1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
Furong Xu cb6cc8ed77 net: stmmac: Apply new page pool parameters when SPH is enabled
Commit df542f6693 ("net: stmmac: Switch to zero-copy in
non-XDP RX path") makes DMA write received frame into buffer at offset
of NET_SKB_PAD and sets page pool parameters to sync from offset of
NET_SKB_PAD. But when Header Payload Split is enabled, the header is
written at offset of NET_SKB_PAD, while the payload is written at
offset of zero. Uncorrect offset parameter for the payload breaks dma
coherence [1] since both CPU and DMA touch the page buffer from offset
of zero which is not handled by the page pool sync parameter.

And in case the DMA cannot split the received frame, for example,
a large L2 frame, pp_params.max_len should grow to match the tail
of entire frame.

[1] https://lore.kernel.org/netdev/d465f277-bac7-439f-be1d-9a47dfe2d951@nvidia.com/

Reported-by: Jon Hunter <jonathanh@nvidia.com>
Reported-by: Brad Griffis <bgriffis@nvidia.com>
Suggested-by: Ido Schimmel <idosch@idosch.org>
Fixes: df542f6693 ("net: stmmac: Switch to zero-copy in non-XDP RX path")
Signed-off-by: Furong Xu <0x1207@gmail.com>
Tested-by: Jon Hunter <jonathanh@nvidia.com>
Tested-by: Thierry Reding <treding@nvidia.com>
Reviewed-by: Ido Schimmel <idosch@nvidia.com>
Link: https://patch.msgid.link/20250207085639.13580-1-0x1207@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2025-02-10 18:04:00 -08:00

8022 lines
219 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*******************************************************************************
This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
ST Ethernet IPs are built around a Synopsys IP Core.
Copyright(C) 2007-2011 STMicroelectronics Ltd
Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
Documentation available at:
http://www.stlinux.com
Support available at:
https://bugzilla.stlinux.com/
*******************************************************************************/
#include <linux/clk.h>
#include <linux/kernel.h>
#include <linux/interrupt.h>
#include <linux/ip.h>
#include <linux/tcp.h>
#include <linux/skbuff.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/crc32.h>
#include <linux/mii.h>
#include <linux/if.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/pm_runtime.h>
#include <linux/prefetch.h>
#include <linux/pinctrl/consumer.h>
#ifdef CONFIG_DEBUG_FS
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#endif /* CONFIG_DEBUG_FS */
#include <linux/net_tstamp.h>
#include <linux/phylink.h>
#include <linux/udp.h>
#include <linux/bpf_trace.h>
#include <net/page_pool/helpers.h>
#include <net/pkt_cls.h>
#include <net/xdp_sock_drv.h>
#include "stmmac_ptp.h"
#include "stmmac_fpe.h"
#include "stmmac.h"
#include "stmmac_xdp.h"
#include <linux/reset.h>
#include <linux/of_mdio.h>
#include "dwmac1000.h"
#include "dwxgmac2.h"
#include "hwif.h"
/* As long as the interface is active, we keep the timestamping counter enabled
* with fine resolution and binary rollover. This avoid non-monotonic behavior
* (clock jumps) when changing timestamping settings at runtime.
*/
#define STMMAC_HWTS_ACTIVE (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | \
PTP_TCR_TSCTRLSSR)
#define STMMAC_ALIGN(x) ALIGN(ALIGN(x, SMP_CACHE_BYTES), 16)
#define TSO_MAX_BUFF_SIZE (SZ_16K - 1)
/* Module parameters */
#define TX_TIMEO 5000
static int watchdog = TX_TIMEO;
module_param(watchdog, int, 0644);
MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
static int debug = -1;
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
static int phyaddr = -1;
module_param(phyaddr, int, 0444);
MODULE_PARM_DESC(phyaddr, "Physical device address");
#define STMMAC_TX_THRESH(x) ((x)->dma_conf.dma_tx_size / 4)
/* Limit to make sure XDP TX and slow path can coexist */
#define STMMAC_XSK_TX_BUDGET_MAX 256
#define STMMAC_TX_XSK_AVAIL 16
#define STMMAC_RX_FILL_BATCH 16
#define STMMAC_XDP_PASS 0
#define STMMAC_XDP_CONSUMED BIT(0)
#define STMMAC_XDP_TX BIT(1)
#define STMMAC_XDP_REDIRECT BIT(2)
static int flow_ctrl = FLOW_AUTO;
module_param(flow_ctrl, int, 0644);
MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
static int pause = PAUSE_TIME;
module_param(pause, int, 0644);
MODULE_PARM_DESC(pause, "Flow Control Pause Time");
#define TC_DEFAULT 64
static int tc = TC_DEFAULT;
module_param(tc, int, 0644);
MODULE_PARM_DESC(tc, "DMA threshold control value");
#define DEFAULT_BUFSIZE 1536
static int buf_sz = DEFAULT_BUFSIZE;
module_param(buf_sz, int, 0644);
MODULE_PARM_DESC(buf_sz, "DMA buffer size");
static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
NETIF_MSG_LINK | NETIF_MSG_IFUP |
NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
#define STMMAC_DEFAULT_LPI_TIMER 1000
static unsigned int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
module_param(eee_timer, uint, 0644);
MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
#define STMMAC_LPI_T(x) (jiffies + usecs_to_jiffies(x))
/* By default the driver will use the ring mode to manage tx and rx descriptors,
* but allow user to force to use the chain instead of the ring
*/
static unsigned int chain_mode;
module_param(chain_mode, int, 0444);
MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
/* For MSI interrupts handling */
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id);
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data);
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data);
static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue);
static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue);
static void stmmac_reset_queues_param(struct stmmac_priv *priv);
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue);
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue);
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
u32 rxmode, u32 chan);
#ifdef CONFIG_DEBUG_FS
static const struct net_device_ops stmmac_netdev_ops;
static void stmmac_init_fs(struct net_device *dev);
static void stmmac_exit_fs(struct net_device *dev);
#endif
#define STMMAC_COAL_TIMER(x) (ns_to_ktime((x) * NSEC_PER_USEC))
int stmmac_bus_clks_config(struct stmmac_priv *priv, bool enabled)
{
int ret = 0;
if (enabled) {
ret = clk_prepare_enable(priv->plat->stmmac_clk);
if (ret)
return ret;
ret = clk_prepare_enable(priv->plat->pclk);
if (ret) {
clk_disable_unprepare(priv->plat->stmmac_clk);
return ret;
}
if (priv->plat->clks_config) {
ret = priv->plat->clks_config(priv->plat->bsp_priv, enabled);
if (ret) {
clk_disable_unprepare(priv->plat->stmmac_clk);
clk_disable_unprepare(priv->plat->pclk);
return ret;
}
}
} else {
clk_disable_unprepare(priv->plat->stmmac_clk);
clk_disable_unprepare(priv->plat->pclk);
if (priv->plat->clks_config)
priv->plat->clks_config(priv->plat->bsp_priv, enabled);
}
return ret;
}
EXPORT_SYMBOL_GPL(stmmac_bus_clks_config);
/**
* stmmac_verify_args - verify the driver parameters.
