The mmio_read() function makes a TDVMCALL to retrieve MMIO data for an
address from the VMM.
Sean noticed that mmio_read() unintentionally exposes the value of an
initialized variable (val) on the stack to the VMM.
This variable is only needed as an output value. It did not need to be
passed to the VMM in the first place.
Do not send the original value of *val to the VMM.
[ dhansen: clarify what 'val' is used for. ]
Fixes: 31d58c4e55
("x86/tdx: Handle in-kernel MMIO")
Reported-by: Sean Christopherson <seanjc@google.com>
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Cc:stable@vger.kernel.org
Link: https://lore.kernel.org/all/20240826125304.1566719-1-kirill.shutemov%40linux.intel.com
998 lines
26 KiB
C
998 lines
26 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (C) 2021-2022 Intel Corporation */
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) "tdx: " fmt
|
|
|
|
#include <linux/cpufeature.h>
|
|
#include <linux/export.h>
|
|
#include <linux/io.h>
|
|
#include <linux/kexec.h>
|
|
#include <asm/coco.h>
|
|
#include <asm/tdx.h>
|
|
#include <asm/vmx.h>
|
|
#include <asm/ia32.h>
|
|
#include <asm/insn.h>
|
|
#include <asm/insn-eval.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/set_memory.h>
|
|
|
|
/* MMIO direction */
|
|
#define EPT_READ 0
|
|
#define EPT_WRITE 1
|
|
|
|
/* Port I/O direction */
|
|
#define PORT_READ 0
|
|
#define PORT_WRITE 1
|
|
|
|
/* See Exit Qualification for I/O Instructions in VMX documentation */
|
|
#define VE_IS_IO_IN(e) ((e) & BIT(3))
|
|
#define VE_GET_IO_SIZE(e) (((e) & GENMASK(2, 0)) + 1)
|
|
#define VE_GET_PORT_NUM(e) ((e) >> 16)
|
|
#define VE_IS_IO_STRING(e) ((e) & BIT(4))
|
|
|
|
#define ATTR_DEBUG BIT(0)
|
|
#define ATTR_SEPT_VE_DISABLE BIT(28)
|
|
|
|
/* TDX Module call error codes */
|
|
#define TDCALL_RETURN_CODE(a) ((a) >> 32)
|
|
#define TDCALL_INVALID_OPERAND 0xc0000100
|
|
|
|
#define TDREPORT_SUBTYPE_0 0
|
|
|
|
static atomic_long_t nr_shared;
|
|
|
|
/* Called from __tdx_hypercall() for unrecoverable failure */
|
|
noinstr void __noreturn __tdx_hypercall_failed(void)
|
|
{
|
|
instrumentation_begin();
|
|
panic("TDVMCALL failed. TDX module bug?");
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_GUEST
|
|
long tdx_kvm_hypercall(unsigned int nr, unsigned long p1, unsigned long p2,
|
|
unsigned long p3, unsigned long p4)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = nr,
|
|
.r11 = p1,
|
|
.r12 = p2,
|
|
.r13 = p3,
|
|
.r14 = p4,
|
|
};
|
|
|
|
return __tdx_hypercall(&args);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_kvm_hypercall);
|
|
#endif
|
|
|
|
/*
|
|
* Used for TDX guests to make calls directly to the TD module. This
|
|
* should only be used for calls that have no legitimate reason to fail
|
|
* or where the kernel can not survive the call failing.
|
|
*/
|
|
static inline void tdcall(u64 fn, struct tdx_module_args *args)
|
|
{
|
|
if (__tdcall_ret(fn, args))
|
|
panic("TDCALL %lld failed (Buggy TDX module!)\n", fn);
|
|
}
|
|
|
|
/**
|
|
* tdx_mcall_get_report0() - Wrapper to get TDREPORT0 (a.k.a. TDREPORT
|
|
* subtype 0) using TDG.MR.REPORT TDCALL.
|
|
* @reportdata: Address of the input buffer which contains user-defined
|
|
* REPORTDATA to be included into TDREPORT.
|
|
* @tdreport: Address of the output buffer to store TDREPORT.
|
|
*
|
|
* Refer to section titled "TDG.MR.REPORT leaf" in the TDX Module
|
|
* v1.0 specification for more information on TDG.MR.REPORT TDCALL.
|
|
* It is used in the TDX guest driver module to get the TDREPORT0.
|
|
*
|
|
* Return 0 on success, -EINVAL for invalid operands, or -EIO on
|
|
* other TDCALL failures.
