the dst_reg, probed memory access
is also properly handled.
Acked-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20230728011156.3711870-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add the BTF id of struct bpf_map to the reg2btf_ids array. This makes the
values of the CONST_PTR_TO_MAP type to be considered as trusted by kfuncs.
This, in turn, allows users to execute trusted kfuncs which accept `struct
bpf_map *` arguments from non-tracing programs.
While exporting the btf_bpf_map_id variable, save some bytes by defining
it as BTF_ID_LIST_GLOBAL_SINGLE (which is u32[1]) and not as BTF_ID_LIST
(which is u32[64]).
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-3-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The reg2btf_ids array contains a list of types for which we can (and need)
to find a corresponding static BTF id. All the types in the list can be
considered as trusted for purposes of kfuncs.
Signed-off-by: Anton Protopopov <aspsk@isovalent.com>
Link: https://lore.kernel.org/r/20230719092952.41202-2-aspsk@isovalent.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
While the check_max_stack_depth function explores call chains emanating
from the main prog, which is typically enough to cover all possible call
chains, it doesn't explore those rooted at async callbacks unless the
async callback will have been directly called, since unlike non-async
callbacks it skips their instruction exploration as they don't
contribute to stack depth.
It could be the case that the async callback leads to a callchain which
exceeds the stack depth, but this is never reachable while only
exploring the entry point from main subprog. Hence, repeat the check for
the main subprog *and* all async callbacks marked by the symbolic
execution pass of the verifier, as execution of the program may begin at
any of them.
Consider functions with following stack depths:
main: 256
async: 256
foo: 256
main:
rX = async
bpf_timer_set_callback(...)
async:
foo()
Here, async is not descended as it does not contribute to stack depth of
main (since it is referenced using bpf_pseudo_func and not
bpf_pseudo_call). However, when async is invoked asynchronously, it will
end up breaching the MAX_BPF_STACK limit by calling foo.
Hence, in addition to main, we also need to explore call chains
beginning at all async callback subprogs in a program.
Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-3-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The assignment to idx in check_max_stack_depth happens once we see a
bpf_pseudo_call or bpf_pseudo_func. This is not an issue as the rest of
the code performs a few checks and then pushes the frame to the frame
stack, except the case of async callbacks. If the async callback case
causes the loop iteration to be skipped, the idx assignment will be
incorrect on the next iteration of the loop. The value stored in the
frame stack (as the subprogno of the current subprog) will be incorrect.
This leads to incorrect checks and incorrect tail_call_reachable
marking. Save the target subprog in a new variable and only assign to
idx once we are done with the is_async_cb check which may skip pushing
of frame to the frame stack and subsequent stack depth checks and tail
call markings.
Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230717161530.1238-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iQIzBAABCAAdFiEE+soXsSLHKoYyzcli6rmadz2vbToFAmSwqwoACgkQ6rmadz2v
bTqOHRAAn+fzTLqUqsveFQcxOkie5MPHxKoOTjG4+yFR7rzPkU6Mn5RX3w5yFzSn
RqutwykF9OgipAzC3QXv4pRJuq6Gia5nvwUSDP4CX273ljyeF54DK7HfopE1+YrK
HXyBWZvVvMZP6q7qQyQ3qtbHZSjs5XP/M6YBlJ5zo/BTLFCyvbSDP14YKEqcBkWG
ld72ElXFxlnr/zEfRjzBCfMlbmgeHLO0SiHS/9827zEmNP1AAH5/ETA7/rJ7yCJs
QNQUIoJWob8xm5FMJ6CU/+sOqXR1CY053meGJFFBX5pvVD/CLRhrwHn0IMCyQqmh
wKR5waeXhpl/CKNeFuxXVMNFiXbqBb/0LYJaJtrMysjMLTsQ9X7NkrDBa/+kYGyZ
+ghGlaMQvPqUGg0rLH2nl9JNB8Ne/8prLMsAKUWnPuOo+Q03j054gnqhGeNtDd5b
gpSk+7x93PlhGcegBV1Wk8dkiGC5V9nTVNxg40XQUCs4k9L/8Vjc35Tjqx7nBTNH
DiFD24DDKUZacw9L6nEqvLF/N2fiRjtUZnVPC0yn/annyBcfX1s+ZH2Tu1F6Qk38
QMfBCnt12exmsiDoxdzzGJtjHnS/k5fsaKjlR21mOyMrIH7ipltr5UHHrdr1hBP6
24uSeTImvQQKDi+9IuXN127jZDOupKqVS6csrA0ZXrlKWh2HR+U=
=GVUB
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Alexei Starovoitov says:
====================
pull-request: bpf-next 2023-07-13
We've added 67 non-merge commits during the last 15 day(s) which contain
a total of 106 files changed, 4444 insertions(+), 619 deletions(-).
The main changes are:
1) Fix bpftool build in presence of stale vmlinux.h,
from Alexander Lobakin.
2) Introduce bpf_me_mcache_free_rcu() and fix OOM under stress,
from Alexei Starovoitov.
3) Teach verifier actual bounds of bpf_get_smp_processor_id()
and fix perf+libbpf issue related to custom section handling,
from Andrii Nakryiko.
4) Introduce bpf map element count, from Anton Protopopov.
5) Check skb ownership against full socket, from Kui-Feng Lee.
6) Support for up to 12 arguments in BPF trampoline, from Menglong Dong.
7) Export rcu_request_urgent_qs_task, from Paul E. McKenney.
8) Fix BTF walking of unions, from Yafang Shao.
9) Extend link_info for kprobe_multi and perf_event links,
from Yafang Shao.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (67 commits)
selftests/bpf: Add selftest for PTR_UNTRUSTED
bpf: Fix an error in verifying a field in a union
selftests/bpf: Add selftests for nested_trust
bpf: Fix an error around PTR_UNTRUSTED
selftests/bpf: add testcase for TRACING with 6+ arguments
bpf, x86: allow function arguments up to 12 for TRACING
bpf, x86: save/restore regs with BPF_DW size
bpftool: Use "fallthrough;" keyword instead of comments
bpf: Add object leak check.
bpf: Convert bpf_cpumask to bpf_mem_cache_free_rcu.
bpf: Introduce bpf_mem_free_rcu() similar to kfree_rcu().
selftests/bpf: Improve test coverage of bpf_mem_alloc.
rcu: Export rcu_request_urgent_qs_task()
bpf: Allow reuse from waiting_for_gp_ttrace list.
bpf: Add a hint to allocated objects.
bpf: Change bpf_mem_cache draining process.
bpf: Further refactor alloc_bulk().
bpf: Factor out inc/dec of active flag into helpers.
bpf: Refactor alloc_bulk().
bpf: Let free_all() return the number of freed elements.
...
====================
Link: https://lore.kernel.org/r/20230714020910.80794-1-alexei.starovoitov@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Per discussion with Alexei, the PTR_UNTRUSTED flag should not been
cleared when we start to walk a new struct, because the struct in
question may be a struct nested in a union. We should also check and set
this flag before we walk its each member, in case itself is a union.
We will clear this flag if the field is BTF_TYPE_SAFE_RCU_OR_NULL.