* Description: it checks the driver parameters and set a default in case of
* errors.
*/
static void stmmac_verify_args(void)
{
if (unlikely(watchdog < 0))
watchdog = TX_TIMEO;
if (unlikely((buf_sz < DEFAULT_BUFSIZE) || (buf_sz > BUF_SIZE_16KiB)))
buf_sz = DEFAULT_BUFSIZE;
if (unlikely(flow_ctrl > 1))
flow_ctrl = FLOW_AUTO;
else if (likely(flow_ctrl < 0))
flow_ctrl = FLOW_OFF;
if (unlikely((pause < 0) || (pause > 0xffff)))
pause = PAUSE_TIME;
}
static void __stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
u32 queue;
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps)) {
napi_disable(&ch->rxtx_napi);
continue;
}
if (queue < rx_queues_cnt)
napi_disable(&ch->rx_napi);
if (queue < tx_queues_cnt)
napi_disable(&ch->tx_napi);
}
}
/**
* stmmac_disable_all_queues - Disable all queues
* @priv: driver private structure
*/
static void stmmac_disable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
struct stmmac_rx_queue *rx_q;
u32 queue;
/* synchronize_rcu() needed for pending XDP buffers to drain */
for (queue = 0; queue < rx_queues_cnt; queue++) {
rx_q = &priv->dma_conf.rx_queue[queue];
if (rx_q->xsk_pool) {
synchronize_rcu();
break;
}
}
__stmmac_disable_all_queues(priv);
}
/**
* stmmac_enable_all_queues - Enable all queues
* @priv: driver private structure
*/
static void stmmac_enable_all_queues(struct stmmac_priv *priv)
{
u32 rx_queues_cnt = priv->plat->rx_queues_to_use;
u32 tx_queues_cnt = priv->plat->tx_queues_to_use;
u32 maxq = max(rx_queues_cnt, tx_queues_cnt);
u32 queue;
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps)) {
napi_enable(&ch->rxtx_napi);
continue;
}
if (queue < rx_queues_cnt)
napi_enable(&ch->rx_napi);
if (queue < tx_queues_cnt)
napi_enable(&ch->tx_napi);
}
}
static void stmmac_service_event_schedule(struct stmmac_priv *priv)
{
if (!test_bit(STMMAC_DOWN, &priv->state) &&
!test_and_set_bit(STMMAC_SERVICE_SCHED, &priv->state))
queue_work(priv->wq, &priv->service_task);
}
static void stmmac_global_err(struct stmmac_priv *priv)
{
netif_carrier_off(priv->dev);
set_bit(STMMAC_RESET_REQUESTED, &priv->state);
stmmac_service_event_schedule(priv);
}
/**
* stmmac_clk_csr_set - dynamically set the MDC clock
* @priv: driver private structure
* Description: this is to dynamically set the MDC clock according to the csr
* clock input.
* Note:
* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed (as reported in the driver
* documentation). Viceversa the driver will try to set the MDC
* clock dynamically according to the actual clock input.
*/
static void stmmac_clk_csr_set(struct stmmac_priv *priv)
{
unsigned long clk_rate;
clk_rate = clk_get_rate(priv->plat->stmmac_clk);
/* Platform provided default clk_csr would be assumed valid
* for all other cases except for the below mentioned ones.
* For values higher than the IEEE 802.3 specified frequency
* we can not estimate the proper divider as it is not known
* the frequency of clk_csr_i. So we do not change the default
* divider.
