Add support for using Timer 1 (i225/i226 have 4 timer registers) as a free-running clock (the "cycles" clock) in addition to Timer 0 (the default, "adjustable clock"). The objective is to allow taprio/etf offloading to coexist with PTP vclocks. Besides the implementation of .getcyclesx64() for i225/i226, to keep timestamping working when vclocks are in use, we also need to add support for TX and RX timestamping using the free running timer, when the requesting socket is bound to a vclock. On the RX side, i225/i226 can be configured to store the values of two timers in the received packet metadata area, so it's a matter of configuring the right registers and retrieving the right timestamp. The TX is a bit more involved because the hardware stores a single timestamp (with the selected timer in the TX descriptor) into one of the timestamp registers. Note some changes at how the timestamps are done for RX, the conversion and adjustment of timestamps are now done closer to the consumption of the timestamp instead of near the reception. Signed-off-by: Vinicius Costa Gomes <vinicius.gomes@intel.com> Tested-by: Naama Meir <naamax.meir@linux.intel.com> Signed-off-by: Tony Nguyen <anthony.l.nguyen@intel.com>
1277 lines
33 KiB
C
1277 lines
33 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2019 Intel Corporation */
|
|
|
|
#include "igc.h"
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/device.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/ptp_classify.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/ktime.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/iopoll.h>
|
|
|
|
#define INCVALUE_MASK 0x7fffffff
|
|
#define ISGN 0x80000000
|
|
|
|
#define IGC_PTP_TX_TIMEOUT (HZ * 15)
|
|
|
|
#define IGC_PTM_STAT_SLEEP 2
|
|
#define IGC_PTM_STAT_TIMEOUT 100
|
|
|
|
/* SYSTIM read access for I225 */
|
|
void igc_ptp_read(struct igc_adapter *adapter, struct timespec64 *ts)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u32 sec, nsec;
|
|
|
|
/* The timestamp is latched when SYSTIML is read. */
|
|
nsec = rd32(IGC_SYSTIML);
|
|
sec = rd32(IGC_SYSTIMH);
|
|
|
|
ts->tv_sec = sec;
|
|
ts->tv_nsec = nsec;
|
|
}
|
|
|
|
static void igc_ptp_write_i225(struct igc_adapter *adapter,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
|
|
wr32(IGC_SYSTIML, ts->tv_nsec);
|
|
wr32(IGC_SYSTIMH, ts->tv_sec);
|
|
}
|
|
|
|
static int igc_ptp_adjfine_i225(struct ptp_clock_info *ptp, long scaled_ppm)
|
|
{
|
|
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
|
|
ptp_caps);
|
|
struct igc_hw *hw = &igc->hw;
|
|
int neg_adj = 0;
|
|
u64 rate;
|
|
u32 inca;
|
|
|
|
if (scaled_ppm < 0) {
|
|
neg_adj = 1;
|
|
scaled_ppm = -scaled_ppm;
|
|
}
|
|
rate = scaled_ppm;
|
|
rate <<= 14;
|
|
rate = div_u64(rate, 78125);
|
|
|
|
inca = rate & INCVALUE_MASK;
|
|
if (neg_adj)
|
|
inca |= ISGN;
|
|
|
|
wr32(IGC_TIMINCA, inca);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igc_ptp_adjtime_i225(struct ptp_clock_info *ptp, s64 delta)
|
|
{
|
|
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
|
|
ptp_caps);
|
|
struct timespec64 now, then = ns_to_timespec64(delta);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
|
|
igc_ptp_read(igc, &now);
|
|
now = timespec64_add(now, then);
|
|
igc_ptp_write_i225(igc, (const struct timespec64 *)&now);
|
|
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igc_ptp_gettimex64_i225(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
|
|
ptp_caps);
|
|
struct igc_hw *hw = &igc->hw;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
|
|
ptp_read_system_prets(sts);
|
|
ts->tv_nsec = rd32(IGC_SYSTIML);
|
|
ts->tv_sec = rd32(IGC_SYSTIMH);
|
|
ptp_read_system_postts(sts);
|
|
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igc_ptp_settime_i225(struct ptp_clock_info *ptp,
|
|
const struct timespec64 *ts)
|
|
{
|
|
struct igc_adapter *igc = container_of(ptp, struct igc_adapter,
|
|
ptp_caps);
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
|
|
igc_ptp_write_i225(igc, ts);
|
|
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void igc_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
|
|
{
|
|
u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
|
|
static const u32 mask[IGC_N_SDP] = {
|
|
IGC_CTRL_SDP0_DIR,
|
|
IGC_CTRL_SDP1_DIR,
|
|
IGC_CTRL_EXT_SDP2_DIR,
|
|
IGC_CTRL_EXT_SDP3_DIR,
|
|
};
|
|
|
|
if (input)
|
|
*ptr &= ~mask[pin];
|
|
else
|
|
*ptr |= mask[pin];
|
|
}
|
|
|
|
static void igc_pin_perout(struct igc_adapter *igc, int chan, int pin, int freq)
|
|
{
|
|
static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
|
|
IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
|
|
};
|
|
static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
|
|
IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