|
|
*/
|
|
int tdx_mcall_get_report0(u8 *reportdata, u8 *tdreport)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rcx = virt_to_phys(tdreport),
|
|
.rdx = virt_to_phys(reportdata),
|
|
.r8 = TDREPORT_SUBTYPE_0,
|
|
};
|
|
u64 ret;
|
|
|
|
ret = __tdcall(TDG_MR_REPORT, &args);
|
|
if (ret) {
|
|
if (TDCALL_RETURN_CODE(ret) == TDCALL_INVALID_OPERAND)
|
|
return -EINVAL;
|
|
return -EIO;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_mcall_get_report0);
|
|
|
|
/**
|
|
* tdx_hcall_get_quote() - Wrapper to request TD Quote using GetQuote
|
|
* hypercall.
|
|
* @buf: Address of the directly mapped shared kernel buffer which
|
|
* contains TDREPORT. The same buffer will be used by VMM to
|
|
* store the generated TD Quote output.
|
|
* @size: size of the tdquote buffer (4KB-aligned).
|
|
*
|
|
* Refer to section titled "TDG.VP.VMCALL<GetQuote>" in the TDX GHCI
|
|
* v1.0 specification for more information on GetQuote hypercall.
|
|
* It is used in the TDX guest driver module to get the TD Quote.
|
|
*
|
|
* Return 0 on success or error code on failure.
|
|
*/
|
|
u64 tdx_hcall_get_quote(u8 *buf, size_t size)
|
|
{
|
|
/* Since buf is a shared memory, set the shared (decrypted) bits */
|
|
return _tdx_hypercall(TDVMCALL_GET_QUOTE, cc_mkdec(virt_to_phys(buf)), size, 0, 0);
|
|
}
|
|
EXPORT_SYMBOL_GPL(tdx_hcall_get_quote);
|
|
|
|
static void __noreturn tdx_panic(const char *msg)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = TDVMCALL_REPORT_FATAL_ERROR,
|
|
.r12 = 0, /* Error code: 0 is Panic */
|
|
};
|
|
union {
|
|
/* Define register order according to the GHCI */
|
|
struct { u64 r14, r15, rbx, rdi, rsi, r8, r9, rdx; };
|
|
|
|
char str[64];
|
|
} message;
|
|
|
|
/* VMM assumes '\0' in byte 65, if the message took all 64 bytes */
|
|
strtomem_pad(message.str, msg, '\0');
|
|
|
|
args.r8 = message.r8;
|
|
args.r9 = message.r9;
|
|
args.r14 = message.r14;
|
|
args.r15 = message.r15;
|
|
args.rdi = message.rdi;
|
|
args.rsi = message.rsi;
|
|
args.rbx = message.rbx;
|
|
args.rdx = message.rdx;
|
|
|
|
/*
|
|
* This hypercall should never return and it is not safe
|
|
* to keep the guest running. Call it forever if it
|
|
* happens to return.
|
|
*/
|
|
while (1)
|
|
__tdx_hypercall(&args);
|
|
}
|
|
|
|
static void tdx_parse_tdinfo(u64 *cc_mask)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
unsigned int gpa_width;
|
|
u64 td_attr;
|
|
|
|
/*
|
|
* TDINFO TDX module call is used to get the TD execution environment
|
|
* information like GPA width, number of available vcpus, debug mode
|
|
* information, etc. More details about the ABI can be found in TDX
|
|
* Guest-Host-Communication Interface (GHCI), section 2.4.2 TDCALL
|
|
* [TDG.VP.INFO].
|
|
*/
|
|
tdcall(TDG_VP_INFO, &args);
|
|
|
|
/*
|
|
* The highest bit of a guest physical address is the "sharing" bit.
|
|
* Set it for shared pages and clear it for private pages.
|
|
*
|
|
* The GPA width that comes out of this call is critical. TDX guests
|
|
* can not meaningfully run without it.
|
|
*/
|
|
gpa_width = args.rcx & GENMASK(5, 0);
|
|
*cc_mask = BIT_ULL(gpa_width - 1);
|
|
|
|
/*
|
|
* The kernel can not handle #VE's when accessing normal kernel
|
|
* memory. Ensure that no #VE will be delivered for accesses to
|
|
* TD-private memory. Only VMM-shared memory (MMIO) will #VE.
|
|
*/
|
|
td_attr = args.rdx;
|
|
if (!(td_attr & ATTR_SEPT_VE_DISABLE)) {
|
|
const char *msg = "TD misconfiguration: SEPT_VE_DISABLE attribute must be set.";
|
|
|
|
/* Relax SEPT_VE_DISABLE check for debug TD. */
|
|
if (td_attr & ATTR_DEBUG)
|
|
pr_warn("%s\n", msg);
|
|
else
|
|
tdx_panic(msg);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The TDX module spec states that #VE may be injected for a limited set of
|
|
* reasons:
|
|
*
|
|
* - Emulation of the architectural #VE injection on EPT violation;
|
|
*
|
|
* - As a result of guest TD execution of a disallowed instruction,
|
|
* a disallowed MSR access, or CPUID virtualization;
|
|
*
|
|
* - A notification to the guest TD about anomalous behavior;
|
|
*
|
|
* The last one is opt-in and is not used by the kernel.