*/
if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
if (clk_rate < CSR_F_35M)
priv->clk_csr = STMMAC_CSR_20_35M;
else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
priv->clk_csr = STMMAC_CSR_35_60M;
else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
priv->clk_csr = STMMAC_CSR_60_100M;
else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
priv->clk_csr = STMMAC_CSR_100_150M;
else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
priv->clk_csr = STMMAC_CSR_150_250M;
else if ((clk_rate >= CSR_F_250M) && (clk_rate <= CSR_F_300M))
priv->clk_csr = STMMAC_CSR_250_300M;
else if ((clk_rate >= CSR_F_300M) && (clk_rate < CSR_F_500M))
priv->clk_csr = STMMAC_CSR_300_500M;
else if ((clk_rate >= CSR_F_500M) && (clk_rate < CSR_F_800M))
priv->clk_csr = STMMAC_CSR_500_800M;
}
if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I) {
if (clk_rate > 160000000)
priv->clk_csr = 0x03;
else if (clk_rate > 80000000)
priv->clk_csr = 0x02;
else if (clk_rate > 40000000)
priv->clk_csr = 0x01;
else
priv->clk_csr = 0;
}
if (priv->plat->has_xgmac) {
if (clk_rate > 400000000)
priv->clk_csr = 0x5;
else if (clk_rate > 350000000)
priv->clk_csr = 0x4;
else if (clk_rate > 300000000)
priv->clk_csr = 0x3;
else if (clk_rate > 250000000)
priv->clk_csr = 0x2;
else if (clk_rate > 150000000)
priv->clk_csr = 0x1;
else
priv->clk_csr = 0x0;
}
}
static void print_pkt(unsigned char *buf, int len)
{
pr_debug("len = %d byte, buf addr: 0x%p\n", len, buf);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, len);
}
static inline u32 stmmac_tx_avail(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
u32 avail;
if (tx_q->dirty_tx > tx_q->cur_tx)
avail = tx_q->dirty_tx - tx_q->cur_tx - 1;
else
avail = priv->dma_conf.dma_tx_size - tx_q->cur_tx + tx_q->dirty_tx - 1;
return avail;
}
/**
* stmmac_rx_dirty - Get RX queue dirty
* @priv: driver private structure
* @queue: RX queue index
*/
static inline u32 stmmac_rx_dirty(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
u32 dirty;
if (rx_q->dirty_rx <= rx_q->cur_rx)
dirty = rx_q->cur_rx - rx_q->dirty_rx;
else
dirty = priv->dma_conf.dma_rx_size - rx_q->dirty_rx + rx_q->cur_rx;
return dirty;
}
static void stmmac_disable_hw_lpi_timer(struct stmmac_priv *priv)
{
stmmac_set_eee_lpi_timer(priv, priv->hw, 0);
}
static void stmmac_enable_hw_lpi_timer(struct stmmac_priv *priv)
{
stmmac_set_eee_lpi_timer(priv, priv->hw, priv->tx_lpi_timer);
}
static bool stmmac_eee_tx_busy(struct stmmac_priv *priv)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* check if all TX queues have the work finished */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
if (tx_q->dirty_tx != tx_q->cur_tx)
return true; /* still unfinished work */
}
return false;
}
static void stmmac_restart_sw_lpi_timer(struct stmmac_priv *priv)
{
mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(priv->tx_lpi_timer));
}
/**
* stmmac_try_to_start_sw_lpi - check and enter in LPI mode
* @priv: driver private structure
* Description: this function is to verify and enter in LPI mode in case of
* EEE.
*/
static void stmmac_try_to_start_sw_lpi(struct stmmac_priv *priv)
{
if (stmmac_eee_tx_busy(priv)) {
stmmac_restart_sw_lpi_timer(priv);
return;
}
/* Check and enter in LPI mode */
if (!priv->tx_path_in_lpi_mode)
stmmac_set_eee_mode(priv, priv->hw,
priv->plat->flags & STMMAC_FLAG_EN_TX_LPI_CLOCKGATING);
}
/**
* stmmac_stop_sw_lpi - stop transmitting LPI
* @priv: driver private structure
* Description: When using software-controlled LPI, stop transmitting LPI state.
*/
static void stmmac_stop_sw_lpi(struct stmmac_priv *priv)
{
stmmac_reset_eee_mode(priv, priv->hw);
del_timer_sync(&priv->eee_ctrl_timer);
priv->tx_path_in_lpi_mode = false;
}
/**
* stmmac_eee_ctrl_timer - EEE TX SW timer.
* @t: timer_list struct containing private info
* Description:
* if there is no data transfer and if we are not in LPI state,
* then MAC Transmitter can be moved to LPI state.
*/
static void stmmac_eee_ctrl_timer(struct timer_list *t)
{
struct stmmac_priv *priv = from_timer(priv, t, eee_ctrl_timer);
stmmac_try_to_start_sw_lpi(priv);
}
/**
* stmmac_eee_init - init EEE
* @priv: driver private structure
* @active: indicates whether EEE should be enabled.
* Description:
* if the GMAC supports the EEE (from the HW cap reg) and the phy device
* can also manage EEE, this function enable the LPI state and start related
* timer.
*/
static void stmmac_eee_init(struct stmmac_priv *priv, bool active)
{
priv->eee_active = active;
/* Check if MAC core supports the EEE feature. */
if (!priv->dma_cap.eee) {
priv->eee_enabled = false;
return;
}
mutex_lock(&priv->lock);
/* Check if it needs to be deactivated */
if (!priv->eee_active) {
if (priv->eee_enabled) {
netdev_dbg(priv->dev, "disable EEE\n");
priv->eee_sw_timer_en = false;
stmmac_disable_hw_lpi_timer(priv);
del_timer_sync(&priv->eee_ctrl_timer);
stmmac_set_eee_timer(priv, priv->hw, 0,
STMMAC_DEFAULT_TWT_LS);
if (priv->hw->xpcs)
xpcs_config_eee(priv->hw->xpcs,
priv->plat->mult_fact_100ns,
false);
}
priv->eee_enabled = false;
mutex_unlock(&priv->lock);
return;
}
if (priv->eee_active && !priv->eee_enabled) {
stmmac_set_eee_timer(priv, priv->hw, STMMAC_DEFAULT_LIT_LS,
STMMAC_DEFAULT_TWT_LS);
if (priv->hw->xpcs)
xpcs_config_eee(priv->hw->xpcs,
priv->plat->mult_fact_100ns,
true);
}
if (priv->plat->has_gmac4 && priv->tx_lpi_timer <= STMMAC_ET_MAX) {
/* Use hardware LPI mode */
del_timer_sync(&priv->eee_ctrl_timer);
priv->tx_path_in_lpi_mode = false;
priv->eee_sw_timer_en = false;
stmmac_enable_hw_lpi_timer(priv);
} else {
/* Use software LPI mode */
priv->eee_sw_timer_en = true;
stmmac_disable_hw_lpi_timer(priv);
stmmac_restart_sw_lpi_timer(priv);
}
priv->eee_enabled = true;
mutex_unlock(&priv->lock);
netdev_dbg(priv->dev, "Energy-Efficient Ethernet initialized\n");
}
/* stmmac_get_tx_hwtstamp - get HW TX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read timestamp from the descriptor & pass it to stack.
* and also perform some sanity checks.