Fixes: 6fcd486b3a ("bpf: Refactor RCU enforcement in the verifier.")
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230713025642.27477-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_get_smp_processor_id() helper returns current CPU on which BPF
program runs. It can't return value that is bigger than maximum allowed
number of CPUs (minus one, due to zero indexing). Teach BPF verifier to
recognize that. This makes it possible to use bpf_get_smp_processor_id()
result to index into arrays without extra checks, as demonstrated in
subsequent selftests/bpf patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230711232400.1658562-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The check_max_stack_depth pass happens after the verifier's symbolic
execution, and attempts to walk the call graph of the BPF program,
ensuring that the stack usage stays within bounds for all possible call
chains. There are two cases to consider: bpf_pseudo_func and
bpf_pseudo_call. In the former case, the callback pointer is loaded into
a register, and is assumed that it is passed to some helper later which
calls it (however there is no way to be sure), but the check remains
conservative and accounts the stack usage anyway. For this particular
case, asynchronous callbacks are skipped as they execute asynchronously
when their corresponding event fires.
The case of bpf_pseudo_call is simpler and we know that the call is
definitely made, hence the stack depth of the subprog is accounted for.
However, the current check still skips an asynchronous callback even if
a bpf_pseudo_call was made for it. This is erroneous, as it will miss
accounting for the stack usage of the asynchronous callback, which can
be used to breach the maximum stack depth limit.
Fix this by only skipping asynchronous callbacks when the instruction is
not a pseudo call to the subprog.
Fixes: 7ddc80a476 ("bpf: Teach stack depth check about async callbacks.")
Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Link: https://lore.kernel.org/r/20230705144730.235802-2-memxor@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZJX+ygAKCRDbK58LschI
g0/2AQDHg12smf9mPfK9wOFDNRIIX8r2iufB8LUFQMzCwltN6gEAkAdkAyfbof7P
TMaNUiHABijAFtChxoSI35j3OOSRrwE=
=GJgN
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-06-23
We've added 49 non-merge commits during the last 24 day(s) which contain
a total of 70 files changed, 1935 insertions(+), 442 deletions(-).
The main changes are:
1) Extend bpf_fib_lookup helper to allow passing the route table ID,
from Louis DeLosSantos.
2) Fix regsafe() in verifier to call check_ids() for scalar registers,
from Eduard Zingerman.
3) Extend the set of cpumask kfuncs with bpf_cpumask_first_and()
and a rework of bpf_cpumask_any*() kfuncs. Additionally,
add selftests, from David Vernet.
4) Fix socket lookup BPF helpers for tc/XDP to respect VRF bindings,
from Gilad Sever.
5) Change bpf_link_put() to use workqueue unconditionally to fix it
under PREEMPT_RT, from Sebastian Andrzej Siewior.
6) Follow-ups to address issues in the bpf_refcount shared ownership
implementation, from Dave Marchevsky.
7) A few general refactorings to BPF map and program creation permissions
checks which were part of the BPF token series, from Andrii Nakryiko.
8) Various fixes for benchmark framework and add a new benchmark
for BPF memory allocator to BPF selftests, from Hou Tao.
9) Documentation improvements around iterators and trusted pointers,
from Anton Protopopov.
10) Small cleanup in verifier to improve allocated object check,
from Daniel T. Lee.
11) Improve performance of bpf_xdp_pointer() by avoiding access
to shared_info when XDP packet does not have frags,
from Jesper Dangaard Brouer.
12) Silence a harmless syzbot-reported warning in btf_type_id_size(),
from Yonghong Song.
13) Remove duplicate bpfilter_umh_cleanup in favor of umd_cleanup_helper,
from Jarkko Sakkinen.
14) Fix BPF selftests build for resolve_btfids under custom HOSTCFLAGS,
from Viktor Malik.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (49 commits)
bpf, docs: Document existing macros instead of deprecated
bpf, docs: BPF Iterator Document
selftests/bpf: Fix compilation failure for prog vrf_socket_lookup
selftests/bpf: Add vrf_socket_lookup tests
bpf: Fix bpf socket lookup from tc/xdp to respect socket VRF bindings
bpf: Call __bpf_sk_lookup()/__bpf_skc_lookup() directly via TC hookpoint
bpf: Factor out socket lookup functions for the TC hookpoint.
selftests/bpf: Set the default value of consumer_cnt as 0
selftests/bpf: Ensure that next_cpu() returns a valid CPU number
selftests/bpf: Output the correct error code for pthread APIs
selftests/bpf: Use producer_cnt to allocate local counter array
xsk: Remove unused inline function xsk_buff_discard()
bpf: Keep BPF_PROG_LOAD permission checks clear of validations
bpf: Centralize permissions checks for all BPF map types
bpf: Inline map creation logic in map_create() function
bpf: Move unprivileged checks into map_create() and bpf_prog_load()
bpf: Remove in_atomic() from bpf_link_put().
selftests/bpf: Verify that check_ids() is used for scalars in regsafe()
bpf: Verify scalar ids mapping in regsafe() using check_ids()
selftests/bpf: Check if mark_chain_precision() follows scalar ids
...
====================
Link: https://lore.kernel.org/r/20230623211256.8409-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
Make sure that the following unsafe example is rejected by verifier:
1: r9 = ... some pointer with range X ...
2: r6 = ... unbound scalar ID=a ...
3: r7 = ... unbound scalar ID=b ...
4: if (r6 > r7) goto +1
5: r6 = r7
6: if (r6 > X) goto ...
--- checkpoint ---
7: r9 += r7
8: *(u64 *)r9 = Y
This example is unsafe because not all execution paths verify r7 range.
Because of the jump at (4) the verifier would arrive at (6) in two states:
I. r6{.id=b}, r7{.id=b} via path 1-6;
II. r6{.id=a}, r7{.id=b} via path 1-4, 6.
Currently regsafe() does not call check_ids() for scalar registers,
thus from POV of regsafe() states (I) and (II) are identical. If the
path 1-6 is taken by verifier first, and checkpoint is created at (6)
the path [1-4, 6] would be considered safe.
Changes in this commit:
- check_ids() is modified to disallow mapping multiple old_id to the
same cur_id.
- check_scalar_ids() is added, unlike check_ids() it treats ID zero as
a unique scalar ID.
- check_scalar_ids() needs to generate temporary unique IDs, field
'tmp_id_gen' is added to bpf_verifier_env::idmap_scratch to
facilitate this.
- regsafe() is updated to:
- use check_scalar_ids() for precise scalar registers.
- compare scalar registers using memcmp only for explore_alu_limits
branch. This simplifies control flow for scalar case, and has no
measurable performance impact.
- check_alu_op() is updated to avoid generating bpf_reg_state::id for
constant scalar values when processing BPF_MOV. ID is needed to
propagate range information for identical values, but there is
nothing to propagate for constants.
Fixes: 75748837b7 ("bpf: Propagate scalar ranges through register assignments.")
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-4-eddyz87@gmail.com
Change mark_chain_precision() to track precision in situations
like below:
r2 = unknown value
...
--- state #0 ---
...
r1 = r2 // r1 and r2 now share the same ID
...
