Following the introduction of the generic ECC engine infrastructure, it
was necessary to reorganize the code and move the ECC configuration in
the ->attach_chip() hook. Failing to do that properly lead to a first
series of fixes supposed to stabilize the situation. Unfortunately, this
only fixed the use of software ECC engines, preventing any other kind of
engine to be used, including on-die ones.
It is now time to (finally) fix the situation by ensuring that we still
provide a default (eg. software ECC) but will still support different
ECC engines such as on-die ECC engines if properly described in the
device tree.
There are no changes needed on the core side in order to do this, but we
just need to leverage the logic there which allows:
1- a subsystem default (set to Host engines in the raw NAND world)
2- a driver specific default (here set to software ECC engines)
3- any type of engine requested by the user (ie. described in the DT)
As the raw NAND subsystem has not yet been fully converted to the ECC
engine infrastructure, in order to provide a default ECC engine for this
driver we need to set chip->ecc.engine_type *before* calling
nand_scan(). During the initialization step, the core will consider this
entry as the default engine for this driver. This value may of course
be overloaded by the user if the usual DT properties are provided.
Fixes: d525914b5b
("mtd: rawnand: xway: Move the ECC initialization to ->attach_chip()")
Cc: stable@vger.kernel.org
Cc: Jan Hoffmann <jan@3e8.eu>
Cc: Kestrel seventyfour <kestrelseventyfour@gmail.com>
Signed-off-by: Miquel Raynal <miquel.raynal@bootlin.com>
Tested-by: Jan Hoffmann <jan@3e8.eu>
Link: https://lore.kernel.org/linux-mtd/20210928222258.199726-10-miquel.raynal@bootlin.com
268 lines
7.1 KiB
C
268 lines
7.1 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
*
|
|
* Copyright © 2012 John Crispin <john@phrozen.org>
|
|
* Copyright © 2016 Hauke Mehrtens <hauke@hauke-m.de>
|
|
*/
|
|
|
|
#include <linux/mtd/rawnand.h>
|
|
#include <linux/of_gpio.h>
|
|
#include <linux/of_platform.h>
|
|
|
|
#include <lantiq_soc.h>
|
|
|
|
/* nand registers */
|
|
#define EBU_ADDSEL1 0x24
|
|
#define EBU_NAND_CON 0xB0
|
|
#define EBU_NAND_WAIT 0xB4
|
|
#define NAND_WAIT_RD BIT(0) /* NAND flash status output */
|
|
#define NAND_WAIT_WR_C BIT(3) /* NAND Write/Read complete */
|
|
#define EBU_NAND_ECC0 0xB8
|
|
#define EBU_NAND_ECC_AC 0xBC
|
|
|
|
/*
|
|
* nand commands
|
|
* The pins of the NAND chip are selected based on the address bits of the
|
|
* "register" read and write. There are no special registers, but an
|
|
* address range and the lower address bits are used to activate the
|
|
* correct line. For example when the bit (1 << 2) is set in the address
|
|
* the ALE pin will be activated.