|
|
};
|
|
static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
|
|
};
|
|
static const u32 igc_ts_sdp_sel_tt0[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_SEL_TT0, IGC_TS_SDP1_SEL_TT0,
|
|
IGC_TS_SDP2_SEL_TT0, IGC_TS_SDP3_SEL_TT0,
|
|
};
|
|
static const u32 igc_ts_sdp_sel_tt1[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_SEL_TT1, IGC_TS_SDP1_SEL_TT1,
|
|
IGC_TS_SDP2_SEL_TT1, IGC_TS_SDP3_SEL_TT1,
|
|
};
|
|
static const u32 igc_ts_sdp_sel_fc0[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_SEL_FC0, IGC_TS_SDP1_SEL_FC0,
|
|
IGC_TS_SDP2_SEL_FC0, IGC_TS_SDP3_SEL_FC0,
|
|
};
|
|
static const u32 igc_ts_sdp_sel_fc1[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
|
|
IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
|
|
};
|
|
static const u32 igc_ts_sdp_sel_clr[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_SEL_FC1, IGC_TS_SDP1_SEL_FC1,
|
|
IGC_TS_SDP2_SEL_FC1, IGC_TS_SDP3_SEL_FC1,
|
|
};
|
|
struct igc_hw *hw = &igc->hw;
|
|
u32 ctrl, ctrl_ext, tssdp = 0;
|
|
|
|
ctrl = rd32(IGC_CTRL);
|
|
ctrl_ext = rd32(IGC_CTRL_EXT);
|
|
tssdp = rd32(IGC_TSSDP);
|
|
|
|
igc_pin_direction(pin, 0, &ctrl, &ctrl_ext);
|
|
|
|
/* Make sure this pin is not enabled as an input. */
|
|
if ((tssdp & IGC_AUX0_SEL_SDP3) == igc_aux0_sel_sdp[pin])
|
|
tssdp &= ~IGC_AUX0_TS_SDP_EN;
|
|
|
|
if ((tssdp & IGC_AUX1_SEL_SDP3) == igc_aux1_sel_sdp[pin])
|
|
tssdp &= ~IGC_AUX1_TS_SDP_EN;
|
|
|
|
tssdp &= ~igc_ts_sdp_sel_clr[pin];
|
|
if (freq) {
|
|
if (chan == 1)
|
|
tssdp |= igc_ts_sdp_sel_fc1[pin];
|
|
else
|
|
tssdp |= igc_ts_sdp_sel_fc0[pin];
|
|
} else {
|
|
if (chan == 1)
|
|
tssdp |= igc_ts_sdp_sel_tt1[pin];
|
|
else
|
|
tssdp |= igc_ts_sdp_sel_tt0[pin];
|
|
}
|
|
tssdp |= igc_ts_sdp_en[pin];
|
|
|
|
wr32(IGC_TSSDP, tssdp);
|
|
wr32(IGC_CTRL, ctrl);
|
|
wr32(IGC_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
static void igc_pin_extts(struct igc_adapter *igc, int chan, int pin)
|
|
{
|
|
static const u32 igc_aux0_sel_sdp[IGC_N_SDP] = {
|
|
IGC_AUX0_SEL_SDP0, IGC_AUX0_SEL_SDP1, IGC_AUX0_SEL_SDP2, IGC_AUX0_SEL_SDP3,
|
|
};
|
|
static const u32 igc_aux1_sel_sdp[IGC_N_SDP] = {
|
|
IGC_AUX1_SEL_SDP0, IGC_AUX1_SEL_SDP1, IGC_AUX1_SEL_SDP2, IGC_AUX1_SEL_SDP3,
|
|
};
|
|
static const u32 igc_ts_sdp_en[IGC_N_SDP] = {
|
|
IGC_TS_SDP0_EN, IGC_TS_SDP1_EN, IGC_TS_SDP2_EN, IGC_TS_SDP3_EN,
|
|
};
|
|
struct igc_hw *hw = &igc->hw;
|
|
u32 ctrl, ctrl_ext, tssdp = 0;
|
|
|
|
ctrl = rd32(IGC_CTRL);
|
|
ctrl_ext = rd32(IGC_CTRL_EXT);
|
|
tssdp = rd32(IGC_TSSDP);
|
|
|
|
igc_pin_direction(pin, 1, &ctrl, &ctrl_ext);
|
|
|
|
/* Make sure this pin is not enabled as an output. */
|
|
tssdp &= ~igc_ts_sdp_en[pin];
|
|
|
|
if (chan == 1) {
|
|
tssdp &= ~IGC_AUX1_SEL_SDP3;
|
|
tssdp |= igc_aux1_sel_sdp[pin] | IGC_AUX1_TS_SDP_EN;
|
|
} else {
|
|
tssdp &= ~IGC_AUX0_SEL_SDP3;
|
|
tssdp |= igc_aux0_sel_sdp[pin] | IGC_AUX0_TS_SDP_EN;
|
|
}
|
|
|
|
wr32(IGC_TSSDP, tssdp);
|
|
wr32(IGC_CTRL, ctrl);
|
|
wr32(IGC_CTRL_EXT, ctrl_ext);
|
|
}
|
|
|
|
static int igc_ptp_feature_enable_i225(struct ptp_clock_info *ptp,
|
|
struct ptp_clock_request *rq, int on)
|
|
{
|
|
struct igc_adapter *igc =
|
|
container_of(ptp, struct igc_adapter, ptp_caps);
|
|
struct igc_hw *hw = &igc->hw;
|
|
unsigned long flags;
|
|
struct timespec64 ts;
|
|
int use_freq = 0, pin = -1;
|
|
u32 tsim, tsauxc, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
|
|
s64 ns;
|
|
|
|
switch (rq->type) {
|
|
case PTP_CLK_REQ_EXTTS:
|
|
/* Reject requests with unsupported flags */
|
|
if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
|
|
PTP_RISING_EDGE |
|
|
PTP_FALLING_EDGE |
|
|
PTP_STRICT_FLAGS))
|
|
return -EOPNOTSUPP;
|
|
|
|
/* Reject requests failing to enable both edges. */
|
|
if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
|
|
(rq->extts.flags & PTP_ENABLE_FEATURE) &&
|
|
(rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (on) {
|
|
pin = ptp_find_pin(igc->ptp_clock, PTP_PF_EXTTS,
|
|
rq->extts.index);
|
|
if (pin < 0)
|
|
return -EBUSY;
|
|
}
|
|
if (rq->extts.index == 1) {
|
|
tsauxc_mask = IGC_TSAUXC_EN_TS1;
|
|
tsim_mask = IGC_TSICR_AUTT1;
|
|
} else {
|
|
tsauxc_mask = IGC_TSAUXC_EN_TS0;
|
|
tsim_mask = IGC_TSICR_AUTT0;
|
|
}
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
tsauxc = rd32(IGC_TSAUXC);
|
|
tsim = rd32(IGC_TSIM);
|
|
if (on) {
|
|
igc_pin_extts(igc, rq->extts.index, pin);
|
|
tsauxc |= tsauxc_mask;
|
|
tsim |= tsim_mask;
|
|
} else {
|
|
tsauxc &= ~tsauxc_mask;
|
|
tsim &= ~tsim_mask;
|
|
}
|
|
wr32(IGC_TSAUXC, tsauxc);
|
|
wr32(IGC_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
return 0;
|
|
|
|
case PTP_CLK_REQ_PEROUT:
|
|
/* Reject requests with unsupported flags */
|
|
if (rq->perout.flags)