--- state #1 {r1.id = A, r2.id = A} ---
...
if (r2 > 10) goto exit; // find_equal_scalars() assigns range to r1
...
--- state #2 {r1.id = A, r2.id = A} ---
r3 = r10
r3 += r1 // need to mark both r1 and r2
At the beginning of the processing of each state, ensure that if a
register with a scalar ID is marked as precise, all registers sharing
this ID are also marked as precise.
This property would be used by a follow-up change in regsafe().
Signed-off-by: Eduard Zingerman <eddyz87@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Acked-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230613153824.3324830-2-eddyz87@gmail.com
When subprograms are in use, the main program is not jit'd after the
subprograms because jit_subprogs sets a value for prog->bpf_func upon
success. Subsequent calls to the JIT are bypassed when this value is
non-NULL. This leads to a situation where the main program and its
func[0] counterpart are both in the bpf kallsyms tree, but only func[0]
has an extable. Extables are only created during JIT. Now there are
two nearly identical program ksym entries in the tree, but only one has
an extable. Depending upon how the entries are placed, there's a chance
that a fault will call search_extable on the aux with the NULL entry.
Since jit_subprogs already copies state from func[0] to the main
program, include the extable pointer in this state duplication.
Additionally, ensure that the copy of the main program in func[0] is not
added to the bpf_prog_kallsyms table. Instead, let the main program get
added later in bpf_prog_load(). This ensures there is only a single
copy of the main program in the kallsyms table, and that its tag matches
the tag observed by tooling like bpftool.
Cc: stable@vger.kernel.org
Fixes: 1c2a088a66 ("bpf: x64: add JIT support for multi-function programs")
Signed-off-by: Krister Johansen <kjlx@templeofstupid.com>
Acked-by: Yonghong Song <yhs@fb.com>
Acked-by: Ilya Leoshkevich <iii@linux.ibm.com>
Tested-by: Ilya Leoshkevich <iii@linux.ibm.com>
Link: https://lore.kernel.org/r/6de9b2f4b4724ef56efbb0339daaa66c8b68b1e7.1686616663.git.kjlx@templeofstupid.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The following scenario describes a bug in the verifier where it
incorrectly concludes about equivalent scalar IDs which could lead to
verifier bypass in privileged mode:
1. Prepare a 32-bit rogue number.
2. Put the rogue number into the upper half of a 64-bit register, and
roll a random (unknown to the verifier) bit in the lower half. The
rest of the bits should be zero (although variations are possible).
3. Assign an ID to the register by MOVing it to another arbitrary
register.
4. Perform a 32-bit spill of the register, then perform a 32-bit fill to
another register. Due to a bug in the verifier, the ID will be
preserved, although the new register will contain only the lower 32
bits, i.e. all zeros except one random bit.
At this point there are two registers with different values but the same
ID, which means the integrity of the verifier state has been corrupted.
5. Compare the new 32-bit register with 0. In the branch where it's
equal to 0, the verifier will believe that the original 64-bit
register is also 0, because it has the same ID, but its actual value
still contains the rogue number in the upper half.
Some optimizations of the verifier prevent the actual bypass, so
extra care is needed: the comparison must be between two registers,
and both branches must be reachable (this is why one random bit is
needed). Both branches are still suitable for the bypass.
6. Right shift the original register by 32 bits to pop the rogue number.
7. Use the rogue number as an offset with any pointer. The verifier will
believe that the offset is 0, while in reality it's the given number.
The fix is similar to the 32-bit BPF_MOV handling in check_alu_op for
SCALAR_VALUE. If the spill is narrowing the actual register value, don't
keep the ID, make sure it's reset to 0.
Fixes: 354e8f1970 ("bpf: Support <8-byte scalar spill and refill")
Signed-off-by: Maxim Mikityanskiy <maxim@isovalent.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Tested-by: Andrii Nakryiko <andrii@kernel.org> # Checked veristat delta
Acked-by: Yonghong Song <yhs@fb.com>
Link: https://lore.kernel.org/bpf/20230607123951.558971-2-maxtram95@gmail.com
In reg_type_not_null(), we currently assume that a pointer may be NULL
if it has the PTR_MAYBE_NULL modifier, or if it doesn't belong to one of
several base type of pointers that are never NULL-able. For example,
PTR_TO_CTX, PTR_TO_MAP_VALUE, etc.
It turns out that in some cases, PTR_TO_BTF_ID can never be NULL as
well, though we currently don't specify it. For example, if you had the
following program:
SEC("tc")
long example_refcnt_fail(void *ctx)
{
struct bpf_cpumask *mask1, *mask2;
mask1 = bpf_cpumask_create();
mask2 = bpf_cpumask_create();
if (!mask1 || !mask2)
goto error_release;
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask1);
bpf_cpumask_test_cpu(0, (const struct cpumask *)mask2);
error_release:
if (mask1)
bpf_cpumask_release(mask1);
if (mask2)
bpf_cpumask_release(mask2);
return ret;
}
The verifier will incorrectly fail to load the program, thinking
(unintuitively) that we have a possibly-unreleased reference if the mask
is NULL, because we (correctly) don't issue a bpf_cpumask_release() on
the NULL path.
The reason the verifier gets confused is due to the fact that we don't
explicitly tell the verifier that trusted PTR_TO_BTF_ID pointers can
never be NULL. Basically, if we successfully get past the if check
(meaning both pointers go from ptr_or_null_bpf_cpumask to
ptr_bpf_cpumask), the verifier will correctly assume that the references
need to be dropped on any possible branch that leads to program exit.
However, it will _incorrectly_ think that the ptr == NULL branch is
possible, and will erroneously detect it as a branch on which we failed
to drop the reference.
The solution is of course to teach the verifier that trusted
PTR_TO_BTF_ID pointers can never be NULL, so that it doesn't incorrectly
think it's possible for the reference to be present on the ptr == NULL
branch.
A follow-on patch will add a selftest that verifies this behavior.
Signed-off-by: David Vernet <void@manifault.com>
Link: https://lore.kernel.org/r/20230602150112.1494194-1-void@manifault.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
>From commit 282de143ea ("bpf: Introduce allocated objects support"),
With this allocated object with BPF program, (PTR_TO_BTF_ID | MEM_ALLOC)
has been a way of indicating to check the type is the allocated object.
commit d8939cb0a0 ("bpf: Loosen alloc obj test in verifier's
reg_btf_record")
>From the commit, there has been helper function for checking this, named
type_is_ptr_alloc_obj(). But still, some of the code use open code to
retrieve this info. This commit replaces the open code with the
type_is_alloc(), and the type_is_ptr_alloc_obj() function.
Signed-off-by: Daniel T. Lee <danieltimlee@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20230527122706.59315-1-danieltimlee@gmail.com
This patch fixes an incorrect assumption made in the original
bpf_refcount series [0], specifically that the BPF program calling
bpf_refcount_acquire on some node can always guarantee that the node is
alive. In that series, the patch adding failure behavior to rbtree_add
and list_push_{front, back} breaks this assumption for non-owning
references.