|
|
*/
|
|
#define NAND_CMD_ALE BIT(2) /* address latch enable */
|
|
#define NAND_CMD_CLE BIT(3) /* command latch enable */
|
|
#define NAND_CMD_CS BIT(4) /* chip select */
|
|
#define NAND_CMD_SE BIT(5) /* spare area access latch */
|
|
#define NAND_CMD_WP BIT(6) /* write protect */
|
|
#define NAND_WRITE_CMD (NAND_CMD_CS | NAND_CMD_CLE)
|
|
#define NAND_WRITE_ADDR (NAND_CMD_CS | NAND_CMD_ALE)
|
|
#define NAND_WRITE_DATA (NAND_CMD_CS)
|
|
#define NAND_READ_DATA (NAND_CMD_CS)
|
|
|
|
/* we need to tel the ebu which addr we mapped the nand to */
|
|
#define ADDSEL1_MASK(x) (x << 4)
|
|
#define ADDSEL1_REGEN 1
|
|
|
|
/* we need to tell the EBU that we have nand attached and set it up properly */
|
|
#define BUSCON1_SETUP (1 << 22)
|
|
#define BUSCON1_BCGEN_RES (0x3 << 12)
|
|
#define BUSCON1_WAITWRC2 (2 << 8)
|
|
#define BUSCON1_WAITRDC2 (2 << 6)
|
|
#define BUSCON1_HOLDC1 (1 << 4)
|
|
#define BUSCON1_RECOVC1 (1 << 2)
|
|
#define BUSCON1_CMULT4 1
|
|
|
|
#define NAND_CON_CE (1 << 20)
|
|
#define NAND_CON_OUT_CS1 (1 << 10)
|
|
#define NAND_CON_IN_CS1 (1 << 8)
|
|
#define NAND_CON_PRE_P (1 << 7)
|
|
#define NAND_CON_WP_P (1 << 6)
|
|
#define NAND_CON_SE_P (1 << 5)
|
|
#define NAND_CON_CS_P (1 << 4)
|
|
#define NAND_CON_CSMUX (1 << 1)
|
|
#define NAND_CON_NANDM 1
|
|
|
|
struct xway_nand_data {
|
|
struct nand_controller controller;
|
|
struct nand_chip chip;
|
|
unsigned long csflags;
|
|
void __iomem *nandaddr;
|
|
};
|
|
|
|
static u8 xway_readb(struct mtd_info *mtd, int op)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
return readb(data->nandaddr + op);
|
|
}
|
|
|
|
static void xway_writeb(struct mtd_info *mtd, int op, u8 value)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
writeb(value, data->nandaddr + op);
|
|
}
|
|
|
|
static void xway_select_chip(struct nand_chip *chip, int select)
|
|
{
|
|
struct xway_nand_data *data = nand_get_controller_data(chip);
|
|
|
|
switch (select) {
|
|
case -1:
|
|
ltq_ebu_w32_mask(NAND_CON_CE, 0, EBU_NAND_CON);
|
|
ltq_ebu_w32_mask(NAND_CON_NANDM, 0, EBU_NAND_CON);
|
|
spin_unlock_irqrestore(&ebu_lock, data->csflags);
|
|
break;
|
|
case 0:
|
|
spin_lock_irqsave(&ebu_lock, data->csflags);
|
|
ltq_ebu_w32_mask(0, NAND_CON_NANDM, EBU_NAND_CON);
|
|
ltq_ebu_w32_mask(0, NAND_CON_CE, EBU_NAND_CON);
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void xway_cmd_ctrl(struct nand_chip *chip, int cmd, unsigned int ctrl)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (cmd == NAND_CMD_NONE)
|
|
return;
|
|
|
|
if (ctrl & NAND_CLE)
|
|
xway_writeb(mtd, NAND_WRITE_CMD, cmd);
|
|
else if (ctrl & NAND_ALE)
|
|
xway_writeb(mtd, NAND_WRITE_ADDR, cmd);
|
|
|
|
while ((ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_WR_C) == 0)
|
|
;
|
|
}
|
|
|
|
static int xway_dev_ready(struct nand_chip *chip)
|
|
{
|
|
return ltq_ebu_r32(EBU_NAND_WAIT) & NAND_WAIT_RD;
|
|
}
|
|
|
|
static unsigned char xway_read_byte(struct nand_chip *chip)
|
|
{
|
|
return xway_readb(nand_to_mtd(chip), NAND_READ_DATA);
|
|
}
|
|
|
|
static void xway_read_buf(struct nand_chip *chip, u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
buf[i] = xway_readb(nand_to_mtd(chip), NAND_WRITE_DATA);
|
|
}
|
|
|
|
static void xway_write_buf(struct nand_chip *chip, const u_char *buf, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
xway_writeb(nand_to_mtd(chip), NAND_WRITE_DATA, buf[i]);
|
|
}
|
|
|
|
static int xway_attach_chip(struct nand_chip *chip)
|
|
{
|
|
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
|
|
chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN)
|
|
chip->ecc.algo = NAND_ECC_ALGO_HAMMING;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct nand_controller_ops xway_nand_ops = {
|
|
.attach_chip = xway_attach_chip,
|
|
};
|
|
|
|
/*
|
|
* Probe for the NAND device.