*/
static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
struct dma_desc *p, struct sk_buff *skb)
{
struct skb_shared_hwtstamps shhwtstamp;
bool found = false;
u64 ns = 0;
if (!priv->hwts_tx_en)
return;
/* exit if skb doesn't support hw tstamp */
if (likely(!skb || !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
return;
/* check tx tstamp status */
if (stmmac_get_tx_timestamp_status(priv, p)) {
stmmac_get_timestamp(priv, p, priv->adv_ts, &ns);
found = true;
} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
found = true;
}
if (found) {
ns -= priv->plat->cdc_error_adj;
memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp.hwtstamp = ns_to_ktime(ns);
netdev_dbg(priv->dev, "get valid TX hw timestamp %llu\n", ns);
/* pass tstamp to stack */
skb_tstamp_tx(skb, &shhwtstamp);
}
}
/* stmmac_get_rx_hwtstamp - get HW RX timestamps
* @priv: driver private structure
* @p : descriptor pointer
* @np : next descriptor pointer
* @skb : the socket buffer
* Description :
* This function will read received packet's timestamp from the descriptor
* and pass it to stack. It also perform some sanity checks.
*/
static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv, struct dma_desc *p,
struct dma_desc *np, struct sk_buff *skb)
{
struct skb_shared_hwtstamps *shhwtstamp = NULL;
struct dma_desc *desc = p;
u64 ns = 0;
if (!priv->hwts_rx_en)
return;
/* For GMAC4, the valid timestamp is from CTX next desc. */
if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
desc = np;
/* Check if timestamp is available */
if (stmmac_get_rx_timestamp_status(priv, p, np, priv->adv_ts)) {
stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
ns -= priv->plat->cdc_error_adj;
netdev_dbg(priv->dev, "get valid RX hw timestamp %llu\n", ns);
shhwtstamp = skb_hwtstamps(skb);
memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
shhwtstamp->hwtstamp = ns_to_ktime(ns);
} else {
netdev_dbg(priv->dev, "cannot get RX hw timestamp\n");
}
}
/**
* stmmac_hwtstamp_set - control hardware timestamping.
* @dev: device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* Description:
* This function configures the MAC to enable/disable both outgoing(TX)
* and incoming(RX) packets time stamping based on user input.
* Return Value:
* 0 on success and an appropriate -ve integer on failure.
*/
static int stmmac_hwtstamp_set(struct net_device *dev, struct ifreq *ifr)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct hwtstamp_config config;
u32 ptp_v2 = 0;
u32 tstamp_all = 0;
u32 ptp_over_ipv4_udp = 0;
u32 ptp_over_ipv6_udp = 0;
u32 ptp_over_ethernet = 0;
u32 snap_type_sel = 0;
u32 ts_master_en = 0;
u32 ts_event_en = 0;
if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
netdev_alert(priv->dev, "No support for HW time stamping\n");
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
return -EOPNOTSUPP;
}
if (copy_from_user(&config, ifr->ifr_data,
sizeof(config)))
return -EFAULT;
netdev_dbg(priv->dev, "%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
__func__, config.flags, config.tx_type, config.rx_filter);
if (config.tx_type != HWTSTAMP_TX_OFF &&
config.tx_type != HWTSTAMP_TX_ON)
return -ERANGE;
if (priv->adv_ts) {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
/* time stamp no incoming packet at all */
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
/* 'xmac' hardware can support Sync, Pdelay_Req and
* Pdelay_resp by setting bit14 and bits17/16 to 01
* This leaves Delay_Req timestamps out.
* Enable all events *and* general purpose message
* timestamping
*/
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
/* PTP v1, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
/* PTP v1, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
/* PTP v2, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for all event messages */
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
/* PTP v2, UDP, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
/* PTP v2, UDP, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
break;
case HWTSTAMP_FILTER_PTP_V2_EVENT:
/* PTP v2/802.AS1 any layer, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
ptp_v2 = PTP_TCR_TSVER2ENA;
snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
if (priv->synopsys_id < DWMAC_CORE_4_10)
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_SYNC:
/* PTP v2/802.AS1, any layer, Sync packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for SYNC messages only */
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
/* PTP v2/802.AS1, any layer, Delay_req packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
ptp_v2 = PTP_TCR_TSVER2ENA;
/* take time stamp for Delay_Req messages only */
ts_master_en = PTP_TCR_TSMSTRENA;
ts_event_en = PTP_TCR_TSEVNTENA;
ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
ptp_over_ethernet = PTP_TCR_TSIPENA;
break;
case HWTSTAMP_FILTER_NTP_ALL:
case HWTSTAMP_FILTER_ALL:
/* time stamp any incoming packet */
config.rx_filter = HWTSTAMP_FILTER_ALL;
tstamp_all = PTP_TCR_TSENALL;
break;
default:
return -ERANGE;
}
} else {
switch (config.rx_filter) {
case HWTSTAMP_FILTER_NONE:
config.rx_filter = HWTSTAMP_FILTER_NONE;
break;
default:
/* PTP v1, UDP, any kind of event packet */
config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
break;
}
}
priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
priv->hwts_tx_en = config.tx_type == HWTSTAMP_TX_ON;
priv->systime_flags = STMMAC_HWTS_ACTIVE;
if (priv->hwts_tx_en || priv->hwts_rx_en) {
priv->systime_flags |= tstamp_all | ptp_v2 |
ptp_over_ethernet | ptp_over_ipv6_udp |
ptp_over_ipv4_udp | ts_event_en |
ts_master_en | snap_type_sel;
}
stmmac_config_hw_tstamping(priv, priv->ptpaddr, priv->systime_flags);
memcpy(&priv->tstamp_config, &config, sizeof(config));
return copy_to_user(ifr->ifr_data, &config,
sizeof(config)) ? -EFAULT : 0;
}
/**
* stmmac_hwtstamp_get - read hardware timestamping.
* @dev: device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* Description:
* This function obtain the current hardware timestamping settings
* as requested.