|
|
return -EOPNOTSUPP;
|
|
|
|
if (on) {
|
|
pin = ptp_find_pin(igc->ptp_clock, PTP_PF_PEROUT,
|
|
rq->perout.index);
|
|
if (pin < 0)
|
|
return -EBUSY;
|
|
}
|
|
ts.tv_sec = rq->perout.period.sec;
|
|
ts.tv_nsec = rq->perout.period.nsec;
|
|
ns = timespec64_to_ns(&ts);
|
|
ns = ns >> 1;
|
|
if (on && (ns <= 70000000LL || ns == 125000000LL ||
|
|
ns == 250000000LL || ns == 500000000LL)) {
|
|
if (ns < 8LL)
|
|
return -EINVAL;
|
|
use_freq = 1;
|
|
}
|
|
ts = ns_to_timespec64(ns);
|
|
if (rq->perout.index == 1) {
|
|
if (use_freq) {
|
|
tsauxc_mask = IGC_TSAUXC_EN_CLK1 | IGC_TSAUXC_ST1;
|
|
tsim_mask = 0;
|
|
} else {
|
|
tsauxc_mask = IGC_TSAUXC_EN_TT1;
|
|
tsim_mask = IGC_TSICR_TT1;
|
|
}
|
|
trgttiml = IGC_TRGTTIML1;
|
|
trgttimh = IGC_TRGTTIMH1;
|
|
freqout = IGC_FREQOUT1;
|
|
} else {
|
|
if (use_freq) {
|
|
tsauxc_mask = IGC_TSAUXC_EN_CLK0 | IGC_TSAUXC_ST0;
|
|
tsim_mask = 0;
|
|
} else {
|
|
tsauxc_mask = IGC_TSAUXC_EN_TT0;
|
|
tsim_mask = IGC_TSICR_TT0;
|
|
}
|
|
trgttiml = IGC_TRGTTIML0;
|
|
trgttimh = IGC_TRGTTIMH0;
|
|
freqout = IGC_FREQOUT0;
|
|
}
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
tsauxc = rd32(IGC_TSAUXC);
|
|
tsim = rd32(IGC_TSIM);
|
|
if (rq->perout.index == 1) {
|
|
tsauxc &= ~(IGC_TSAUXC_EN_TT1 | IGC_TSAUXC_EN_CLK1 |
|
|
IGC_TSAUXC_ST1);
|
|
tsim &= ~IGC_TSICR_TT1;
|
|
} else {
|
|
tsauxc &= ~(IGC_TSAUXC_EN_TT0 | IGC_TSAUXC_EN_CLK0 |
|
|
IGC_TSAUXC_ST0);
|
|
tsim &= ~IGC_TSICR_TT0;
|
|
}
|
|
if (on) {
|
|
struct timespec64 safe_start;
|
|
int i = rq->perout.index;
|
|
|
|
igc_pin_perout(igc, i, pin, use_freq);
|
|
igc_ptp_read(igc, &safe_start);
|
|
|
|
/* PPS output start time is triggered by Target time(TT)
|
|
* register. Programming any past time value into TT
|
|
* register will cause PPS to never start. Need to make
|
|
* sure we program the TT register a time ahead in
|
|
* future. There isn't a stringent need to fire PPS out
|
|
* right away. Adding +2 seconds should take care of
|
|
* corner cases. Let's say if the SYSTIML is close to
|
|
* wrap up and the timer keeps ticking as we program the
|
|
* register, adding +2seconds is safe bet.
|
|
*/
|
|
safe_start.tv_sec += 2;
|
|
|
|
if (rq->perout.start.sec < safe_start.tv_sec)
|
|
igc->perout[i].start.tv_sec = safe_start.tv_sec;
|
|
else
|
|
igc->perout[i].start.tv_sec = rq->perout.start.sec;
|
|
igc->perout[i].start.tv_nsec = rq->perout.start.nsec;
|
|
igc->perout[i].period.tv_sec = ts.tv_sec;
|
|
igc->perout[i].period.tv_nsec = ts.tv_nsec;
|
|
wr32(trgttimh, (u32)igc->perout[i].start.tv_sec);
|
|
/* For now, always select timer 0 as source. */
|
|
wr32(trgttiml, (u32)(igc->perout[i].start.tv_nsec |
|
|
IGC_TT_IO_TIMER_SEL_SYSTIM0));
|
|
if (use_freq)
|
|
wr32(freqout, ns);
|
|
tsauxc |= tsauxc_mask;
|
|
tsim |= tsim_mask;
|
|
}
|
|
wr32(IGC_TSAUXC, tsauxc);
|
|
wr32(IGC_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
return 0;
|
|
|
|
case PTP_CLK_REQ_PPS:
|
|
spin_lock_irqsave(&igc->tmreg_lock, flags);
|
|
tsim = rd32(IGC_TSIM);
|
|
if (on)
|
|
tsim |= IGC_TSICR_SYS_WRAP;
|
|
else
|
|
tsim &= ~IGC_TSICR_SYS_WRAP;
|
|
igc->pps_sys_wrap_on = on;
|
|
wr32(IGC_TSIM, tsim);
|
|
spin_unlock_irqrestore(&igc->tmreg_lock, flags);
|
|
return 0;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
static int igc_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
|
|
enum ptp_pin_function func, unsigned int chan)
|
|
{
|
|
switch (func) {
|
|
case PTP_PF_NONE:
|
|
case PTP_PF_EXTTS:
|
|
case PTP_PF_PEROUT:
|
|
break;
|
|
case PTP_PF_PHYSYNC:
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_systim_to_hwtstamp - convert system time value to HW timestamp
|
|
* @adapter: board private structure
|
|
* @hwtstamps: timestamp structure to update
|
|
* @systim: unsigned 64bit system time value
|
|
*
|
|
* We need to convert the system time value stored in the RX/TXSTMP registers
|
|
* into a hwtstamp which can be used by the upper level timestamping functions.
|
|
*
|
|
* Returns 0 on success.
|
|
**/
|
|
static int igc_ptp_systim_to_hwtstamp(struct igc_adapter *adapter,
|
|
struct skb_shared_hwtstamps *hwtstamps,
|
|
u64 systim)
|
|
{
|
|
switch (adapter->hw.mac.type) {
|
|
case igc_i225:
|
|
memset(hwtstamps, 0, sizeof(*hwtstamps));
|
|
/* Upper 32 bits contain s, lower 32 bits contain ns. */
|
|
hwtstamps->hwtstamp = ktime_set(systim >> 32,
|
|
systim & 0xFFFFFFFF);
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_rx_pktstamp - Retrieve timestamp from Rx packet buffer
|
|
* @adapter: Pointer to adapter the packet buffer belongs to
|
|
* @buf: Pointer to start of timestamp in HW format (2 32-bit words)
|
|
*
|
|
* This function retrieves and converts the timestamp stored at @buf
|
|
* to ktime_t, adjusting for hardware latencies.