|
|
*
|
|
* The Intel Software Developer's Manual describes cases when instruction
|
|
* length field can be used in section "Information for VM Exits Due to
|
|
* Instruction Execution".
|
|
*
|
|
* For TDX, it ultimately means GET_VEINFO provides reliable instruction length
|
|
* information if #VE occurred due to instruction execution, but not for EPT
|
|
* violations.
|
|
*/
|
|
static int ve_instr_len(struct ve_info *ve)
|
|
{
|
|
switch (ve->exit_reason) {
|
|
case EXIT_REASON_HLT:
|
|
case EXIT_REASON_MSR_READ:
|
|
case EXIT_REASON_MSR_WRITE:
|
|
case EXIT_REASON_CPUID:
|
|
case EXIT_REASON_IO_INSTRUCTION:
|
|
/* It is safe to use ve->instr_len for #VE due instructions */
|
|
return ve->instr_len;
|
|
case EXIT_REASON_EPT_VIOLATION:
|
|
/*
|
|
* For EPT violations, ve->insn_len is not defined. For those,
|
|
* the kernel must decode instructions manually and should not
|
|
* be using this function.
|
|
*/
|
|
WARN_ONCE(1, "ve->instr_len is not defined for EPT violations");
|
|
return 0;
|
|
default:
|
|
WARN_ONCE(1, "Unexpected #VE-type: %lld\n", ve->exit_reason);
|
|
return ve->instr_len;
|
|
}
|
|
}
|
|
|
|
static u64 __cpuidle __halt(const bool irq_disabled)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_HLT),
|
|
.r12 = irq_disabled,
|
|
};
|
|
|
|
/*
|
|
* Emulate HLT operation via hypercall. More info about ABI
|
|
* can be found in TDX Guest-Host-Communication Interface
|
|
* (GHCI), section 3.8 TDG.VP.VMCALL<Instruction.HLT>.
|
|
*
|
|
* The VMM uses the "IRQ disabled" param to understand IRQ
|
|
* enabled status (RFLAGS.IF) of the TD guest and to determine
|
|
* whether or not it should schedule the halted vCPU if an
|
|
* IRQ becomes pending. E.g. if IRQs are disabled, the VMM
|
|
* can keep the vCPU in virtual HLT, even if an IRQ is
|
|
* pending, without hanging/breaking the guest.
|
|
*/
|
|
return __tdx_hypercall(&args);
|
|
}
|
|
|
|
static int handle_halt(struct ve_info *ve)
|
|
{
|
|
const bool irq_disabled = irqs_disabled();
|
|
|
|
if (__halt(irq_disabled))
|
|
return -EIO;
|
|
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
void __cpuidle tdx_safe_halt(void)
|
|
{
|
|
const bool irq_disabled = false;
|
|
|
|
/*
|
|
* Use WARN_ONCE() to report the failure.
|
|
*/
|
|
if (__halt(irq_disabled))
|
|
WARN_ONCE(1, "HLT instruction emulation failed\n");
|
|
}
|
|
|
|
static int read_msr(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_MSR_READ),
|
|
.r12 = regs->cx,
|
|
};
|
|
|
|
/*
|
|
* Emulate the MSR read via hypercall. More info about ABI
|
|
* can be found in TDX Guest-Host-Communication Interface
|
|
* (GHCI), section titled "TDG.VP.VMCALL<Instruction.RDMSR>".
|
|
*/
|
|
if (__tdx_hypercall(&args))
|
|
return -EIO;
|
|
|
|
regs->ax = lower_32_bits(args.r11);
|
|
regs->dx = upper_32_bits(args.r11);
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
static int write_msr(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_MSR_WRITE),
|
|
.r12 = regs->cx,
|
|
.r13 = (u64)regs->dx << 32 | regs->ax,
|
|
};
|
|
|
|
/*
|
|
* Emulate the MSR write via hypercall. More info about ABI
|
|
* can be found in TDX Guest-Host-Communication Interface
|
|
* (GHCI) section titled "TDG.VP.VMCALL<Instruction.WRMSR>".
|
|
*/
|
|
if (__tdx_hypercall(&args))
|
|
return -EIO;
|
|
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
static int handle_cpuid(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_CPUID),
|
|
.r12 = regs->ax,
|
|
.r13 = regs->cx,
|
|
};
|
|
|
|
/*
|
|
* Only allow VMM to control range reserved for hypervisor
|
|
* communication.
|
|
*
|
|
* Return all-zeros for any CPUID outside the range. It matches CPU
|
|
* behaviour for non-supported leaf.