*/
static int stmmac_hwtstamp_get(struct net_device *dev, struct ifreq *ifr)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct hwtstamp_config *config = &priv->tstamp_config;
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
return -EOPNOTSUPP;
return copy_to_user(ifr->ifr_data, config,
sizeof(*config)) ? -EFAULT : 0;
}
/**
* stmmac_init_tstamp_counter - init hardware timestamping counter
* @priv: driver private structure
* @systime_flags: timestamping flags
* Description:
* Initialize hardware counter for packet timestamping.
* This is valid as long as the interface is open and not suspended.
* Will be rerun after resuming from suspend, case in which the timestamping
* flags updated by stmmac_hwtstamp_set() also need to be restored.
*/
int stmmac_init_tstamp_counter(struct stmmac_priv *priv, u32 systime_flags)
{
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
struct timespec64 now;
u32 sec_inc = 0;
u64 temp = 0;
if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
return -EOPNOTSUPP;
stmmac_config_hw_tstamping(priv, priv->ptpaddr, systime_flags);
priv->systime_flags = systime_flags;
/* program Sub Second Increment reg */
stmmac_config_sub_second_increment(priv, priv->ptpaddr,
priv->plat->clk_ptp_rate,
xmac, &sec_inc);
temp = div_u64(1000000000ULL, sec_inc);
/* Store sub second increment for later use */
priv->sub_second_inc = sec_inc;
/* calculate default added value:
* formula is :
* addend = (2^32)/freq_div_ratio;
* where, freq_div_ratio = 1e9ns/sec_inc
*/
temp = (u64)(temp << 32);
priv->default_addend = div_u64(temp, priv->plat->clk_ptp_rate);
stmmac_config_addend(priv, priv->ptpaddr, priv->default_addend);
/* initialize system time */
ktime_get_real_ts64(&now);
/* lower 32 bits of tv_sec are safe until y2106 */
stmmac_init_systime(priv, priv->ptpaddr, (u32)now.tv_sec, now.tv_nsec);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_init_tstamp_counter);
/**
* stmmac_init_ptp - init PTP
* @priv: driver private structure
* Description: this is to verify if the HW supports the PTPv1 or PTPv2.
* This is done by looking at the HW cap. register.
* This function also registers the ptp driver.
*/
static int stmmac_init_ptp(struct stmmac_priv *priv)
{
bool xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
int ret;
if (priv->plat->ptp_clk_freq_config)
priv->plat->ptp_clk_freq_config(priv);
ret = stmmac_init_tstamp_counter(priv, STMMAC_HWTS_ACTIVE);
if (ret)
return ret;
priv->adv_ts = 0;
/* Check if adv_ts can be enabled for dwmac 4.x / xgmac core */
if (xmac && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
/* Dwmac 3.x core with extend_desc can support adv_ts */
else if (priv->extend_desc && priv->dma_cap.atime_stamp)
priv->adv_ts = 1;
if (priv->dma_cap.time_stamp)
netdev_info(priv->dev, "IEEE 1588-2002 Timestamp supported\n");
if (priv->adv_ts)
netdev_info(priv->dev,
"IEEE 1588-2008 Advanced Timestamp supported\n");
priv->hwts_tx_en = 0;
priv->hwts_rx_en = 0;
if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
stmmac_hwtstamp_correct_latency(priv, priv);
return 0;
}
static void stmmac_release_ptp(struct stmmac_priv *priv)
{
clk_disable_unprepare(priv->plat->clk_ptp_ref);
stmmac_ptp_unregister(priv);
}
/**
* stmmac_mac_flow_ctrl - Configure flow control in all queues
* @priv: driver private structure
* @duplex: duplex passed to the next function
* Description: It is used for configuring the flow control in all queues
*/
static void stmmac_mac_flow_ctrl(struct stmmac_priv *priv, u32 duplex)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
stmmac_flow_ctrl(priv, priv->hw, duplex, priv->flow_ctrl,
priv->pause, tx_cnt);
}
static unsigned long stmmac_mac_get_caps(struct phylink_config *config,
phy_interface_t interface)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
/* Refresh the MAC-specific capabilities */
stmmac_mac_update_caps(priv);
config->mac_capabilities = priv->hw->link.caps;
if (priv->plat->max_speed)
phylink_limit_mac_speed(config, priv->plat->max_speed);
return config->mac_capabilities;
}
static struct phylink_pcs *stmmac_mac_select_pcs(struct phylink_config *config,
phy_interface_t interface)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
struct phylink_pcs *pcs;
if (priv->plat->select_pcs) {
pcs = priv->plat->select_pcs(priv, interface);
if (!IS_ERR(pcs))
return pcs;
}
return NULL;
}
static void stmmac_mac_config(struct phylink_config *config, unsigned int mode,
const struct phylink_link_state *state)
{
/* Nothing to do, xpcs_config() handles everything */
}
static void stmmac_mac_link_down(struct phylink_config *config,
unsigned int mode, phy_interface_t interface)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
stmmac_mac_set(priv, priv->ioaddr, false);
if (priv->dma_cap.eee)
stmmac_set_eee_pls(priv, priv->hw, false);
if (stmmac_fpe_supported(priv))
stmmac_fpe_link_state_handle(priv, false);
}
static void stmmac_mac_link_up(struct phylink_config *config,
struct phy_device *phy,
unsigned int mode, phy_interface_t interface,
int speed, int duplex,
bool tx_pause, bool rx_pause)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
u32 old_ctrl, ctrl;