|
|
*
|
|
* Returns timestamp value.
|
|
*/
|
|
ktime_t igc_ptp_rx_pktstamp(struct igc_adapter *adapter, __le32 *buf)
|
|
{
|
|
ktime_t timestamp;
|
|
u32 secs, nsecs;
|
|
int adjust;
|
|
|
|
nsecs = le32_to_cpu(buf[0]);
|
|
secs = le32_to_cpu(buf[1]);
|
|
|
|
timestamp = ktime_set(secs, nsecs);
|
|
|
|
/* Adjust timestamp for the RX latency based on link speed */
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adjust = IGC_I225_RX_LATENCY_10;
|
|
break;
|
|
case SPEED_100:
|
|
adjust = IGC_I225_RX_LATENCY_100;
|
|
break;
|
|
case SPEED_1000:
|
|
adjust = IGC_I225_RX_LATENCY_1000;
|
|
break;
|
|
case SPEED_2500:
|
|
adjust = IGC_I225_RX_LATENCY_2500;
|
|
break;
|
|
default:
|
|
adjust = 0;
|
|
netdev_warn_once(adapter->netdev, "Imprecise timestamp\n");
|
|
break;
|
|
}
|
|
|
|
return ktime_sub_ns(timestamp, adjust);
|
|
}
|
|
|
|
static void igc_ptp_disable_rx_timestamp(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u32 val;
|
|
int i;
|
|
|
|
wr32(IGC_TSYNCRXCTL, 0);
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
val = rd32(IGC_SRRCTL(i));
|
|
val &= ~IGC_SRRCTL_TIMESTAMP;
|
|
wr32(IGC_SRRCTL(i), val);
|
|
}
|
|
|
|
val = rd32(IGC_RXPBS);
|
|
val &= ~IGC_RXPBS_CFG_TS_EN;
|
|
wr32(IGC_RXPBS, val);
|
|
}
|
|
|
|
static void igc_ptp_enable_rx_timestamp(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u32 val;
|
|
int i;
|
|
|
|
val = rd32(IGC_RXPBS);
|
|
val |= IGC_RXPBS_CFG_TS_EN;
|
|
wr32(IGC_RXPBS, val);
|
|
|
|
for (i = 0; i < adapter->num_rx_queues; i++) {
|
|
val = rd32(IGC_SRRCTL(i));
|
|
/* Enable retrieving timestamps from timer 0, the
|
|
* "adjustable clock" and timer 1 the "free running
|
|
* clock".
|
|
*/
|
|
val |= IGC_SRRCTL_TIMER1SEL(1) | IGC_SRRCTL_TIMER0SEL(0) |
|
|
IGC_SRRCTL_TIMESTAMP;
|
|
wr32(IGC_SRRCTL(i), val);
|
|
}
|
|
|
|
val = IGC_TSYNCRXCTL_ENABLED | IGC_TSYNCRXCTL_TYPE_ALL |
|
|
IGC_TSYNCRXCTL_RXSYNSIG;
|
|
wr32(IGC_TSYNCRXCTL, val);
|
|
}
|
|
|
|
static void igc_ptp_clear_tx_tstamp(struct igc_adapter *adapter)
|
|
{
|
|
unsigned long flags;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
|
|
|
|
for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
|
|
struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
|
|
|
|
dev_kfree_skb_any(tstamp->skb);
|
|
tstamp->skb = NULL;
|
|
}
|
|
|
|
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
|
|
}
|
|
|
|
static void igc_ptp_disable_tx_timestamp(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
/* Clear the flags first to avoid new packets to be enqueued
|
|
* for TX timestamping.
|
|
*/
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
struct igc_ring *tx_ring = adapter->tx_ring[i];
|
|
|
|
clear_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
|
|
}
|
|
|
|
/* Now we can clean the pending TX timestamp requests. */
|
|
igc_ptp_clear_tx_tstamp(adapter);
|
|
|
|
wr32(IGC_TSYNCTXCTL, 0);
|
|
}
|
|
|
|
static void igc_ptp_enable_tx_timestamp(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
wr32(IGC_TSYNCTXCTL, IGC_TSYNCTXCTL_ENABLED | IGC_TSYNCTXCTL_TXSYNSIG);
|
|
|
|
/* Read TXSTMP registers to discard any timestamp previously stored. */
|
|
rd32(IGC_TXSTMPL);
|
|
rd32(IGC_TXSTMPH);
|
|
|
|
/* The hardware is ready to accept TX timestamp requests,
|
|
* notify the transmit path.
|
|
*/
|
|
for (i = 0; i < adapter->num_tx_queues; i++) {
|
|
struct igc_ring *tx_ring = adapter->tx_ring[i];
|
|
|
|
set_bit(IGC_RING_FLAG_TX_HWTSTAMP, &tx_ring->flags);
|
|
}
|
|
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_set_timestamp_mode - setup hardware for timestamping
|
|
* @adapter: networking device structure
|
|
* @config: hwtstamp configuration
|
|
*
|
|
* Return: 0 in case of success, negative errno code otherwise.