|
|
*/
|
|
if (regs->ax < 0x40000000 || regs->ax > 0x4FFFFFFF) {
|
|
regs->ax = regs->bx = regs->cx = regs->dx = 0;
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
/*
|
|
* Emulate the CPUID instruction via a hypercall. More info about
|
|
* ABI can be found in TDX Guest-Host-Communication Interface
|
|
* (GHCI), section titled "VP.VMCALL<Instruction.CPUID>".
|
|
*/
|
|
if (__tdx_hypercall(&args))
|
|
return -EIO;
|
|
|
|
/*
|
|
* As per TDX GHCI CPUID ABI, r12-r15 registers contain contents of
|
|
* EAX, EBX, ECX, EDX registers after the CPUID instruction execution.
|
|
* So copy the register contents back to pt_regs.
|
|
*/
|
|
regs->ax = args.r12;
|
|
regs->bx = args.r13;
|
|
regs->cx = args.r14;
|
|
regs->dx = args.r15;
|
|
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
static bool mmio_read(int size, unsigned long addr, unsigned long *val)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_EPT_VIOLATION),
|
|
.r12 = size,
|
|
.r13 = EPT_READ,
|
|
.r14 = addr,
|
|
};
|
|
|
|
if (__tdx_hypercall(&args))
|
|
return false;
|
|
|
|
*val = args.r11;
|
|
return true;
|
|
}
|
|
|
|
static bool mmio_write(int size, unsigned long addr, unsigned long val)
|
|
{
|
|
return !_tdx_hypercall(hcall_func(EXIT_REASON_EPT_VIOLATION), size,
|
|
EPT_WRITE, addr, val);
|
|
}
|
|
|
|
static int handle_mmio(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
unsigned long *reg, val, vaddr;
|
|
char buffer[MAX_INSN_SIZE];
|
|
enum insn_mmio_type mmio;
|
|
struct insn insn = {};
|
|
int size, extend_size;
|
|
u8 extend_val = 0;
|
|
|
|
/* Only in-kernel MMIO is supported */
|
|
if (WARN_ON_ONCE(user_mode(regs)))
|
|
return -EFAULT;
|
|
|
|
if (copy_from_kernel_nofault(buffer, (void *)regs->ip, MAX_INSN_SIZE))
|
|
return -EFAULT;
|
|
|
|
if (insn_decode(&insn, buffer, MAX_INSN_SIZE, INSN_MODE_64))
|
|
return -EINVAL;
|
|
|
|
mmio = insn_decode_mmio(&insn, &size);
|
|
if (WARN_ON_ONCE(mmio == INSN_MMIO_DECODE_FAILED))
|
|
return -EINVAL;
|
|
|
|
if (mmio != INSN_MMIO_WRITE_IMM && mmio != INSN_MMIO_MOVS) {
|
|
reg = insn_get_modrm_reg_ptr(&insn, regs);
|
|
if (!reg)
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Reject EPT violation #VEs that split pages.
|
|
*
|
|
* MMIO accesses are supposed to be naturally aligned and therefore
|
|
* never cross page boundaries. Seeing split page accesses indicates
|
|
* a bug or a load_unaligned_zeropad() that stepped into an MMIO page.
|
|
*
|
|
* load_unaligned_zeropad() will recover using exception fixups.
|
|
*/
|
|
vaddr = (unsigned long)insn_get_addr_ref(&insn, regs);
|
|
if (vaddr / PAGE_SIZE != (vaddr + size - 1) / PAGE_SIZE)
|
|
return -EFAULT;
|
|
|
|
/* Handle writes first */
|
|
switch (mmio) {
|
|
case INSN_MMIO_WRITE:
|
|
memcpy(&val, reg, size);
|
|
if (!mmio_write(size, ve->gpa, val))
|
|
return -EIO;
|
|
return insn.length;
|
|
case INSN_MMIO_WRITE_IMM:
|
|
val = insn.immediate.value;
|
|
if (!mmio_write(size, ve->gpa, val))
|
|
return -EIO;
|
|
return insn.length;
|
|
case INSN_MMIO_READ:
|
|
case INSN_MMIO_READ_ZERO_EXTEND:
|
|
case INSN_MMIO_READ_SIGN_EXTEND:
|
|
/* Reads are handled below */
|
|
break;
|
|
case INSN_MMIO_MOVS:
|
|
case INSN_MMIO_DECODE_FAILED:
|
|
/*
|
|
* MMIO was accessed with an instruction that could not be
|
|
* decoded or handled properly. It was likely not using io.h
|
|
* helpers or accessed MMIO accidentally.