if ((priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
priv->plat->serdes_powerup)
priv->plat->serdes_powerup(priv->dev, priv->plat->bsp_priv);
old_ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
ctrl = old_ctrl & ~priv->hw->link.speed_mask;
if (interface == PHY_INTERFACE_MODE_USXGMII) {
switch (speed) {
case SPEED_10000:
ctrl |= priv->hw->link.xgmii.speed10000;
break;
case SPEED_5000:
ctrl |= priv->hw->link.xgmii.speed5000;
break;
case SPEED_2500:
ctrl |= priv->hw->link.xgmii.speed2500;
break;
default:
return;
}
} else if (interface == PHY_INTERFACE_MODE_XLGMII) {
switch (speed) {
case SPEED_100000:
ctrl |= priv->hw->link.xlgmii.speed100000;
break;
case SPEED_50000:
ctrl |= priv->hw->link.xlgmii.speed50000;
break;
case SPEED_40000:
ctrl |= priv->hw->link.xlgmii.speed40000;
break;
case SPEED_25000:
ctrl |= priv->hw->link.xlgmii.speed25000;
break;
case SPEED_10000:
ctrl |= priv->hw->link.xgmii.speed10000;
break;
case SPEED_2500:
ctrl |= priv->hw->link.speed2500;
break;
case SPEED_1000:
ctrl |= priv->hw->link.speed1000;
break;
default:
return;
}
} else {
switch (speed) {
case SPEED_2500:
ctrl |= priv->hw->link.speed2500;
break;
case SPEED_1000:
ctrl |= priv->hw->link.speed1000;
break;
case SPEED_100:
ctrl |= priv->hw->link.speed100;
break;
case SPEED_10:
ctrl |= priv->hw->link.speed10;
break;
default:
return;
}
}
priv->speed = speed;
if (priv->plat->fix_mac_speed)
priv->plat->fix_mac_speed(priv->plat->bsp_priv, speed, mode);
if (!duplex)
ctrl &= ~priv->hw->link.duplex;
else
ctrl |= priv->hw->link.duplex;
/* Flow Control operation */
if (rx_pause && tx_pause)
priv->flow_ctrl = FLOW_AUTO;
else if (rx_pause && !tx_pause)
priv->flow_ctrl = FLOW_RX;
else if (!rx_pause && tx_pause)
priv->flow_ctrl = FLOW_TX;
else
priv->flow_ctrl = FLOW_OFF;
stmmac_mac_flow_ctrl(priv, duplex);
if (ctrl != old_ctrl)
writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
stmmac_mac_set(priv, priv->ioaddr, true);
if (priv->dma_cap.eee)
stmmac_set_eee_pls(priv, priv->hw, true);
if (stmmac_fpe_supported(priv))
stmmac_fpe_link_state_handle(priv, true);
if (priv->plat->flags & STMMAC_FLAG_HWTSTAMP_CORRECT_LATENCY)
stmmac_hwtstamp_correct_latency(priv, priv);
}
static void stmmac_mac_disable_tx_lpi(struct phylink_config *config)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
stmmac_eee_init(priv, false);
}
static int stmmac_mac_enable_tx_lpi(struct phylink_config *config, u32 timer,
bool tx_clk_stop)
{
struct stmmac_priv *priv = netdev_priv(to_net_dev(config->dev));
priv->tx_lpi_timer = timer;
stmmac_eee_init(priv, true);
return 0;
}
static const struct phylink_mac_ops stmmac_phylink_mac_ops = {
.mac_get_caps = stmmac_mac_get_caps,
.mac_select_pcs = stmmac_mac_select_pcs,
.mac_config = stmmac_mac_config,
.mac_link_down = stmmac_mac_link_down,
.mac_link_up = stmmac_mac_link_up,
.mac_disable_tx_lpi = stmmac_mac_disable_tx_lpi,
.mac_enable_tx_lpi = stmmac_mac_enable_tx_lpi,
};
/**
* stmmac_check_pcs_mode - verify if RGMII/SGMII is supported
* @priv: driver private structure
* Description: this is to verify if the HW supports the PCS.
* Physical Coding Sublayer (PCS) interface that can be used when the MAC is
* configured for the TBI, RTBI, or SGMII PHY interface.
*/
static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
{
int interface = priv->plat->mac_interface;
if (priv->dma_cap.pcs) {
if ((interface == PHY_INTERFACE_MODE_RGMII) ||
(interface == PHY_INTERFACE_MODE_RGMII_ID) ||
(interface == PHY_INTERFACE_MODE_RGMII_RXID) ||
(interface == PHY_INTERFACE_MODE_RGMII_TXID)) {
netdev_dbg(priv->dev, "PCS RGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_RGMII;
} else if (interface == PHY_INTERFACE_MODE_SGMII) {
netdev_dbg(priv->dev, "PCS SGMII support enabled\n");
priv->hw->pcs = STMMAC_PCS_SGMII;
}
}
}
/**
* stmmac_init_phy - PHY initialization
* @dev: net device structure
* Description: it initializes the driver's PHY state, and attaches the PHY
* to the mac driver.
* Return value:
* 0 on success
*/
static int stmmac_init_phy(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct fwnode_handle *phy_fwnode;
struct fwnode_handle *fwnode;
int ret;
if (!phylink_expects_phy(priv->phylink))
return 0;
fwnode = priv->plat->port_node;
if (!fwnode)
fwnode = dev_fwnode(priv->device);
if (fwnode)
phy_fwnode = fwnode_get_phy_node(fwnode);
else
phy_fwnode = NULL;
/* Some DT bindings do not set-up the PHY handle. Let's try to
* manually parse it
*/
if (!phy_fwnode || IS_ERR(phy_fwnode)) {
int addr = priv->plat->phy_addr;
struct phy_device *phydev;
if (addr < 0) {
netdev_err(priv->dev, "no phy found\n");
return -ENODEV;
}
phydev = mdiobus_get_phy(priv->mii, addr);
if (!phydev) {
netdev_err(priv->dev, "no phy at addr %d\n", addr);
return -ENODEV;
}
ret = phylink_connect_phy(priv->phylink, phydev);
} else {
fwnode_handle_put(phy_fwnode);
ret = phylink_fwnode_phy_connect(priv->phylink, fwnode, 0);
}
if (ret == 0) {
struct ethtool_keee eee;
/* Configure phylib's copy of the LPI timer. Normally,
* phylink_config.lpi_timer_default would do this, but there is
* a chance that userspace could change the eee_timer setting
* via sysfs before the first open. Thus, preserve existing
* behaviour.