|
|
*/
|
|
static int igc_ptp_set_timestamp_mode(struct igc_adapter *adapter,
|
|
struct hwtstamp_config *config)
|
|
{
|
|
switch (config->tx_type) {
|
|
case HWTSTAMP_TX_OFF:
|
|
igc_ptp_disable_tx_timestamp(adapter);
|
|
break;
|
|
case HWTSTAMP_TX_ON:
|
|
igc_ptp_enable_tx_timestamp(adapter);
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
switch (config->rx_filter) {
|
|
case HWTSTAMP_FILTER_NONE:
|
|
igc_ptp_disable_rx_timestamp(adapter);
|
|
break;
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
|
|
case HWTSTAMP_FILTER_PTP_V2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
|
|
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
|
|
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
|
|
case HWTSTAMP_FILTER_NTP_ALL:
|
|
case HWTSTAMP_FILTER_ALL:
|
|
igc_ptp_enable_rx_timestamp(adapter);
|
|
config->rx_filter = HWTSTAMP_FILTER_ALL;
|
|
break;
|
|
default:
|
|
return -ERANGE;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Requires adapter->ptp_tx_lock held by caller. */
|
|
static void igc_ptp_tx_timeout(struct igc_adapter *adapter,
|
|
struct igc_tx_timestamp_request *tstamp)
|
|
{
|
|
dev_kfree_skb_any(tstamp->skb);
|
|
tstamp->skb = NULL;
|
|
adapter->tx_hwtstamp_timeouts++;
|
|
|
|
netdev_warn(adapter->netdev, "Tx timestamp timeout\n");
|
|
}
|
|
|
|
void igc_ptp_tx_hang(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_tx_timestamp_request *tstamp;
|
|
struct igc_hw *hw = &adapter->hw;
|
|
unsigned long flags;
|
|
bool found = false;
|
|
int i;
|
|
|
|
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
|
|
|
|
for (i = 0; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
|
|
tstamp = &adapter->tx_tstamp[i];
|
|
|
|
if (!tstamp->skb)
|
|
continue;
|
|
|
|
if (time_is_after_jiffies(tstamp->start + IGC_PTP_TX_TIMEOUT))
|
|
continue;
|
|
|
|
igc_ptp_tx_timeout(adapter, tstamp);
|
|
found = true;
|
|
}
|
|
|
|
if (found) {
|
|
/* Reading the high register of the first set of timestamp registers
|
|
* clears all the equivalent bits in the TSYNCTXCTL register.
|
|
*/
|
|
rd32(IGC_TXSTMPH_0);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
|
|
}
|
|
|
|
static void igc_ptp_tx_reg_to_stamp(struct igc_adapter *adapter,
|
|
struct igc_tx_timestamp_request *tstamp, u64 regval)
|
|
{
|
|
struct skb_shared_hwtstamps shhwtstamps;
|
|
struct sk_buff *skb;
|
|
int adjust = 0;
|
|
|
|
skb = tstamp->skb;
|
|
if (!skb)
|
|
return;
|
|
|
|
if (igc_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval))
|
|
return;
|
|
|
|
switch (adapter->link_speed) {
|
|
case SPEED_10:
|
|
adjust = IGC_I225_TX_LATENCY_10;
|
|
break;
|
|
case SPEED_100:
|
|
adjust = IGC_I225_TX_LATENCY_100;
|
|
break;
|
|
case SPEED_1000:
|
|
adjust = IGC_I225_TX_LATENCY_1000;
|
|
break;
|
|
case SPEED_2500:
|
|
adjust = IGC_I225_TX_LATENCY_2500;
|
|
break;
|
|
}
|
|
|
|
shhwtstamps.hwtstamp =
|
|
ktime_add_ns(shhwtstamps.hwtstamp, adjust);
|
|
|
|
tstamp->skb = NULL;
|
|
|
|
skb_tstamp_tx(skb, &shhwtstamps);
|
|
dev_kfree_skb_any(skb);
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_tx_hwtstamp - utility function which checks for TX time stamp
|
|
* @adapter: Board private structure
|
|
*
|
|
* Check against the ready mask for which of the timestamp register
|
|
* sets are ready to be retrieved, then retrieve that and notify the
|
|
* rest of the stack.
|
|
*
|
|
* Context: Expects adapter->ptp_tx_lock to be held by caller.
|
|
*/
|
|
static void igc_ptp_tx_hwtstamp(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u64 regval;
|
|
u32 mask;
|
|
int i;
|
|
|
|
mask = rd32(IGC_TSYNCTXCTL) & IGC_TSYNCTXCTL_TXTT_ANY;
|
|
if (mask & IGC_TSYNCTXCTL_TXTT_0) {
|
|
regval = rd32(IGC_TXSTMPL);
|
|
regval |= (u64)rd32(IGC_TXSTMPH) << 32;
|
|
} else {
|
|
/* There's a bug in the hardware that could cause
|
|
* missing interrupts for TX timestamping. The issue
|
|
* is that for new interrupts to be triggered, the
|
|
* IGC_TXSTMPH_0 register must be read.
|
|
*
|
|
* To avoid discarding a valid timestamp that just
|
|
* happened at the "wrong" time, we need to confirm
|
|
* that there was no timestamp captured, we do that by
|
|
* assuming that no two timestamps in sequence have
|
|
* the same nanosecond value.
|
|
*
|
|
* So, we read the "low" register, read the "high"
|
|
* register (to latch a new timestamp) and read the
|
|
* "low" register again, if "old" and "new" versions
|
|
* of the "low" register are different, a valid
|
|
* timestamp was captured, we can read the "high"
|
|
* register again.
|
|
*/
|
|
u32 txstmpl_old, txstmpl_new;
|
|
|
|
txstmpl_old = rd32(IGC_TXSTMPL);
|
|
rd32(IGC_TXSTMPH);
|
|
txstmpl_new = rd32(IGC_TXSTMPL);
|
|
|
|
if (txstmpl_old == txstmpl_new)
|
|
goto done;
|
|
|
|
regval = txstmpl_new;
|
|
regval |= (u64)rd32(IGC_TXSTMPH) << 32;
|
|
}
|
|
|
|
igc_ptp_tx_reg_to_stamp(adapter, &adapter->tx_tstamp[0], regval);
|
|
|
|
done:
|
|
/* Now that the problematic first register was handled, we can
|
|
* use retrieve the timestamps from the other registers
|
|
* (starting from '1') with less complications.
|
|
*/
|
|
for (i = 1; i < IGC_MAX_TX_TSTAMP_REGS; i++) {
|
|
struct igc_tx_timestamp_request *tstamp = &adapter->tx_tstamp[i];
|
|
|
|
if (!(tstamp->mask & mask))
|
|
continue;
|
|
|
|
regval = rd32(tstamp->regl);
|
|
regval |= (u64)rd32(tstamp->regh) << 32;
|
|
|
|
igc_ptp_tx_reg_to_stamp(adapter, tstamp, regval);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_tx_tstamp_event
|
|
* @adapter: board private structure
|
|
*
|
|
* Called when a TX timestamp interrupt happens to retrieve the
|
|
* timestamp and send it up to the socket.