Consider the following program:
n = bpf_kptr_xchg(&mapval, NULL);
/* skip error checking */
bpf_spin_lock(&l);
if(bpf_rbtree_add(&t, &n->rb, less)) {
bpf_refcount_acquire(n);
/* Failed to add, do something else with the node */
}
bpf_spin_unlock(&l);
It's incorrect to assume that bpf_refcount_acquire will always succeed in this
scenario. bpf_refcount_acquire is being called in a critical section
here, but the lock being held is associated with rbtree t, which isn't
necessarily the lock associated with the tree that the node is already
in. So after bpf_rbtree_add fails to add the node and calls bpf_obj_drop
in it, the program has no ownership of the node's lifetime. Therefore
the node's refcount can be decr'd to 0 at any time after the failing
rbtree_add. If this happens before the refcount_acquire above, the node
might be free'd, and regardless refcount_acquire will be incrementing a
0 refcount.
Later patches in the series exercise this scenario, resulting in the
expected complaint from the kernel (without this patch's changes):
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 1 PID: 207 at lib/refcount.c:25 refcount_warn_saturate+0xbc/0x110
Modules linked in: bpf_testmod(O)
CPU: 1 PID: 207 Comm: test_progs Tainted: G O 6.3.0-rc7-02231-g723de1a718a2-dirty #371
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.15.0-0-g2dd4b9b3f840-prebuilt.qemu.org 04/01/2014
RIP: 0010:refcount_warn_saturate+0xbc/0x110
Code: 6f 64 f6 02 01 e8 84 a3 5c ff 0f 0b eb 9d 80 3d 5e 64 f6 02 00 75 94 48 c7 c7 e0 13 d2 82 c6 05 4e 64 f6 02 01 e8 64 a3 5c ff <0f> 0b e9 7a ff ff ff 80 3d 38 64 f6 02 00 0f 85 6d ff ff ff 48 c7
RSP: 0018:ffff88810b9179b0 EFLAGS: 00010082
RAX: 0000000000000000 RBX: 0000000000000002 RCX: 0000000000000000
RDX: 0000000000000202 RSI: 0000000000000008 RDI: ffffffff857c3680
RBP: ffff88810027d3c0 R08: ffffffff8125f2a4 R09: ffff88810b9176e7
R10: ffffed1021722edc R11: 746e756f63666572 R12: ffff88810027d388
R13: ffff88810027d3c0 R14: ffffc900005fe030 R15: ffffc900005fe048
FS: 00007fee0584a700(0000) GS:ffff88811b280000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00005634a96f6c58 CR3: 0000000108ce9002 CR4: 0000000000770ee0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
PKRU: 55555554
Call Trace:
<TASK>
bpf_refcount_acquire_impl+0xb5/0xc0
(rest of output snipped)
The patch addresses this by changing bpf_refcount_acquire_impl to use
refcount_inc_not_zero instead of refcount_inc and marking
bpf_refcount_acquire KF_RET_NULL.
For owning references, though, we know the above scenario is not possible
and thus that bpf_refcount_acquire will always succeed. Some verifier
bookkeeping is added to track "is input owning ref?" for bpf_refcount_acquire
calls and return false from is_kfunc_ret_null for bpf_refcount_acquire on
owning refs despite it being marked KF_RET_NULL.
Existing selftests using bpf_refcount_acquire are modified where
necessary to NULL-check its return value.
[0]: https://lore.kernel.org/bpf/20230415201811.343116-1-davemarchevsky@fb.com/
Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-5-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
In verifier.c, fixup_kfunc_call uses struct bpf_insn_aux_data's
kptr_struct_meta field to pass information about local kptr types to
various helpers and kfuncs at runtime. The recent bpf_refcount series
added a few functions to the set that need this information:
* bpf_refcount_acquire
* Needs to know where the refcount field is in order to increment
* Graph collection insert kfuncs: bpf_rbtree_add, bpf_list_push_{front,back}
* Were migrated to possibly fail by the bpf_refcount series. If
insert fails, the input node is bpf_obj_drop'd. bpf_obj_drop needs
the kptr_struct_meta in order to decr refcount and properly free
special fields.
Unfortunately the verifier handling of collection insert kfuncs was not
modified to actually populate kptr_struct_meta. Accordingly, when the
node input to those kfuncs is passed to bpf_obj_drop, it is done so
without the information necessary to decr refcount.
This patch fixes the issue by populating kptr_struct_meta for those
kfuncs.
Fixes: d2dcc67df9 ("bpf: Migrate bpf_rbtree_add and bpf_list_push_{front,back} to possibly fail")
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230602022647.1571784-3-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZHEm+wAKCRDbK58LschI
gyIKAQCqO7B4sIu8hYVxBTwfHV2tIuXSMSCV4P9e78NUOPcO2QEAvLP/WVSjB0Bm
vpyTKKM22SpZvPe/jSp52j6t20N+qAc=
=HFxD
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-05-26
We've added 54 non-merge commits during the last 10 day(s) which contain
a total of 76 files changed, 2729 insertions(+), 1003 deletions(-).
The main changes are:
1) Add the capability to destroy sockets in BPF through a new kfunc,
from Aditi Ghag.
2) Support O_PATH fds in BPF_OBJ_PIN and BPF_OBJ_GET commands,
from Andrii Nakryiko.
3) Add capability for libbpf to resize datasec maps when backed via mmap,
from JP Kobryn.
4) Move all the test kfuncs for CI out of the kernel and into bpf_testmod,
from Jiri Olsa.
5) Big batch of xsk selftest improvements to prep for multi-buffer testing,
from Magnus Karlsson.
6) Show the target_{obj,btf}_id in tracing link's fdinfo and dump it
via bpftool, from Yafang Shao.
7) Various misc BPF selftest improvements to work with upcoming LLVM 17,
from Yonghong Song.
8) Extend bpftool to specify netdevice for resolving XDP hints,
from Larysa Zaremba.
9) Document masking in shift operations for the insn set document,
from Dave Thaler.
10) Extend BPF selftests to check xdp_feature support for bond driver,
from Lorenzo Bianconi.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (54 commits)
bpf: Fix bad unlock balance on freeze_mutex
libbpf: Ensure FD >= 3 during bpf_map__reuse_fd()
libbpf: Ensure libbpf always opens files with O_CLOEXEC
selftests/bpf: Check whether to run selftest
libbpf: Change var type in datasec resize func
bpf: drop unnecessary bpf_capable() check in BPF_MAP_FREEZE command
libbpf: Selftests for resizing datasec maps
libbpf: Add capability for resizing datasec maps
selftests/bpf: Add path_fd-based BPF_OBJ_PIN and BPF_OBJ_GET tests
libbpf: Add opts-based bpf_obj_pin() API and add support for path_fd
bpf: Support O_PATH FDs in BPF_OBJ_PIN and BPF_OBJ_GET commands
libbpf: Start v1.3 development cycle
bpf: Validate BPF object in BPF_OBJ_PIN before calling LSM
bpftool: Specify XDP Hints ifname when loading program
selftests/bpf: Add xdp_feature selftest for bond device
selftests/bpf: Test bpf_sock_destroy
selftests/bpf: Add helper to get port using getsockname
bpf: Add bpf_sock_destroy kfunc
bpf: Add kfunc filter function to 'struct btf_kfunc_id_set'
bpf: udp: Implement batching for sockets iterator
...