*/
if (!phylink_ethtool_get_eee(priv->phylink, &eee)) {
eee.tx_lpi_timer = priv->tx_lpi_timer;
phylink_ethtool_set_eee(priv->phylink, &eee);
}
}
if (!priv->plat->pmt) {
struct ethtool_wolinfo wol = { .cmd = ETHTOOL_GWOL };
phylink_ethtool_get_wol(priv->phylink, &wol);
device_set_wakeup_capable(priv->device, !!wol.supported);
device_set_wakeup_enable(priv->device, !!wol.wolopts);
}
return ret;
}
static int stmmac_phy_setup(struct stmmac_priv *priv)
{
struct stmmac_mdio_bus_data *mdio_bus_data;
int mode = priv->plat->phy_interface;
struct fwnode_handle *fwnode;
struct phylink_pcs *pcs;
struct phylink *phylink;
priv->phylink_config.dev = &priv->dev->dev;
priv->phylink_config.type = PHYLINK_NETDEV;
priv->phylink_config.mac_managed_pm = true;
/* Stmmac always requires an RX clock for hardware initialization */
priv->phylink_config.mac_requires_rxc = true;
if (!(priv->plat->flags & STMMAC_FLAG_RX_CLK_RUNS_IN_LPI))
priv->phylink_config.eee_rx_clk_stop_enable = true;
mdio_bus_data = priv->plat->mdio_bus_data;
if (mdio_bus_data)
priv->phylink_config.default_an_inband =
mdio_bus_data->default_an_inband;
/* Set the platform/firmware specified interface mode. Note, phylink
* deals with the PHY interface mode, not the MAC interface mode.
*/
__set_bit(mode, priv->phylink_config.supported_interfaces);
/* If we have an xpcs, it defines which PHY interfaces are supported. */
if (priv->hw->xpcs)
pcs = xpcs_to_phylink_pcs(priv->hw->xpcs);
else
pcs = priv->hw->phylink_pcs;
if (pcs)
phy_interface_or(priv->phylink_config.supported_interfaces,
priv->phylink_config.supported_interfaces,
pcs->supported_interfaces);
if (priv->dma_cap.eee) {
/* Assume all supported interfaces also support LPI */
memcpy(priv->phylink_config.lpi_interfaces,
priv->phylink_config.supported_interfaces,
sizeof(priv->phylink_config.lpi_interfaces));
/* All full duplex speeds above 100Mbps are supported */
priv->phylink_config.lpi_capabilities = ~(MAC_1000FD - 1) |
MAC_100FD;
priv->phylink_config.lpi_timer_default = eee_timer * 1000;
priv->phylink_config.eee_enabled_default = true;
}
fwnode = priv->plat->port_node;
if (!fwnode)
fwnode = dev_fwnode(priv->device);
phylink = phylink_create(&priv->phylink_config, fwnode,
mode, &stmmac_phylink_mac_ops);
if (IS_ERR(phylink))
return PTR_ERR(phylink);
priv->phylink = phylink;
return 0;
}
static void stmmac_display_rx_rings(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
unsigned int desc_size;
void *head_rx;
u32 queue;
/* Display RX rings */
for (queue = 0; queue < rx_cnt; queue++) {
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
pr_info("\tRX Queue %u rings\n", queue);
if (priv->extend_desc) {
head_rx = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
head_rx = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
/* Display RX ring */
stmmac_display_ring(priv, head_rx, dma_conf->dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
}
static void stmmac_display_tx_rings(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 tx_cnt = priv->plat->tx_queues_to_use;
unsigned int desc_size;
void *head_tx;
u32 queue;
/* Display TX rings */
for (queue = 0; queue < tx_cnt; queue++) {
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
pr_info("\tTX Queue %d rings\n", queue);
if (priv->extend_desc) {
head_tx = (void *)tx_q->dma_etx;
desc_size = sizeof(struct dma_extended_desc);
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
head_tx = (void *)tx_q->dma_entx;
desc_size = sizeof(struct dma_edesc);
} else {
head_tx = (void *)tx_q->dma_tx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, head_tx, dma_conf->dma_tx_size, false,
tx_q->dma_tx_phy, desc_size);
}
}
static void stmmac_display_rings(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
/* Display RX ring */
stmmac_display_rx_rings(priv, dma_conf);
/* Display TX ring */
stmmac_display_tx_rings(priv, dma_conf);
}
static unsigned int stmmac_rx_offset(struct stmmac_priv *priv)
{
if (stmmac_xdp_is_enabled(priv))
return XDP_PACKET_HEADROOM;
return NET_SKB_PAD;
}
static int stmmac_set_bfsize(int mtu, int bufsize)
{
int ret = bufsize;
if (mtu >= BUF_SIZE_8KiB)
ret = BUF_SIZE_16KiB;
else if (mtu >= BUF_SIZE_4KiB)
ret = BUF_SIZE_8KiB;
else if (mtu >= BUF_SIZE_2KiB)
ret = BUF_SIZE_4KiB;
else if (mtu > DEFAULT_BUFSIZE)
ret = BUF_SIZE_2KiB;
else
ret = DEFAULT_BUFSIZE;
return ret;
}
/**
* stmmac_clear_rx_descriptors - clear RX descriptors
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
* Description: this function is called to clear the RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_rx_descriptors(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int i;
/* Clear the RX descriptors */
for (i = 0; i < dma_conf->dma_rx_size; i++)
if (priv->extend_desc)
stmmac_init_rx_desc(priv, &rx_q->dma_erx[i].basic,
priv->use_riwt, priv->mode,
(i == dma_conf->dma_rx_size - 1),
dma_conf->dma_buf_sz);
else
stmmac_init_rx_desc(priv, &rx_q->dma_rx[i],
priv->use_riwt, priv->mode,
(i == dma_conf->dma_rx_size - 1),
dma_conf->dma_buf_sz);
}
/**
* stmmac_clear_tx_descriptors - clear tx descriptors
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* @queue: TX queue index.
