1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/gem/i915_gem_phys.c
Zhao Liu f4d88908cd drm/i915: Use memcpy_[from/to]_page() in gem/i915_gem_pyhs.c
The use of kmap_atomic() is being deprecated in favor of
kmap_local_page()[1],  and this patch converts the call from
kmap_atomic() + memcpy() to memcpy_[from/to]_page(), which use
kmap_local_page() to build local mapping and then do memcpy().

The main difference between atomic and local mappings is that local
mappings doesn't disable page faults or preemption (the preemption is
disabled for !PREEMPT_RT case, otherwise it only disables migration).

With kmap_local_page(), we can avoid the often unwanted side effect of
unnecessary page faults and preemption disables.

In drm/i915/gem/i915_gem_phys.c, the functions
i915_gem_object_get_pages_phys() and i915_gem_object_put_pages_phys()
don't need to disable pagefaults and preemption for mapping because of
2 reasons:

1. The flush operation is safe. In drm/i915/gem/i915_gem_object.c,
i915_gem_object_get_pages_phys() and i915_gem_object_put_pages_phys()
calls drm_clflush_virt_range() to use CLFLUSHOPT or WBINVD to flush.
Since CLFLUSHOPT is global on x86 and WBINVD is called on each cpu in
drm_clflush_virt_range(), the flush operation is global.

2. Any context switch caused by preemption or page faults (page fault
may cause sleep) doesn't affect the validity of local mapping.

Therefore, i915_gem_object_get_pages_phys() and
i915_gem_object_put_pages_phys() are two functions where the uses of
local mappings in place of atomic mappings are correctly suited.

Convert the calls of kmap_atomic() / kunmap_atomic() + memcpy() to
memcpy_from_page() and memcpy_to_page().

[1]: https://lore.kernel.org/all/20220813220034.806698-1-ira.weiny@intel.com

Suggested-by: Dave Hansen <dave.hansen@intel.com>
Suggested-by: Ira Weiny <ira.weiny@intel.com>
Suggested-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Zhao Liu <zhao1.liu@intel.com>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Fabio M. De Francesco <fmdefrancesco@gmail.com>
Signed-off-by: Tvrtko Ursulin <tvrtko.ursulin@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20231203132947.2328805-3-zhao1.liu@linux.intel.com
2023-12-15 09:34:28 +00:00