====================
Link: https://lore.kernel.org/r/20230526222747.17775-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This commit adds the ability to filter kfuncs to certain BPF program
types. This is required to limit bpf_sock_destroy kfunc implemented in
follow-up commits to programs with attach type 'BPF_TRACE_ITER'.
The commit adds a callback filter to 'struct btf_kfunc_id_set'. The
filter has access to the `bpf_prog` construct including its properties
such as `expected_attached_type`.
Signed-off-by: Aditi Ghag <aditi.ghag@isovalent.com>
Link: https://lore.kernel.org/r/20230519225157.760788-7-aditi.ghag@isovalent.com
Signed-off-by: Martin KaFai Lau <martin.lau@kernel.org>
A narrow load from a 64-bit context field results in a 64-bit load
followed potentially by a 64-bit right-shift and then a bitwise AND
operation to extract the relevant data.
In the case of a 32-bit access, an immediate mask of 0xffffffff is used
to construct a 64-bit BPP_AND operation which then sign-extends the mask
value and effectively acts as a glorified no-op. For example:
0: 61 10 00 00 00 00 00 00 r0 = *(u32 *)(r1 + 0)
results in the following code generation for a 64-bit field:
ldr x7, [x7] // 64-bit load
mov x10, #0xffffffffffffffff
and x7, x7, x10
Fix the mask generation so that narrow loads always perform a 32-bit AND
operation:
ldr x7, [x7] // 64-bit load
mov w10, #0xffffffff
and w7, w7, w10
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Daniel Borkmann <daniel@iogearbox.net>
Cc: John Fastabend <john.fastabend@gmail.com>
Cc: Krzesimir Nowak <krzesimir@kinvolk.io>
Cc: Andrey Ignatov <rdna@fb.com>
Acked-by: Yonghong Song <yhs@fb.com>
Fixes: 31fd85816d ("bpf: permits narrower load from bpf program context fields")
Signed-off-by: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20230518102528.1341-1-will@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Subsequent instruction index (subseq_idx) is an index of an instruction
that was verified/executed by verifier after the currently processed
instruction. It is maintained during precision backtracking processing
and is used to detect various subprog calling conditions.
This patch fixes the bug with incorrectly resetting subseq_idx to -1
when going from child state to parent state during backtracking. If we
don't maintain correct subseq_idx we can misidentify subprog calls
leading to precision tracking bugs.
One such case was triggered by test_global_funcs/global_func9 test where
global subprog call happened to be the very last instruction in parent
state, leading to subseq_idx==-1, triggering WARN_ONCE:
[ 36.045754] verifier backtracking bug
[ 36.045764] WARNING: CPU: 13 PID: 2073 at kernel/bpf/verifier.c:3503 __mark_chain_precision+0xcc6/0xde0
[ 36.046819] Modules linked in: aesni_intel(E) crypto_simd(E) cryptd(E) kvm_intel(E) kvm(E) irqbypass(E) i2c_piix4(E) serio_raw(E) i2c_core(E) crc32c_intel)
[ 36.048040] CPU: 13 PID: 2073 Comm: test_progs Tainted: G W OE 6.3.0-07976-g4d585f48ee6b-dirty #972
[ 36.048783] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.12.0-59-gc9ba5276e321-prebuilt.qemu.org 04/01/2014
[ 36.049648] RIP: 0010:__mark_chain_precision+0xcc6/0xde0
[ 36.050038] Code: 3d 82 c6 05 bb 35 32 02 01 e8 66 21 ec ff 0f 0b b8 f2 ff ff ff e9 30 f5 ff ff 48 c7 c7 f3 61 3d 82 4c 89 0c 24 e8 4a 21 ec ff <0f> 0b 4c0
With the fix precision tracking across multiple states works correctly now:
mark_precise: frame0: last_idx 45 first_idx 38 subseq_idx -1
mark_precise: frame0: regs=r8 stack= before 44: (61) r7 = *(u32 *)(r10 -4)
mark_precise: frame0: regs=r8 stack= before 43: (85) call pc+41
mark_precise: frame0: regs=r8 stack= before 42: (07) r1 += -48
mark_precise: frame0: regs=r8 stack= before 41: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 40: (63) *(u32 *)(r10 -48) = r1
mark_precise: frame0: regs=r8 stack= before 39: (b4) w1 = 0
mark_precise: frame0: regs=r8 stack= before 38: (85) call pc+38
mark_precise: frame0: parent state regs=r8 stack=: R0_w=scalar() R1_w=map_value(off=4,ks=4,vs=8,imm=0) R6=1 R7_w=scalar() R8_r=P0 R10=fpm
mark_precise: frame0: last_idx 36 first_idx 28 subseq_idx 38
mark_precise: frame0: regs=r8 stack= before 36: (18) r1 = 0xffff888104f2ed14
mark_precise: frame0: regs=r8 stack= before 35: (85) call pc+33
mark_precise: frame0: regs=r8 stack= before 33: (18) r1 = 0xffff888104f2ed10
mark_precise: frame0: regs=r8 stack= before 32: (85) call pc+36
mark_precise: frame0: regs=r8 stack= before 31: (07) r1 += -4
mark_precise: frame0: regs=r8 stack= before 30: (bf) r1 = r10
mark_precise: frame0: regs=r8 stack= before 29: (63) *(u32 *)(r10 -4) = r7
mark_precise: frame0: regs=r8 stack= before 28: (4c) w7 |= w0
mark_precise: frame0: parent state regs=r8 stack=: R0_rw=scalar() R6=1 R7_rw=scalar() R8_rw=P0 R10=fp0 fp-48_r=mmmmmmmm
mark_precise: frame0: last_idx 27 first_idx 16 subseq_idx 28
mark_precise: frame0: regs=r8 stack= before 27: (85) call pc+31
mark_precise: frame0: regs=r8 stack= before 26: (b7) r1 = 0
mark_precise: frame0: regs=r8 stack= before 25: (b7) r8 = 0
Note how subseq_idx starts out as -1, then is preserved as 38 and then 28 as we
go up the parent state chain.
Reported-by: Alexei Starovoitov <ast@kernel.org>
Fixes: fde2a3882b ("bpf: support precision propagation in the presence of subprogs")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230515180710.1535018-1-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
For kfuncs like bpf_obj_drop and bpf_refcount_acquire - which take
user-defined types as input - the verifier needs to track the specific
type passed in when checking a particular kfunc call. This requires
tracking (btf, btf_id) tuple. In commit 7c50b1cb76
("bpf: Add bpf_refcount_acquire kfunc") I added an anonymous union with
inner structs named after the specific kfuncs tracking this information,
with the goal of making it more obvious which kfunc this data was being
tracked / expected to be tracked on behalf of.
In a recent series adding a new user of this tuple, Alexei mentioned
that he didn't like this union usage as it doesn't really help with
readability or bug-proofing ([0]). In an offline convo we agreed to
have the tuple be fields (arg_btf, arg_btf_id), with comments in
bpf_kfunc_call_arg_meta definition enumerating the uses of the fields by
kfunc-specific handling logic. Such a pattern is used by struct
bpf_reg_state without trouble.