|
|
*/
|
|
static int xway_nand_probe(struct platform_device *pdev)
|
|
{
|
|
struct xway_nand_data *data;
|
|
struct mtd_info *mtd;
|
|
int err;
|
|
u32 cs;
|
|
u32 cs_flag = 0;
|
|
|
|
/* Allocate memory for the device structure (and zero it) */
|
|
data = devm_kzalloc(&pdev->dev, sizeof(struct xway_nand_data),
|
|
GFP_KERNEL);
|
|
if (!data)
|
|
return -ENOMEM;
|
|
|
|
data->nandaddr = devm_platform_ioremap_resource(pdev, 0);
|
|
if (IS_ERR(data->nandaddr))
|
|
return PTR_ERR(data->nandaddr);
|
|
|
|
nand_set_flash_node(&data->chip, pdev->dev.of_node);
|
|
mtd = nand_to_mtd(&data->chip);
|
|
mtd->dev.parent = &pdev->dev;
|
|
|
|
data->chip.legacy.cmd_ctrl = xway_cmd_ctrl;
|
|
data->chip.legacy.dev_ready = xway_dev_ready;
|
|
data->chip.legacy.select_chip = xway_select_chip;
|
|
data->chip.legacy.write_buf = xway_write_buf;
|
|
data->chip.legacy.read_buf = xway_read_buf;
|
|
data->chip.legacy.read_byte = xway_read_byte;
|
|
data->chip.legacy.chip_delay = 30;
|
|
|
|
nand_controller_init(&data->controller);
|
|
data->controller.ops = &xway_nand_ops;
|
|
data->chip.controller = &data->controller;
|
|
|
|
platform_set_drvdata(pdev, data);
|
|
nand_set_controller_data(&data->chip, data);
|
|
|
|
/* load our CS from the DT. Either we find a valid 1 or default to 0 */
|
|
err = of_property_read_u32(pdev->dev.of_node, "lantiq,cs", &cs);
|
|
if (!err && cs == 1)
|
|
cs_flag = NAND_CON_IN_CS1 | NAND_CON_OUT_CS1;
|
|
|
|
/* setup the EBU to run in NAND mode on our base addr */
|
|
ltq_ebu_w32(CPHYSADDR(data->nandaddr)
|
|
| ADDSEL1_MASK(3) | ADDSEL1_REGEN, EBU_ADDSEL1);
|
|
|
|
ltq_ebu_w32(BUSCON1_SETUP | BUSCON1_BCGEN_RES | BUSCON1_WAITWRC2
|
|
| BUSCON1_WAITRDC2 | BUSCON1_HOLDC1 | BUSCON1_RECOVC1
|
|
| BUSCON1_CMULT4, LTQ_EBU_BUSCON1);
|
|
|
|
ltq_ebu_w32(NAND_CON_NANDM | NAND_CON_CSMUX | NAND_CON_CS_P
|
|
| NAND_CON_SE_P | NAND_CON_WP_P | NAND_CON_PRE_P
|
|
| cs_flag, EBU_NAND_CON);
|
|
|
|
/*
|
|
* This driver assumes that the default ECC engine should be TYPE_SOFT.
|
|
* Set ->engine_type before registering the NAND devices in order to
|
|
* provide a driver specific default value.
|
|
*/
|
|
data->chip.ecc.engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
|
|
|
/* Scan to find existence of the device */
|
|
err = nand_scan(&data->chip, 1);
|
|
if (err)
|
|
return err;
|
|
|
|
err = mtd_device_register(mtd, NULL, 0);
|
|
if (err)
|
|
nand_cleanup(&data->chip);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* Remove a NAND device.
|
|
*/
|
|
static int xway_nand_remove(struct platform_device *pdev)
|
|
{
|
|
struct xway_nand_data *data = platform_get_drvdata(pdev);
|
|
struct nand_chip *chip = &data->chip;
|
|
int ret;
|
|
|
|
ret = mtd_device_unregister(nand_to_mtd(chip));
|
|
WARN_ON(ret);
|
|
nand_cleanup(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id xway_nand_match[] = {
|
|
{ .compatible = "lantiq,nand-xway" },
|
|
{},
|
|
};
|
|
|
|
static struct platform_driver xway_nand_driver = {
|
|
.probe = xway_nand_probe,
|
|
.remove = xway_nand_remove,
|
|
.driver = {
|
|
.name = "lantiq,nand-xway",
|
|
.of_match_table = xway_nand_match,
|
|
},
|
|
};
|
|
|
|
builtin_platform_driver(xway_nand_driver);
|