255 lines
5.7 KiB
C

/*
* SPDX-License-Identifier: MIT
*
* Copyright © 2014-2016 Intel Corporation
*/
#include <linux/highmem.h>
#include <linux/shmem_fs.h>
#include <linux/swap.h>
#include <drm/drm_cache.h>
#include "gt/intel_gt.h"
#include "i915_drv.h"
#include "i915_gem_object.h"
#include "i915_gem_object_frontbuffer.h"
#include "i915_gem_region.h"
#include "i915_gem_tiling.h"
#include "i915_scatterlist.h"
static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
{
struct address_space *mapping = obj->base.filp->f_mapping;
struct drm_i915_private *i915 = to_i915(obj->base.dev);
struct scatterlist *sg;
struct sg_table *st;
dma_addr_t dma;
void *vaddr;
void *dst;
int i;
/* Contiguous chunk, with a single scatterlist element */
if (overflows_type(obj->base.size, sg->length))
return -E2BIG;
if (GEM_WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
return -EINVAL;
/*
* Always aligning to the object size, allows a single allocation
* to handle all possible callers, and given typical object sizes,
* the alignment of the buddy allocation will naturally match.
*/
vaddr = dma_alloc_coherent(obj->base.dev->dev,
roundup_pow_of_two(obj->base.size),
&dma, GFP_KERNEL);
if (!vaddr)
return -ENOMEM;
st = kmalloc(sizeof(*st), GFP_KERNEL);
if (!st)
goto err_pci;
if (sg_alloc_table(st, 1, GFP_KERNEL))
goto err_st;
sg = st->sgl;
sg->offset = 0;
sg->length = obj->base.size;
sg_assign_page(sg, (struct page *)vaddr);
sg_dma_address(sg) = dma;
sg_dma_len(sg) = obj->base.size;
dst = vaddr;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
goto err_st;
memcpy_from_page(dst, page, 0, PAGE_SIZE);
drm_clflush_virt_range(dst, PAGE_SIZE);
put_page(page);
dst += PAGE_SIZE;
}
intel_gt_chipset_flush(to_gt(i915));
/* We're no longer struct page backed */
obj->mem_flags &= ~I915_BO_FLAG_STRUCT_PAGE;
__i915_gem_object_set_pages(obj, st);
return 0;
err_st:
kfree(st);
err_pci:
dma_free_coherent(obj->base.dev->dev,
roundup_pow_of_two(obj->base.size),
vaddr, dma);
return -ENOMEM;
}
void
i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
struct sg_table *pages)
{
dma_addr_t dma = sg_dma_address(pages->sgl);
void *vaddr = sg_page(pages->sgl);
__i915_gem_object_release_shmem(obj, pages, false);
if (obj->mm.dirty) {
struct address_space *mapping = obj->base.filp->f_mapping;
void *src = vaddr;
int i;
for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
struct page *page;
page = shmem_read_mapping_page(mapping, i);
if (IS_ERR(page))
continue;
drm_clflush_virt_range(src, PAGE_SIZE);
memcpy_to_page(page, 0, src, PAGE_SIZE);
set_page_dirty(page);
if (obj->mm.madv == I915_MADV_WILLNEED)
mark_page_accessed(page);
put_page(page);
src += PAGE_SIZE;
}
obj->mm.dirty = false;
}
sg_free_table(pages);
kfree(pages);
dma_free_coherent(obj->base.dev->dev,
roundup_pow_of_two(obj->base.size),
vaddr, dma);
}
int i915_gem_object_pwrite_phys(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pwrite *args)
{
void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
char __user *user_data = u64_to_user_ptr(args->data_ptr);
struct drm_i915_private *i915 = to_i915(obj->base.dev);
int err;
err = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE |
I915_WAIT_ALL,
MAX_SCHEDULE_TIMEOUT);
if (err)
return err;
/*
* We manually control the domain here and pretend that it
* remains coherent i.e. in the GTT domain, like shmem_pwrite.
*/
i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
if (copy_from_user(vaddr, user_data, args->size))
return -EFAULT;
drm_clflush_virt_range(vaddr, args->size);
intel_gt_chipset_flush(to_gt(i915));
i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
return 0;
}
int i915_gem_object_pread_phys(struct drm_i915_gem_object *obj,
const struct drm_i915_gem_pread *args)
{
void *vaddr = sg_page(obj->mm.pages->sgl) + args->offset;
char __user *user_data = u64_to_user_ptr(args->data_ptr);
int err;
err = i915_gem_object_wait(obj,
I915_WAIT_INTERRUPTIBLE,
MAX_SCHEDULE_TIMEOUT);
if (err)
return err;
drm_clflush_virt_range(vaddr, args->size);
if (copy_to_user(user_data, vaddr, args->size))
return -EFAULT;
return 0;
}
static int i915_gem_object_shmem_to_phys(struct drm_i915_gem_object *obj)
{
struct sg_table *pages;
int err;
pages = __i915_gem_object_unset_pages(obj);
err = i915_gem_object_get_pages_phys(obj);
if (err)
goto err_xfer;
/* Perma-pin (until release) the physical set of pages */
__i915_gem_object_pin_pages(obj);
if (!IS_ERR_OR_NULL(pages))
i915_gem_object_put_pages_shmem(obj, pages);
i915_gem_object_release_memory_region(obj);
return 0;
err_xfer:
if (!IS_ERR_OR_NULL(pages))
__i915_gem_object_set_pages(obj, pages);
return err;
}
int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
{
int err;
assert_object_held(obj);
if (align > obj->base.size)
return -EINVAL;
if (!i915_gem_object_is_shmem(obj))
return -EINVAL;
if (!i915_gem_object_has_struct_page(obj))
return 0;
err = i915_gem_object_unbind(obj, I915_GEM_OBJECT_UNBIND_ACTIVE);
if (err)
return err;
if (obj->mm.madv != I915_MADV_WILLNEED)
return -EFAULT;
if (i915_gem_object_has_tiling_quirk(obj))
return -EFAULT;
if (obj->mm.mapping || i915_gem_object_has_pinned_pages(obj))
return -EBUSY;
if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
drm_dbg(obj->base.dev,
"Attempting to obtain a purgeable object\n");
return -EFAULT;
}
return i915_gem_object_shmem_to_phys(obj);
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_gem_phys.c"
#endif