Accordingly, this patch removes the anonymous union in favor of arg_btf
and arg_btf_id fields and comment enumerating their current uses. The
patch also removes struct btf_and_id, which was only being used by the
removed union's inner structs.
This is a mechanical change, existing linked_list and rbtree tests will
validate that correct (btf, btf_id) are being passed.
[0]: https://lore.kernel.org/bpf/20230505021707.vlyiwy57vwxglbka@dhcp-172-26-102-232.dhcp.thefacebook.com
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230510213047.1633612-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
This allows using memory retrieved from dynptrs with helper functions
that accept ARG_PTR_TO_MEM. For instance, results from bpf_dynptr_data
can be passed along to bpf_strncmp.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-5-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
bpf_dynptr_slice(_rw) uses a user provided buffer if it can not provide
a pointer to a block of contiguous memory. This buffer is unused in the
case of local dynptrs, and may be unused in other cases as well. There
is no need to require the buffer, as the kfunc can just return NULL if
it was needed and not provided.
This adds another kfunc annotation, __opt, which combines with __sz and
__szk to allow the buffer associated with the size to be NULL. If the
buffer is NULL, the verifier does not check that the buffer is of
sufficient size.
Signed-off-by: Daniel Rosenberg <drosen@google.com>
Link: https://lore.kernel.org/r/20230506013134.2492210-2-drosen@google.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add support precision backtracking in the presence of subprogram frames in
jump history.
This means supporting a few different kinds of subprogram invocation
situations, all requiring a slightly different handling in precision
backtracking handling logic:
- static subprogram calls;
- global subprogram calls;
- callback-calling helpers/kfuncs.
For each of those we need to handle a few precision propagation cases:
- what to do with precision of subprog returns (r0);
- what to do with precision of input arguments;
- for all of them callee-saved registers in caller function should be
propagated ignoring subprog/callback part of jump history.
N.B. Async callback-calling helpers (currently only
bpf_timer_set_callback()) are transparent to all this because they set
a separate async callback environment and thus callback's history is not
shared with main program's history. So as far as all the changes in this
commit goes, such helper is just a regular helper.
Let's look at all these situation in more details. Let's start with
static subprogram being called, using an exxerpt of a simple main
program and its static subprog, indenting subprog's frame slightly to
make everything clear.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; fr0: r1, r6
22: r0 = r1; fr0: r6; fr1: r1
23: exit fr0: r6; fr1: r0
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6
15: exit
As can be seen above main function is passing 123 as single argument to
an identity (`return x;`) subprog. Returned value is used to adjust map
pointer offset, which forces r0 to be marked as precise. Then
instruction #14 does the same for callee-saved r6, which will have to be
backtracked all the way to instruction #9. For brevity, precision sets
for instruction #13 and #14 are combined in the diagram above.
First, for subprog calls, r0 returned from subprog (in frame 0) has to
go into subprog's frame 1, and should be cleared from frame 0. So we go
back into subprog's frame knowing we need to mark r0 precise. We then
see that insn #22 sets r0 from r1, so now we care about marking r1
precise. When we pop up from subprog's frame back into caller at
insn #11 we keep r1, as it's an argument-passing register, so we eventually
find `10: r1 = 123;` and satify precision propagation chain for insn #13.
This example demonstrates two sets of rules:
- r0 returned after subprog call has to be moved into subprog's r0 set;
- *static* subprog arguments (r1-r5) are moved back to caller precision set.
Let's look at what happens with callee-saved precision propagation. Insn #14
mark r6 as precise. When we get into subprog's frame, we keep r6 in
frame 0's precision set *only*. Subprog itself has its own set of
independent r6-r10 registers and is not affected. When we eventually
made our way out of subprog frame we keep r6 in precision set until we
reach `9: r6 = 456;`, satisfying propagation. r6-r10 propagation is
perhaps the simplest aspect, it always stays in its original frame.
That's pretty much all we have to do to support precision propagation
across *static subprog* invocation.
Let's look at what happens when we have global subprog invocation.
frame 0 frame 1 precision set
======= ======= =============
9: r6 = 456;
10: r1 = 123; fr0: r6
11: call pc+10; # global subprog fr0: r6
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Starting from insn #13, r0 has to be precise. We backtrack all the way
to insn #11 (call pc+10) and see that subprog is global, so was already
validated in isolation. As opposed to static subprog, global subprog
always returns unknown scalar r0, so that satisfies precision
propagation and we drop r0 from precision set. We are done for insns #13.
Now for insn #14. r6 is in precision set, we backtrack to `call pc+10;`.
Here we need to recognize that this is effectively both exit and entry
to global subprog, which means we stay in caller's frame. So we carry on
with r6 still in precision set, until we satisfy it at insn #9. The only
hard part with global subprogs is just knowing when it's a global func.
Lastly, callback-calling helpers and kfuncs do simulate subprog calls,
so jump history will have subprog instructions in between caller
program's instructions, but the rules of propagating r0 and r1-r5
differ, because we don't actually directly call callback. We actually
call helper/kfunc, which at runtime will call subprog, so the only
difference between normal helper/kfunc handling is that we need to make
sure to skip callback simulatinog part of jump history.
Let's look at an example to make this clearer.
frame 0 frame 1 precision set
======= ======= =============
8: r6 = 456;
9: r1 = 123; fr0: r6
10: r2 = &callback; fr0: r6
11: call bpf_loop; fr0: r6
22: r0 = r1; fr0: r6 fr1:
23: exit fr0: r6 fr1:
12: r1 = <map_pointer> fr0: r0, r6
13: r1 += r0; fr0: r0, r6
14: r1 += r6; fr0: r6;
15: exit
Again, insn #13 forces r0 to be precise. As soon as we get to `23: exit`
we see that this isn't actually a static subprog call (it's `call
bpf_loop;` helper call instead). So we clear r0 from precision set.
For callee-saved register, there is no difference: it stays in frame 0's
precision set, we go through insn #22 and #23, ignoring them until we
get back to caller frame 0, eventually satisfying precision backtrack
logic at insn #8 (`r6 = 456;`).
Assuming callback needed to set r0 as precise at insn #23, we'd
backtrack to insn #22, switching from r0 to r1, and then at the point
when we pop back to frame 0 at insn #11, we'll clear r1-r5 from
precision set, as we don't really do a subprog call directly, so there
is no input argument precision propagation.
That's pretty much it. With these changes, it seems like the only still
unsupported situation for precision backpropagation is the case when
program is accessing stack through registers other than r10. This is
still left as unsupported (though rare) case for now.