|
|
*/
|
|
return -EINVAL;
|
|
default:
|
|
WARN_ONCE(1, "Unknown insn_decode_mmio() decode value?");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Handle reads */
|
|
if (!mmio_read(size, ve->gpa, &val))
|
|
return -EIO;
|
|
|
|
switch (mmio) {
|
|
case INSN_MMIO_READ:
|
|
/* Zero-extend for 32-bit operation */
|
|
extend_size = size == 4 ? sizeof(*reg) : 0;
|
|
break;
|
|
case INSN_MMIO_READ_ZERO_EXTEND:
|
|
/* Zero extend based on operand size */
|
|
extend_size = insn.opnd_bytes;
|
|
break;
|
|
case INSN_MMIO_READ_SIGN_EXTEND:
|
|
/* Sign extend based on operand size */
|
|
extend_size = insn.opnd_bytes;
|
|
if (size == 1 && val & BIT(7))
|
|
extend_val = 0xFF;
|
|
else if (size > 1 && val & BIT(15))
|
|
extend_val = 0xFF;
|
|
break;
|
|
default:
|
|
/* All other cases has to be covered with the first switch() */
|
|
WARN_ON_ONCE(1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (extend_size)
|
|
memset(reg, extend_val, extend_size);
|
|
memcpy(reg, &val, size);
|
|
return insn.length;
|
|
}
|
|
|
|
static bool handle_in(struct pt_regs *regs, int size, int port)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = hcall_func(EXIT_REASON_IO_INSTRUCTION),
|
|
.r12 = size,
|
|
.r13 = PORT_READ,
|
|
.r14 = port,
|
|
};
|
|
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
|
|
bool success;
|
|
|
|
/*
|
|
* Emulate the I/O read via hypercall. More info about ABI can be found
|
|
* in TDX Guest-Host-Communication Interface (GHCI) section titled
|
|
* "TDG.VP.VMCALL<Instruction.IO>".
|
|
*/
|
|
success = !__tdx_hypercall(&args);
|
|
|
|
/* Update part of the register affected by the emulated instruction */
|
|
regs->ax &= ~mask;
|
|
if (success)
|
|
regs->ax |= args.r11 & mask;
|
|
|
|
return success;
|
|
}
|
|
|
|
static bool handle_out(struct pt_regs *regs, int size, int port)
|
|
{
|
|
u64 mask = GENMASK(BITS_PER_BYTE * size, 0);
|
|
|
|
/*
|
|
* Emulate the I/O write via hypercall. More info about ABI can be found
|
|
* in TDX Guest-Host-Communication Interface (GHCI) section titled
|
|
* "TDG.VP.VMCALL<Instruction.IO>".
|
|
*/
|
|
return !_tdx_hypercall(hcall_func(EXIT_REASON_IO_INSTRUCTION), size,
|
|
PORT_WRITE, port, regs->ax & mask);
|
|
}
|
|
|
|
/*
|
|
* Emulate I/O using hypercall.
|
|
*
|
|
* Assumes the IO instruction was using ax, which is enforced
|
|
* by the standard io.h macros.
|
|
*
|
|
* Return True on success or False on failure.
|
|
*/
|
|
static int handle_io(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
u32 exit_qual = ve->exit_qual;
|
|
int size, port;
|
|
bool in, ret;
|
|
|
|
if (VE_IS_IO_STRING(exit_qual))
|
|
return -EIO;
|
|
|
|
in = VE_IS_IO_IN(exit_qual);
|
|
size = VE_GET_IO_SIZE(exit_qual);
|
|
port = VE_GET_PORT_NUM(exit_qual);
|
|
|
|
|
|
if (in)
|
|
ret = handle_in(regs, size, port);
|
|
else
|
|
ret = handle_out(regs, size, port);
|
|
if (!ret)
|
|
return -EIO;
|
|
|
|
return ve_instr_len(ve);
|
|
}
|
|
|
|
/*
|
|
* Early #VE exception handler. Only handles a subset of port I/O.
|
|
* Intended only for earlyprintk. If failed, return false.
|
|
*/
|
|
__init bool tdx_early_handle_ve(struct pt_regs *regs)
|
|
{
|
|
struct ve_info ve;
|
|
int insn_len;
|
|
|
|
tdx_get_ve_info(&ve);
|
|
|
|
if (ve.exit_reason != EXIT_REASON_IO_INSTRUCTION)
|
|
return false;
|
|
|
|
insn_len = handle_io(regs, &ve);
|
|
if (insn_len < 0)
|
|
return false;
|
|
|
|
regs->ip += insn_len;
|
|
return true;
|
|
}
|
|
|
|
void tdx_get_ve_info(struct ve_info *ve)
|
|
{
|
|
struct tdx_module_args args = {};
|
|
|
|
/*
|
|
* Called during #VE handling to retrieve the #VE info from the
|
|
* TDX module.