|
|
*/
|
|
void igc_ptp_tx_tstamp_event(struct igc_adapter *adapter)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&adapter->ptp_tx_lock, flags);
|
|
|
|
igc_ptp_tx_hwtstamp(adapter);
|
|
|
|
spin_unlock_irqrestore(&adapter->ptp_tx_lock, flags);
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_set_ts_config - set hardware time stamping config
|
|
* @netdev: network interface device structure
|
|
* @ifr: interface request data
|
|
*
|
|
**/
|
|
int igc_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
|
|
{
|
|
struct igc_adapter *adapter = netdev_priv(netdev);
|
|
struct hwtstamp_config config;
|
|
int err;
|
|
|
|
if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
|
|
return -EFAULT;
|
|
|
|
err = igc_ptp_set_timestamp_mode(adapter, &config);
|
|
if (err)
|
|
return err;
|
|
|
|
/* save these settings for future reference */
|
|
memcpy(&adapter->tstamp_config, &config,
|
|
sizeof(adapter->tstamp_config));
|
|
|
|
return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_get_ts_config - get hardware time stamping config
|
|
* @netdev: network interface device structure
|
|
* @ifr: interface request data
|
|
*
|
|
* Get the hwtstamp_config settings to return to the user. Rather than attempt
|
|
* to deconstruct the settings from the registers, just return a shadow copy
|
|
* of the last known settings.
|
|
**/
|
|
int igc_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
|
|
{
|
|
struct igc_adapter *adapter = netdev_priv(netdev);
|
|
struct hwtstamp_config *config = &adapter->tstamp_config;
|
|
|
|
return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
|
|
-EFAULT : 0;
|
|
}
|
|
|
|
/* The two conditions below must be met for cross timestamping via
|
|
* PCIe PTM:
|
|
*
|
|
* 1. We have an way to convert the timestamps in the PTM messages
|
|
* to something related to the system clocks (right now, only
|
|
* X86 systems with support for the Always Running Timer allow that);
|
|
*
|
|
* 2. We have PTM enabled in the path from the device to the PCIe root port.
|
|
*/
|
|
static bool igc_is_crosststamp_supported(struct igc_adapter *adapter)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_X86_TSC))
|
|
return false;
|
|
|
|
/* FIXME: it was noticed that enabling support for PCIe PTM in
|
|
* some i225-V models could cause lockups when bringing the
|
|
* interface up/down. There should be no downsides to
|
|
* disabling crosstimestamping support for i225-V, as it
|
|
* doesn't have any PTP support. That way we gain some time
|
|
* while root causing the issue.
|
|
*/
|
|
if (adapter->pdev->device == IGC_DEV_ID_I225_V)
|
|
return false;
|
|
|
|
return pcie_ptm_enabled(adapter->pdev);
|
|
}
|
|
|
|
static struct system_counterval_t igc_device_tstamp_to_system(u64 tstamp)
|
|
{
|
|
#if IS_ENABLED(CONFIG_X86_TSC) && !defined(CONFIG_UML)
|
|
return convert_art_ns_to_tsc(tstamp);
|
|
#else
|
|
return (struct system_counterval_t) { };
|
|
#endif
|
|
}
|
|
|
|
static void igc_ptm_log_error(struct igc_adapter *adapter, u32 ptm_stat)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
|
|
switch (ptm_stat) {
|
|
case IGC_PTM_STAT_RET_ERR:
|
|
netdev_err(netdev, "PTM Error: Root port timeout\n");
|
|
break;
|
|
case IGC_PTM_STAT_BAD_PTM_RES:
|
|
netdev_err(netdev, "PTM Error: Bad response, PTM Response Data expected\n");
|
|
break;
|
|
case IGC_PTM_STAT_T4M1_OVFL:
|
|
netdev_err(netdev, "PTM Error: T4 minus T1 overflow\n");
|
|
break;
|
|
case IGC_PTM_STAT_ADJUST_1ST:
|
|
netdev_err(netdev, "PTM Error: 1588 timer adjusted during first PTM cycle\n");
|
|
break;
|
|
case IGC_PTM_STAT_ADJUST_CYC:
|
|
netdev_err(netdev, "PTM Error: 1588 timer adjusted during non-first PTM cycle\n");
|
|
break;
|
|
default:
|
|
netdev_err(netdev, "PTM Error: Unknown error (%#x)\n", ptm_stat);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static int igc_phc_get_syncdevicetime(ktime_t *device,
|
|
struct system_counterval_t *system,
|
|
void *ctx)
|
|
{
|
|
u32 stat, t2_curr_h, t2_curr_l, ctrl;
|
|
struct igc_adapter *adapter = ctx;
|
|
struct igc_hw *hw = &adapter->hw;
|
|
int err, count = 100;
|
|
ktime_t t1, t2_curr;
|
|
|
|
/* Get a snapshot of system clocks to use as historic value. */
|
|
ktime_get_snapshot(&adapter->snapshot);
|
|
|
|
do {
|
|
/* Doing this in a loop because in the event of a
|
|
* badly timed (ha!) system clock adjustment, we may
|
|
* get PTM errors from the PCI root, but these errors
|
|
* are transitory. Repeating the process returns valid
|
|
* data eventually.
|
|
*/
|
|
|
|
/* To "manually" start the PTM cycle we need to clear and
|
|
* then set again the TRIG bit.
|
|
*/
|
|
ctrl = rd32(IGC_PTM_CTRL);
|
|
ctrl &= ~IGC_PTM_CTRL_TRIG;
|
|
wr32(IGC_PTM_CTRL, ctrl);
|
|
ctrl |= IGC_PTM_CTRL_TRIG;
|
|
wr32(IGC_PTM_CTRL, ctrl);
|
|
|
|
/* The cycle only starts "for real" when software notifies
|
|
* that it has read the registers, this is done by setting
|
|
* VALID bit.
|
|
*/
|
|
wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
|
|
|
|
err = readx_poll_timeout(rd32, IGC_PTM_STAT, stat,
|
|
stat, IGC_PTM_STAT_SLEEP,
|
|
IGC_PTM_STAT_TIMEOUT);
|
|
if (err < 0) {
|
|
netdev_err(adapter->netdev, "Timeout reading IGC_PTM_STAT register\n");
|
|
return err;
|
|
}
|
|
|
|
if ((stat & IGC_PTM_STAT_VALID) == IGC_PTM_STAT_VALID)
|
|
break;
|
|
|
|
if (stat & ~IGC_PTM_STAT_VALID) {
|
|
/* An error occurred, log it. */
|
|
igc_ptm_log_error(adapter, stat);
|
|
/* The STAT register is write-1-to-clear (W1C),
|
|
* so write the previous error status to clear it.