As for results. For selftests, few positive changes for bigger programs,
cls_redirect in dynptr variant benefitting the most:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results.csv ~/subprog-precise-after-results.csv -f @veristat.cfg -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
---------------------------------------- ------------- --------- --------- ----------------
pyperf600_bpf_loop.bpf.linked1.o on_event 2060 2002 -58 (-2.82%)
test_cls_redirect_dynptr.bpf.linked1.o cls_redirect 15660 2914 -12746 (-81.39%)
test_cls_redirect_subprogs.bpf.linked1.o cls_redirect 61620 59088 -2532 (-4.11%)
xdp_synproxy_kern.bpf.linked1.o syncookie_tc 109980 86278 -23702 (-21.55%)
xdp_synproxy_kern.bpf.linked1.o syncookie_xdp 97716 85147 -12569 (-12.86%)
Cilium progress don't really regress. They don't use subprogs and are
mostly unaffected, but some other fixes and improvements could have
changed something. This doesn't appear to be the case:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-cilium.csv ~/subprog-precise-after-results-cilium.csv -e file,prog,insns -f 'insns_diff!=0'
File Program Insns (A) Insns (B) Insns (DIFF)
------------- ------------------------------ --------- --------- ------------
bpf_host.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_lxc.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_overlay.o tail_nodeport_nat_ingress_ipv6 4983 5003 +20 (+0.40%)
bpf_xdp.o tail_handle_nat_fwd_ipv6 12475 12504 +29 (+0.23%)
bpf_xdp.o tail_nodeport_nat_ingress_ipv6 6363 6371 +8 (+0.13%)
Looking at (somewhat anonymized) Meta production programs, we see mostly
insignificant variation in number of instructions, with one program
(syar_bind6_protect6) benefitting the most at -17%.
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-fbcode.csv ~/subprog-precise-after-results-fbcode.csv -e prog,insns -f 'insns_diff!=0'
Program Insns (A) Insns (B) Insns (DIFF)
------------------------ --------- --------- ----------------
on_request_context_event 597 585 -12 (-2.01%)
read_async_py_stack 43789 43657 -132 (-0.30%)
read_sync_py_stack 35041 37599 +2558 (+7.30%)
rrm_usdt 946 940 -6 (-0.63%)
sysarmor_inet6_bind 28863 28249 -614 (-2.13%)
sysarmor_inet_bind 28845 28240 -605 (-2.10%)
syar_bind4_protect4 154145 147640 -6505 (-4.22%)
syar_bind6_protect6 165242 137088 -28154 (-17.04%)
syar_task_exit_setgid 21289 19720 -1569 (-7.37%)
syar_task_exit_setuid 21290 19721 -1569 (-7.37%)
do_uprobe 19967 19413 -554 (-2.77%)
tw_twfw_ingress 215877 204833 -11044 (-5.12%)
tw_twfw_tc_in 215877 204833 -11044 (-5.12%)
But checking duration (wall clock) differences, that is the actual time taken
by verifier to validate programs, we see a sometimes dramatic improvements, all
the way to about 16x improvements:
[vmuser@archvm bpf]$ ./veristat -C ~/subprog-precise-before-results-meta.csv ~/subprog-precise-after-results-meta.csv -e prog,duration -s duration_diff^ | head -n20
Program Duration (us) (A) Duration (us) (B) Duration (us) (DIFF)
---------------------------------------- ----------------- ----------------- --------------------
tw_twfw_ingress 4488374 272836 -4215538 (-93.92%)
tw_twfw_tc_in 4339111 268175 -4070936 (-93.82%)
tw_twfw_egress 3521816 270751 -3251065 (-92.31%)
tw_twfw_tc_eg 3472878 284294 -3188584 (-91.81%)
balancer_ingress 343119 291391 -51728 (-15.08%)
syar_bind6_protect6 78992 64782 -14210 (-17.99%)
ttls_tc_ingress 11739 8176 -3563 (-30.35%)
kprobe__security_inode_link 13864 11341 -2523 (-18.20%)
read_sync_py_stack 21927 19442 -2485 (-11.33%)
read_async_py_stack 30444 28136 -2308 (-7.58%)
syar_task_exit_setuid 10256 8440 -1816 (-17.71%)
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-9-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When precision backtracking bails out due to some unsupported sequence
of instructions (e.g., stack access through register other than r10), we
need to mark all SCALAR registers as precise to be safe. Currently,
though, we mark SCALARs precise only starting from the state we detected
unsupported condition, which could be one of the parent states of the
actual current state. This will leave some registers potentially not
marked as precise, even though they should. So make sure we start
marking scalars as precise from current state (env->cur_state).
Further, we don't currently detect a situation when we end up with some
stack slots marked as needing precision, but we ran out of available
states to find the instructions that populate those stack slots. This is
akin the `i >= func->allocated_stack / BPF_REG_SIZE` check and should be
handled similarly by falling back to marking all SCALARs precise. Add
this check when we run out of states.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-8-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Fix propagate_precision() logic to perform propagation of all necessary
registers and stack slots across all active frames *in one batch step*.
Doing this for each register/slot in each individual frame is wasteful,
but the main problem is that backtracking of instruction in any frame
except the deepest one just doesn't work. This is due to backtracking
logic relying on jump history, and available jump history always starts
(or ends, depending how you view it) in current frame. So, if
prog A (frame #0) called subprog B (frame #1) and we need to propagate
precision of, say, register R6 (callee-saved) within frame #0, we
actually don't even know where jump history that corresponds to prog
A even starts. We'd need to skip subprog part of jump history first to
be able to do this.
Luckily, with struct backtrack_state and __mark_chain_precision()
handling bitmasks tracking/propagation across all active frames at the
same time (added in previous patch), propagate_precision() can be both
fixed and sped up by setting all the necessary bits across all frames
and then performing one __mark_chain_precision() pass. This makes it
unnecessary to skip subprog parts of jump history.
We also improve logging along the way, to clearly specify which
registers' and slots' precision markings are propagated within which
frame. Each frame will have dedicated line and all registers and stack
slots from that frame will be reported in format similar to precision
backtrack regs/stack logging. E.g.:
frame 1: propagating r1,r2,r3,fp-8,fp-16
frame 0: propagating r3,r9,fp-120
Fixes: 529409ea92 ("bpf: propagate precision across all frames, not just the last one")
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-7-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Teach __mark_chain_precision logic to maintain register/stack masks
across all active frames when going from child state to parent state.
Currently this should be mostly no-op, as precision backtracking usually
bails out when encountering subprog entry/exit.
It's not very apparent from the diff due to increased indentation, but
the logic remains the same, except everything is done on specific `fr`
frame index. Calls to bt_clear_reg() and bt_clear_slot() are replaced
with frame-specific bt_clear_frame_reg() and bt_clear_frame_slot(),
where frame index is passed explicitly, instead of using current frame
number.
We also adjust logging to emit affected frame number. And we also add
better logging of human-readable register and stack slot masks, similar
to previous patch.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-6-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add helper to format register and stack masks in more human-readable
format. Adjust logging a bit during backtrack propagation and especially
during forcing precision fallback logic to make it clearer what's going
on (with log_level=2, of course), and also start reporting affected
frame depth. This is in preparation for having more than one active
frame later when precision propagation between subprog calls is added.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-5-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Add struct backtrack_state and straightforward API around it to keep
track of register and stack masks used and maintained during precision
backtracking process. Having this logic separately allow to keep
high-level backtracking algorithm cleaner, but also it sets us up to
cleanly keep track of register and stack masks per frame, allowing (with
some further logic adjustments) to perform precision backpropagation
across multiple frames (i.e., subprog calls).
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-4-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
When handling instructions that read register slots, mark relevant stack
slots as scratched so that verifier log would contain those slots' states, in
addition to currently emitted registers with stack slot offsets.