|
|
*
|
|
* This has to be called early in #VE handling. A "nested" #VE which
|
|
* occurs before this will raise a #DF and is not recoverable.
|
|
*
|
|
* The call retrieves the #VE info from the TDX module, which also
|
|
* clears the "#VE valid" flag. This must be done before anything else
|
|
* because any #VE that occurs while the valid flag is set will lead to
|
|
* #DF.
|
|
*
|
|
* Note, the TDX module treats virtual NMIs as inhibited if the #VE
|
|
* valid flag is set. It means that NMI=>#VE will not result in a #DF.
|
|
*/
|
|
tdcall(TDG_VP_VEINFO_GET, &args);
|
|
|
|
/* Transfer the output parameters */
|
|
ve->exit_reason = args.rcx;
|
|
ve->exit_qual = args.rdx;
|
|
ve->gla = args.r8;
|
|
ve->gpa = args.r9;
|
|
ve->instr_len = lower_32_bits(args.r10);
|
|
ve->instr_info = upper_32_bits(args.r10);
|
|
}
|
|
|
|
/*
|
|
* Handle the user initiated #VE.
|
|
*
|
|
* On success, returns the number of bytes RIP should be incremented (>=0)
|
|
* or -errno on error.
|
|
*/
|
|
static int virt_exception_user(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
switch (ve->exit_reason) {
|
|
case EXIT_REASON_CPUID:
|
|
return handle_cpuid(regs, ve);
|
|
default:
|
|
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static inline bool is_private_gpa(u64 gpa)
|
|
{
|
|
return gpa == cc_mkenc(gpa);
|
|
}
|
|
|
|
/*
|
|
* Handle the kernel #VE.
|
|
*
|
|
* On success, returns the number of bytes RIP should be incremented (>=0)
|
|
* or -errno on error.
|
|
*/
|
|
static int virt_exception_kernel(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
switch (ve->exit_reason) {
|
|
case EXIT_REASON_HLT:
|
|
return handle_halt(ve);
|
|
case EXIT_REASON_MSR_READ:
|
|
return read_msr(regs, ve);
|
|
case EXIT_REASON_MSR_WRITE:
|
|
return write_msr(regs, ve);
|
|
case EXIT_REASON_CPUID:
|
|
return handle_cpuid(regs, ve);
|
|
case EXIT_REASON_EPT_VIOLATION:
|
|
if (is_private_gpa(ve->gpa))
|
|
panic("Unexpected EPT-violation on private memory.");
|
|
return handle_mmio(regs, ve);
|
|
case EXIT_REASON_IO_INSTRUCTION:
|
|
return handle_io(regs, ve);
|
|
default:
|
|
pr_warn("Unexpected #VE: %lld\n", ve->exit_reason);
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
bool tdx_handle_virt_exception(struct pt_regs *regs, struct ve_info *ve)
|
|
{
|
|
int insn_len;
|
|
|
|
if (user_mode(regs))
|
|
insn_len = virt_exception_user(regs, ve);
|
|
else
|
|
insn_len = virt_exception_kernel(regs, ve);
|
|
if (insn_len < 0)
|
|
return false;
|
|
|
|
/* After successful #VE handling, move the IP */
|
|
regs->ip += insn_len;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool tdx_tlb_flush_required(bool private)
|
|
{
|
|
/*
|
|
* TDX guest is responsible for flushing TLB on private->shared
|
|
* transition. VMM is responsible for flushing on shared->private.
|
|
*
|
|
* The VMM _can't_ flush private addresses as it can't generate PAs
|
|
* with the guest's HKID. Shared memory isn't subject to integrity
|
|
* checking, i.e. the VMM doesn't need to flush for its own protection.
|
|
*
|
|
* There's no need to flush when converting from shared to private,
|
|
* as flushing is the VMM's responsibility in this case, e.g. it must
|
|
* flush to avoid integrity failures in the face of a buggy or
|
|
* malicious guest.
|
|
*/
|
|
return !private;
|
|
}
|
|
|
|
static bool tdx_cache_flush_required(void)
|
|
{
|
|
/*
|
|
* AMD SME/SEV can avoid cache flushing if HW enforces cache coherence.
|
|
* TDX doesn't have such capability.
|
|
*
|
|
* Flush cache unconditionally.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Notify the VMM about page mapping conversion. More info about ABI
|
|
* can be found in TDX Guest-Host-Communication Interface (GHCI),
|
|
* section "TDG.VP.VMCALL<MapGPA>".