|
|
*/
|
|
wr32(IGC_PTM_STAT, stat);
|
|
continue;
|
|
}
|
|
} while (--count);
|
|
|
|
if (!count) {
|
|
netdev_err(adapter->netdev, "Exceeded number of tries for PTM cycle\n");
|
|
return -ETIMEDOUT;
|
|
}
|
|
|
|
t1 = ktime_set(rd32(IGC_PTM_T1_TIM0_H), rd32(IGC_PTM_T1_TIM0_L));
|
|
|
|
t2_curr_l = rd32(IGC_PTM_CURR_T2_L);
|
|
t2_curr_h = rd32(IGC_PTM_CURR_T2_H);
|
|
|
|
/* FIXME: When the register that tells the endianness of the
|
|
* PTM registers are implemented, check them here and add the
|
|
* appropriate conversion.
|
|
*/
|
|
t2_curr_h = swab32(t2_curr_h);
|
|
|
|
t2_curr = ((s64)t2_curr_h << 32 | t2_curr_l);
|
|
|
|
*device = t1;
|
|
*system = igc_device_tstamp_to_system(t2_curr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int igc_ptp_getcrosststamp(struct ptp_clock_info *ptp,
|
|
struct system_device_crosststamp *cts)
|
|
{
|
|
struct igc_adapter *adapter = container_of(ptp, struct igc_adapter,
|
|
ptp_caps);
|
|
|
|
return get_device_system_crosststamp(igc_phc_get_syncdevicetime,
|
|
adapter, &adapter->snapshot, cts);
|
|
}
|
|
|
|
static int igc_ptp_getcyclesx64(struct ptp_clock_info *ptp,
|
|
struct timespec64 *ts,
|
|
struct ptp_system_timestamp *sts)
|
|
{
|
|
struct igc_adapter *igc = container_of(ptp, struct igc_adapter, ptp_caps);
|
|
struct igc_hw *hw = &igc->hw;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&igc->free_timer_lock, flags);
|
|
|
|
ptp_read_system_prets(sts);
|
|
ts->tv_nsec = rd32(IGC_SYSTIML_1);
|
|
ts->tv_sec = rd32(IGC_SYSTIMH_1);
|
|
ptp_read_system_postts(sts);
|
|
|
|
spin_unlock_irqrestore(&igc->free_timer_lock, flags);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_init - Initialize PTP functionality
|
|
* @adapter: Board private structure
|
|
*
|
|
* This function is called at device probe to initialize the PTP
|
|
* functionality.
|
|
*/
|
|
void igc_ptp_init(struct igc_adapter *adapter)
|
|
{
|
|
struct net_device *netdev = adapter->netdev;
|
|
struct igc_tx_timestamp_request *tstamp;
|
|
struct igc_hw *hw = &adapter->hw;
|
|
int i;
|
|
|
|
tstamp = &adapter->tx_tstamp[0];
|
|
tstamp->mask = IGC_TSYNCTXCTL_TXTT_0;
|
|
tstamp->regl = IGC_TXSTMPL_0;
|
|
tstamp->regh = IGC_TXSTMPH_0;
|
|
tstamp->flags = 0;
|
|
|
|
tstamp = &adapter->tx_tstamp[1];
|
|
tstamp->mask = IGC_TSYNCTXCTL_TXTT_1;
|
|
tstamp->regl = IGC_TXSTMPL_1;
|
|
tstamp->regh = IGC_TXSTMPH_1;
|
|
tstamp->flags = IGC_TX_FLAGS_TSTAMP_1;
|
|
|
|
tstamp = &adapter->tx_tstamp[2];
|
|
tstamp->mask = IGC_TSYNCTXCTL_TXTT_2;
|
|
tstamp->regl = IGC_TXSTMPL_2;
|
|
tstamp->regh = IGC_TXSTMPH_2;
|
|
tstamp->flags = IGC_TX_FLAGS_TSTAMP_2;
|
|
|
|
tstamp = &adapter->tx_tstamp[3];
|
|
tstamp->mask = IGC_TSYNCTXCTL_TXTT_3;
|
|
tstamp->regl = IGC_TXSTMPL_3;
|
|
tstamp->regh = IGC_TXSTMPH_3;
|
|
tstamp->flags = IGC_TX_FLAGS_TSTAMP_3;
|
|
|
|
switch (hw->mac.type) {
|
|
case igc_i225:
|
|
for (i = 0; i < IGC_N_SDP; i++) {
|
|
struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
|
|
|
|
snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
|
|
ppd->index = i;
|
|
ppd->func = PTP_PF_NONE;
|
|
}
|
|
snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
|
|
adapter->ptp_caps.owner = THIS_MODULE;
|
|
adapter->ptp_caps.max_adj = 62499999;
|
|
adapter->ptp_caps.adjfine = igc_ptp_adjfine_i225;
|
|
adapter->ptp_caps.adjtime = igc_ptp_adjtime_i225;
|
|
adapter->ptp_caps.gettimex64 = igc_ptp_gettimex64_i225;
|
|
adapter->ptp_caps.getcyclesx64 = igc_ptp_getcyclesx64;
|
|
adapter->ptp_caps.settime64 = igc_ptp_settime_i225;
|
|
adapter->ptp_caps.enable = igc_ptp_feature_enable_i225;
|
|
adapter->ptp_caps.pps = 1;
|
|
adapter->ptp_caps.pin_config = adapter->sdp_config;
|
|
adapter->ptp_caps.n_ext_ts = IGC_N_EXTTS;
|
|
adapter->ptp_caps.n_per_out = IGC_N_PEROUT;
|
|
adapter->ptp_caps.n_pins = IGC_N_SDP;
|
|
adapter->ptp_caps.verify = igc_ptp_verify_pin;
|
|
|
|
if (!igc_is_crosststamp_supported(adapter))
|
|
break;
|
|
|
|
adapter->ptp_caps.getcrosststamp = igc_ptp_getcrosststamp;
|
|
break;
|
|
default:
|
|
adapter->ptp_clock = NULL;
|
|
return;
|
|
}
|
|
|
|
spin_lock_init(&adapter->ptp_tx_lock);
|
|
spin_lock_init(&adapter->free_timer_lock);
|
|
spin_lock_init(&adapter->tmreg_lock);
|
|
|
|
adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