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/r/20230505043317.3629845-3-andrii@kernel.org
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
The cloned dynptr will point to the same data as its parent dynptr,
with the same type, offset, size and read-only properties.
Any writes to a dynptr will be reflected across all instances
(by 'instance', this means any dynptrs that point to the same
underlying data).
Please note that data slice and dynptr invalidations will affect all
instances as well. For example, if bpf_dynptr_write() is called on an
skb-type dynptr, all data slices of dynptr instances to that skb
will be invalidated as well (eg data slices of any clones, parents,
grandparents, ...). Another example is if a ringbuf dynptr is submitted,
any instance of that dynptr will be invalidated.
Changing the view of the dynptr (eg advancing the offset or
trimming the size) will only affect that dynptr and not affect any
other instances.
One example use case where cloning may be helpful is for hashing or
iterating through dynptr data. Cloning will allow the user to maintain
the original view of the dynptr for future use, while also allowing
views to smaller subsets of the data after the offset is advanced or the
size is trimmed.
Signed-off-by: Joanne Koong <joannelkoong@gmail.com>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Link: https://lore.kernel.org/bpf/20230420071414.570108-5-joannelkoong@gmail.com
The tracing recursion prevention mechanism must be protected by rcu, that
leaves __rcu_read_{lock,unlock} unprotected by this mechanism. If we trace
them, the recursion will happen. Let's add them into the btf id deny list.
When CONFIG_PREEMPT_RCU is enabled, it can be reproduced with a simple bpf
program as such:
SEC("fentry/__rcu_read_lock")
int fentry_run()
{
return 0;
}
Signed-off-by: Yafang Shao <laoar.shao@gmail.com>
Link: https://lore.kernel.org/r/20230424161104.3737-2-laoar.shao@gmail.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
As reported by Kumar in [0], the shared ownership implementation for BPF
programs has some race conditions which need to be addressed before it
can safely be used. This patch does so in a minimal way instead of
ripping out shared ownership entirely, as proper fixes for the issues
raised will follow ASAP, at which point this patch's commit can be
reverted to re-enable shared ownership.
The patch removes the ability to call bpf_refcount_acquire_impl from BPF
programs. Programs can only bump refcount and obtain a new owning
reference using this kfunc, so removing the ability to call it
effectively disables shared ownership.
Instead of changing success / failure expectations for
bpf_refcount-related selftests, this patch just disables them from
running for now.
[0]: https://lore.kernel.org/bpf/d7hyspcow5wtjcmw4fugdgyp3fwhljwuscp3xyut5qnwivyeru@ysdq543otzv2/
Reported-by: Kumar Kartikeya Dwivedi <memxor@gmail.com>
Signed-off-by: Dave Marchevsky <davemarchevsky@fb.com>
Link: https://lore.kernel.org/r/20230424204321.2680232-1-davemarchevsky@fb.com
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
-----BEGIN PGP SIGNATURE-----
iHUEABYIAB0WIQTFp0I1jqZrAX+hPRXbK58LschIgwUCZELn8wAKCRDbK58LschI
g1khAQC1nmXPuKjM4EAfFK8Ysb3KoF8ADmpE97n+/HEDydCagwD/bX0+NABR75Nh
ueGcoU1TcfcbshDzrH0s+C95owZDZw4=
=BeZM
-----END PGP SIGNATURE-----
Merge tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next
Daniel Borkmann says:
====================
pull-request: bpf-next 2023-04-21
We've added 71 non-merge commits during the last 8 day(s) which contain
a total of 116 files changed, 13397 insertions(+), 8896 deletions(-).
The main changes are:
1) Add a new BPF netfilter program type and minimal support to hook
BPF programs to netfilter hooks such as prerouting or forward,
from Florian Westphal.
2) Fix race between btf_put and btf_idr walk which caused a deadlock,
from Alexei Starovoitov.
3) Second big batch to migrate test_verifier unit tests into test_progs
for ease of readability and debugging, from Eduard Zingerman.
4) Add support for refcounted local kptrs to the verifier for allowing
shared ownership, useful for adding a node to both the BPF list and
rbtree, from Dave Marchevsky.
5) Migrate bpf_for(), bpf_for_each() and bpf_repeat() macros from BPF
selftests into libbpf-provided bpf_helpers.h header and improve
kfunc handling, from Andrii Nakryiko.
6) Support 64-bit pointers to kfuncs needed for archs like s390x,
from Ilya Leoshkevich.
7) Support BPF progs under getsockopt with a NULL optval,
from Stanislav Fomichev.
8) Improve verifier u32 scalar equality checking in order to enable
LLVM transformations which earlier had to be disabled specifically
for BPF backend, from Yonghong Song.
9) Extend bpftool's struct_ops object loading to support links,
from Kui-Feng Lee.
10) Add xsk selftest follow-up fixes for hugepage allocated umem,
from Magnus Karlsson.
11) Support BPF redirects from tc BPF to ifb devices,
from Daniel Borkmann.
12) Add BPF support for integer type when accessing variable length
arrays, from Feng Zhou.
* tag 'for-netdev' of https://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf-next: (71 commits)
selftests/bpf: verifier/value_ptr_arith converted to inline assembly
selftests/bpf: verifier/value_illegal_alu converted to inline assembly
selftests/bpf: verifier/unpriv converted to inline assembly
selftests/bpf: verifier/subreg converted to inline assembly
selftests/bpf: verifier/spin_lock converted to inline assembly
selftests/bpf: verifier/sock converted to inline assembly
selftests/bpf: verifier/search_pruning converted to inline assembly
selftests/bpf: verifier/runtime_jit converted to inline assembly
selftests/bpf: verifier/regalloc converted to inline assembly
selftests/bpf: verifier/ref_tracking converted to inline assembly
selftests/bpf: verifier/map_ptr_mixing converted to inline assembly
selftests/bpf: verifier/map_in_map converted to inline assembly
selftests/bpf: verifier/lwt converted to inline assembly
selftests/bpf: verifier/loops1 converted to inline assembly
selftests/bpf: verifier/jeq_infer_not_null converted to inline assembly
selftests/bpf: verifier/direct_packet_access converted to inline assembly
selftests/bpf: verifier/d_path converted to inline assembly
selftests/bpf: verifier/ctx converted to inline assembly
selftests/bpf: verifier/btf_ctx_access converted to inline assembly
selftests/bpf: verifier/bpf_get_stack converted to inline assembly
...
====================
Link: https://lore.kernel.org/r/20230421211035.9111-1-daniel@iogearbox.net
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
This adds minimal support for BPF_PROG_TYPE_NETFILTER bpf programs
that will be invoked via the NF_HOOK() points in the ip stack.
Invocation incurs an indirect call. This is not a necessity: Its
possible to add 'DEFINE_BPF_DISPATCHER(nf_progs)' and handle the
program invocation with the same method already done for xdp progs.
This isn't done here to keep the size of this chunk down.
Verifier restricts verdicts to either DROP or ACCEPT.
Signed-off-by: Florian Westphal <fw@strlen.de>
Link: https://lore.kernel.org/r/20230421170300.24115-3-fw@strlen.de
Signed-off-by: Alexei Starovoitov <ast@kernel.org>