|
|
*/
|
|
static bool tdx_map_gpa(phys_addr_t start, phys_addr_t end, bool enc)
|
|
{
|
|
/* Retrying the hypercall a second time should succeed; use 3 just in case */
|
|
const int max_retries_per_page = 3;
|
|
int retry_count = 0;
|
|
|
|
if (!enc) {
|
|
/* Set the shared (decrypted) bits: */
|
|
start |= cc_mkdec(0);
|
|
end |= cc_mkdec(0);
|
|
}
|
|
|
|
while (retry_count < max_retries_per_page) {
|
|
struct tdx_module_args args = {
|
|
.r10 = TDX_HYPERCALL_STANDARD,
|
|
.r11 = TDVMCALL_MAP_GPA,
|
|
.r12 = start,
|
|
.r13 = end - start };
|
|
|
|
u64 map_fail_paddr;
|
|
u64 ret = __tdx_hypercall(&args);
|
|
|
|
if (ret != TDVMCALL_STATUS_RETRY)
|
|
return !ret;
|
|
/*
|
|
* The guest must retry the operation for the pages in the
|
|
* region starting at the GPA specified in R11. R11 comes
|
|
* from the untrusted VMM. Sanity check it.
|
|
*/
|
|
map_fail_paddr = args.r11;
|
|
if (map_fail_paddr < start || map_fail_paddr >= end)
|
|
return false;
|
|
|
|
/* "Consume" a retry without forward progress */
|
|
if (map_fail_paddr == start) {
|
|
retry_count++;
|
|
continue;
|
|
}
|
|
|
|
start = map_fail_paddr;
|
|
retry_count = 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Inform the VMM of the guest's intent for this physical page: shared with
|
|
* the VMM or private to the guest. The VMM is expected to change its mapping
|
|
* of the page in response.
|
|
*/
|
|
static bool tdx_enc_status_changed(unsigned long vaddr, int numpages, bool enc)
|
|
{
|
|
phys_addr_t start = __pa(vaddr);
|
|
phys_addr_t end = __pa(vaddr + numpages * PAGE_SIZE);
|
|
|
|
if (!tdx_map_gpa(start, end, enc))
|
|
return false;
|
|
|
|
/* shared->private conversion requires memory to be accepted before use */
|
|
if (enc)
|
|
return tdx_accept_memory(start, end);
|
|
|
|
return true;
|
|
}
|
|
|
|
static int tdx_enc_status_change_prepare(unsigned long vaddr, int numpages,
|
|
bool enc)
|
|
{
|
|
/*
|
|
* Only handle shared->private conversion here.
|
|
* See the comment in tdx_early_init().
|
|
*/
|
|
if (enc && !tdx_enc_status_changed(vaddr, numpages, enc))
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int tdx_enc_status_change_finish(unsigned long vaddr, int numpages,
|
|
bool enc)
|
|
{
|
|
/*
|
|
* Only handle private->shared conversion here.
|
|
* See the comment in tdx_early_init().
|
|
*/
|
|
if (!enc && !tdx_enc_status_changed(vaddr, numpages, enc))
|
|
return -EIO;
|
|
|
|
if (enc)
|
|
atomic_long_sub(numpages, &nr_shared);
|
|
else
|
|
atomic_long_add(numpages, &nr_shared);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Stop new private<->shared conversions */
|
|
static void tdx_kexec_begin(void)
|
|
{
|
|
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
|
|
return;
|
|
|
|
/*
|
|
* Crash kernel reaches here with interrupts disabled: can't wait for
|
|
* conversions to finish.
|
|
*
|
|
* If race happened, just report and proceed.
|
|
*/
|
|
if (!set_memory_enc_stop_conversion())
|
|
pr_warn("Failed to stop shared<->private conversions\n");
|
|
}
|
|
|
|
/* Walk direct mapping and convert all shared memory back to private */
|
|
static void tdx_kexec_finish(void)
|
|
{
|
|
unsigned long addr, end;
|
|
long found = 0, shared;
|
|
|
|
if (!IS_ENABLED(CONFIG_KEXEC_CORE))
|
|
return;
|
|
|
|
lockdep_assert_irqs_disabled();
|
|
|
|
addr = PAGE_OFFSET;
|
|
end = PAGE_OFFSET + get_max_mapped();
|
|
|
|
while (addr < end) {
|
|
unsigned long size;
|
|
unsigned int level;
|
|
pte_t *pte;
|
|
|
|
pte = lookup_address(addr, &level);
|
|
size = page_level_size(level);
|
|
|
|
if (pte && pte_decrypted(*pte)) {
|
|
int pages = size / PAGE_SIZE;
|
|
|
|
/*
|
|
* Touching memory with shared bit set triggers implicit
|
|
* conversion to shared.
|
|
*
|
|
* Make sure nobody touches the shared range from
|
|
* now on.
|
|
*/
|
|
set_pte(pte, __pte(0));
|
|
|
|
/*
|
|
* Memory encryption state persists across kexec.