|
|
adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
|
|
|
|
adapter->prev_ptp_time = ktime_to_timespec64(ktime_get_real());
|
|
adapter->ptp_reset_start = ktime_get();
|
|
|
|
adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
|
|
&adapter->pdev->dev);
|
|
if (IS_ERR(adapter->ptp_clock)) {
|
|
adapter->ptp_clock = NULL;
|
|
netdev_err(netdev, "ptp_clock_register failed\n");
|
|
} else if (adapter->ptp_clock) {
|
|
netdev_info(netdev, "PHC added\n");
|
|
adapter->ptp_flags |= IGC_PTP_ENABLED;
|
|
}
|
|
}
|
|
|
|
static void igc_ptp_time_save(struct igc_adapter *adapter)
|
|
{
|
|
igc_ptp_read(adapter, &adapter->prev_ptp_time);
|
|
adapter->ptp_reset_start = ktime_get();
|
|
}
|
|
|
|
static void igc_ptp_time_restore(struct igc_adapter *adapter)
|
|
{
|
|
struct timespec64 ts = adapter->prev_ptp_time;
|
|
ktime_t delta;
|
|
|
|
delta = ktime_sub(ktime_get(), adapter->ptp_reset_start);
|
|
|
|
timespec64_add_ns(&ts, ktime_to_ns(delta));
|
|
|
|
igc_ptp_write_i225(adapter, &ts);
|
|
}
|
|
|
|
static void igc_ptm_stop(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u32 ctrl;
|
|
|
|
ctrl = rd32(IGC_PTM_CTRL);
|
|
ctrl &= ~IGC_PTM_CTRL_EN;
|
|
|
|
wr32(IGC_PTM_CTRL, ctrl);
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_suspend - Disable PTP work items and prepare for suspend
|
|
* @adapter: Board private structure
|
|
*
|
|
* This function stops the overflow check work and PTP Tx timestamp work, and
|
|
* will prepare the device for OS suspend.
|
|
*/
|
|
void igc_ptp_suspend(struct igc_adapter *adapter)
|
|
{
|
|
if (!(adapter->ptp_flags & IGC_PTP_ENABLED))
|
|
return;
|
|
|
|
igc_ptp_clear_tx_tstamp(adapter);
|
|
|
|
if (pci_device_is_present(adapter->pdev)) {
|
|
igc_ptp_time_save(adapter);
|
|
igc_ptm_stop(adapter);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_stop - Disable PTP device and stop the overflow check.
|
|
* @adapter: Board private structure.
|
|
*
|
|
* This function stops the PTP support and cancels the delayed work.
|
|
**/
|
|
void igc_ptp_stop(struct igc_adapter *adapter)
|
|
{
|
|
igc_ptp_suspend(adapter);
|
|
|
|
if (adapter->ptp_clock) {
|
|
ptp_clock_unregister(adapter->ptp_clock);
|
|
netdev_info(adapter->netdev, "PHC removed\n");
|
|
adapter->ptp_flags &= ~IGC_PTP_ENABLED;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* igc_ptp_reset - Re-enable the adapter for PTP following a reset.
|
|
* @adapter: Board private structure.
|
|
*
|
|
* This function handles the reset work required to re-enable the PTP device.
|
|
**/
|
|
void igc_ptp_reset(struct igc_adapter *adapter)
|
|
{
|
|
struct igc_hw *hw = &adapter->hw;
|
|
u32 cycle_ctrl, ctrl;
|
|
unsigned long flags;
|
|
u32 timadj;
|
|
|
|
/* reset the tstamp_config */
|
|
igc_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
|
|
|
|
spin_lock_irqsave(&adapter->tmreg_lock, flags);
|
|
|
|
switch (adapter->hw.mac.type) {
|
|
case igc_i225:
|
|
timadj = rd32(IGC_TIMADJ);
|
|
timadj |= IGC_TIMADJ_ADJUST_METH;
|
|
wr32(IGC_TIMADJ, timadj);
|
|
|
|
wr32(IGC_TSAUXC, 0x0);
|
|
wr32(IGC_TSSDP, 0x0);
|
|
wr32(IGC_TSIM,
|
|
IGC_TSICR_INTERRUPTS |
|
|
(adapter->pps_sys_wrap_on ? IGC_TSICR_SYS_WRAP : 0));
|
|
wr32(IGC_IMS, IGC_IMS_TS);
|
|
|
|
if (!igc_is_crosststamp_supported(adapter))
|
|
break;
|
|
|
|
wr32(IGC_PCIE_DIG_DELAY, IGC_PCIE_DIG_DELAY_DEFAULT);
|
|
wr32(IGC_PCIE_PHY_DELAY, IGC_PCIE_PHY_DELAY_DEFAULT);
|
|
|
|
cycle_ctrl = IGC_PTM_CYCLE_CTRL_CYC_TIME(IGC_PTM_CYC_TIME_DEFAULT);
|
|
|
|
wr32(IGC_PTM_CYCLE_CTRL, cycle_ctrl);
|
|
|
|
ctrl = IGC_PTM_CTRL_EN |
|
|
IGC_PTM_CTRL_START_NOW |
|
|
IGC_PTM_CTRL_SHRT_CYC(IGC_PTM_SHORT_CYC_DEFAULT) |
|
|
IGC_PTM_CTRL_PTM_TO(IGC_PTM_TIMEOUT_DEFAULT) |
|
|
IGC_PTM_CTRL_TRIG;
|
|
|
|
wr32(IGC_PTM_CTRL, ctrl);
|
|
|
|
/* Force the first cycle to run. */
|
|
wr32(IGC_PTM_STAT, IGC_PTM_STAT_VALID);
|
|
|
|
break;
|
|
default:
|
|
/* No work to do. */
|
|
goto out;
|
|
}
|
|
|
|
/* Re-initialize the timer. */
|
|
if (hw->mac.type == igc_i225) {
|
|
igc_ptp_time_restore(adapter);
|
|
} else {
|
|
timecounter_init(&adapter->tc, &adapter->cc,
|
|
ktime_to_ns(ktime_get_real()));
|
|
}
|
|
out:
|
|
spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
|
|
|
|
wrfl();
|
|
}
|