|
|
* If tdx_enc_status_changed() fails in the first
|
|
* kernel, it leaves memory in an unknown state.
|
|
*
|
|
* If that memory remains shared, accessing it in the
|
|
* *next* kernel through a private mapping will result
|
|
* in an unrecoverable guest shutdown.
|
|
*
|
|
* The kdump kernel boot is not impacted as it uses
|
|
* a pre-reserved memory range that is always private.
|
|
* However, gathering crash information could lead to
|
|
* a crash if it accesses unconverted memory through
|
|
* a private mapping which is possible when accessing
|
|
* that memory through /proc/vmcore, for example.
|
|
*
|
|
* In all cases, print error info in order to leave
|
|
* enough bread crumbs for debugging.
|
|
*/
|
|
if (!tdx_enc_status_changed(addr, pages, true)) {
|
|
pr_err("Failed to unshare range %#lx-%#lx\n",
|
|
addr, addr + size);
|
|
}
|
|
|
|
found += pages;
|
|
}
|
|
|
|
addr += size;
|
|
}
|
|
|
|
__flush_tlb_all();
|
|
|
|
shared = atomic_long_read(&nr_shared);
|
|
if (shared != found) {
|
|
pr_err("shared page accounting is off\n");
|
|
pr_err("nr_shared = %ld, nr_found = %ld\n", shared, found);
|
|
}
|
|
}
|
|
|
|
void __init tdx_early_init(void)
|
|
{
|
|
struct tdx_module_args args = {
|
|
.rdx = TDCS_NOTIFY_ENABLES,
|
|
.r9 = -1ULL,
|
|
};
|
|
u64 cc_mask;
|
|
u32 eax, sig[3];
|
|
|
|
cpuid_count(TDX_CPUID_LEAF_ID, 0, &eax, &sig[0], &sig[2], &sig[1]);
|
|
|
|
if (memcmp(TDX_IDENT, sig, sizeof(sig)))
|
|
return;
|
|
|
|
setup_force_cpu_cap(X86_FEATURE_TDX_GUEST);
|
|
|
|
/* TSC is the only reliable clock in TDX guest */
|
|
setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
|
|
|
|
cc_vendor = CC_VENDOR_INTEL;
|
|
tdx_parse_tdinfo(&cc_mask);
|
|
cc_set_mask(cc_mask);
|
|
|
|
/* Kernel does not use NOTIFY_ENABLES and does not need random #VEs */
|
|
tdcall(TDG_VM_WR, &args);
|
|
|
|
/*
|
|
* All bits above GPA width are reserved and kernel treats shared bit
|
|
* as flag, not as part of physical address.
|
|
*
|
|
* Adjust physical mask to only cover valid GPA bits.
|
|
*/
|
|
physical_mask &= cc_mask - 1;
|
|
|
|
/*
|
|
* The kernel mapping should match the TDX metadata for the page.
|
|
* load_unaligned_zeropad() can touch memory *adjacent* to that which is
|
|
* owned by the caller and can catch even _momentary_ mismatches. Bad
|
|
* things happen on mismatch:
|
|
*
|
|
* - Private mapping => Shared Page == Guest shutdown
|
|
* - Shared mapping => Private Page == Recoverable #VE
|
|
*
|
|
* guest.enc_status_change_prepare() converts the page from
|
|
* shared=>private before the mapping becomes private.
|
|
*
|
|
* guest.enc_status_change_finish() converts the page from
|
|
* private=>shared after the mapping becomes private.
|
|
*
|
|
* In both cases there is a temporary shared mapping to a private page,
|
|
* which can result in a #VE. But, there is never a private mapping to
|
|
* a shared page.
|
|
*/
|
|
x86_platform.guest.enc_status_change_prepare = tdx_enc_status_change_prepare;
|
|
x86_platform.guest.enc_status_change_finish = tdx_enc_status_change_finish;
|
|
|
|
x86_platform.guest.enc_cache_flush_required = tdx_cache_flush_required;
|
|
x86_platform.guest.enc_tlb_flush_required = tdx_tlb_flush_required;
|
|
|
|
x86_platform.guest.enc_kexec_begin = tdx_kexec_begin;
|
|
x86_platform.guest.enc_kexec_finish = tdx_kexec_finish;
|
|
|
|
/*
|
|
* TDX intercepts the RDMSR to read the X2APIC ID in the parallel
|
|
* bringup low level code. That raises #VE which cannot be handled
|
|
* there.
|
|
*
|
|
* Intel-TDX has a secure RDMSR hypercall, but that needs to be
|
|
* implemented separately in the low level startup ASM code.
|
|
* Until that is in place, disable parallel bringup for TDX.
|
|
*/
|
|
x86_cpuinit.parallel_bringup = false;
|
|
|
|
pr_info("Guest detected\n");
|
|
}
|