* Description: this function is called to clear the TX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_tx_descriptors(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
int i;
/* Clear the TX descriptors */
for (i = 0; i < dma_conf->dma_tx_size; i++) {
int last = (i == (dma_conf->dma_tx_size - 1));
struct dma_desc *p;
if (priv->extend_desc)
p = &tx_q->dma_etx[i].basic;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[i].basic;
else
p = &tx_q->dma_tx[i];
stmmac_init_tx_desc(priv, p, priv->mode, last);
}
}
/**
* stmmac_clear_descriptors - clear descriptors
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* Description: this function is called to clear the TX and RX descriptors
* in case of both basic and extended descriptors are used.
*/
static void stmmac_clear_descriptors(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 rx_queue_cnt = priv->plat->rx_queues_to_use;
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
/* Clear the RX descriptors */
for (queue = 0; queue < rx_queue_cnt; queue++)
stmmac_clear_rx_descriptors(priv, dma_conf, queue);
/* Clear the TX descriptors */
for (queue = 0; queue < tx_queue_cnt; queue++)
stmmac_clear_tx_descriptors(priv, dma_conf, queue);
}
/**
* stmmac_init_rx_buffers - init the RX descriptor buffer.
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* @p: descriptor pointer
* @i: descriptor index
* @flags: gfp flag
* @queue: RX queue index
* Description: this function is called to allocate a receive buffer, perform
* the DMA mapping and init the descriptor.
*/
static int stmmac_init_rx_buffers(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
struct dma_desc *p,
int i, gfp_t flags, u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
if (priv->dma_cap.host_dma_width <= 32)
gfp |= GFP_DMA32;
if (!buf->page) {
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->page)
return -ENOMEM;
buf->page_offset = stmmac_rx_offset(priv);
}
if (priv->sph && !buf->sec_page) {
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->sec_page)
return -ENOMEM;
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
} else {
buf->sec_page = NULL;
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
}
buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
stmmac_set_desc_addr(priv, p, buf->addr);
if (dma_conf->dma_buf_sz == BUF_SIZE_16KiB)
stmmac_init_desc3(priv, p);
return 0;
}
/**
* stmmac_free_rx_buffer - free RX dma buffers
* @priv: private structure
* @rx_q: RX queue
* @i: buffer index.
*/
static void stmmac_free_rx_buffer(struct stmmac_priv *priv,
struct stmmac_rx_queue *rx_q,
int i)
{
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
if (buf->page)
page_pool_put_full_page(rx_q->page_pool, buf->page, false);
buf->page = NULL;
if (buf->sec_page)
page_pool_put_full_page(rx_q->page_pool, buf->sec_page, false);
buf->sec_page = NULL;
}
/**
* stmmac_free_tx_buffer - free RX dma buffers
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
* @i: buffer index.
*/
static void stmmac_free_tx_buffer(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue, int i)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
if (tx_q->tx_skbuff_dma[i].buf &&
tx_q->tx_skbuff_dma[i].buf_type != STMMAC_TXBUF_T_XDP_TX) {
if (tx_q->tx_skbuff_dma[i].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[i].buf,
tx_q->tx_skbuff_dma[i].len,
DMA_TO_DEVICE);
}
if (tx_q->xdpf[i] &&
(tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_TX ||
tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XDP_NDO)) {
xdp_return_frame(tx_q->xdpf[i]);
tx_q->xdpf[i] = NULL;
}
if (tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_XSK_TX)
tx_q->xsk_frames_done++;
if (tx_q->tx_skbuff[i] &&
tx_q->tx_skbuff_dma[i].buf_type == STMMAC_TXBUF_T_SKB) {
dev_kfree_skb_any(tx_q->tx_skbuff[i]);
tx_q->tx_skbuff[i] = NULL;
}
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
}
/**
* dma_free_rx_skbufs - free RX dma buffers
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
*/
static void dma_free_rx_skbufs(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int i;
for (i = 0; i < dma_conf->dma_rx_size; i++)
stmmac_free_rx_buffer(priv, rx_q, i);
}
static int stmmac_alloc_rx_buffers(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue, gfp_t flags)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int i;
for (i = 0; i < dma_conf->dma_rx_size; i++) {
struct dma_desc *p;
int ret;
if (priv->extend_desc)
p = &((rx_q->dma_erx + i)->basic);
else
p = rx_q->dma_rx + i;
ret = stmmac_init_rx_buffers(priv, dma_conf, p, i, flags,
queue);
if (ret)
return ret;
rx_q->buf_alloc_num++;
}
return 0;
}
/**
* dma_free_rx_xskbufs - free RX dma buffers from XSK pool
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
*/
static void dma_free_rx_xskbufs(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int i;
for (i = 0; i < dma_conf->dma_rx_size; i++) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[i];
if (!buf->xdp)
continue;
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
}
}
static int stmmac_alloc_rx_buffers_zc(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int i;
/* struct stmmac_xdp_buff is using cb field (maximum size of 24 bytes)
* in struct xdp_buff_xsk to stash driver specific information. Thus,
* use this macro to make sure no size violations.
*/
XSK_CHECK_PRIV_TYPE(struct stmmac_xdp_buff);
for (i = 0; i < dma_conf->dma_rx_size; i++) {
struct stmmac_rx_buffer *buf;
dma_addr_t dma_addr;
struct dma_desc *p;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + i);
else
p = rx_q->dma_rx + i;
buf = &rx_q->buf_pool[i];
buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
if (!buf->xdp)
return -ENOMEM;
dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
stmmac_set_desc_addr(priv, p, dma_addr);
rx_q->buf_alloc_num++;
}
return 0;
}
static struct xsk_buff_pool *stmmac_get_xsk_pool(struct stmmac_priv *priv, u32 queue)
{
if (!stmmac_xdp_is_enabled(priv) || !test_bit(queue, priv->af_xdp_zc_qps))
return NULL;
return xsk_get_pool_from_qid(priv->dev, queue);
}
/**
* __init_dma_rx_desc_rings - init the RX descriptor ring (per queue)
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
* @flags: gfp flag.
* Description: this function initializes the DMA RX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int __init_dma_rx_desc_rings(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue, gfp_t flags)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
int ret;
netif_dbg(priv, probe, priv->dev,
"(%s) dma_rx_phy=0x%08x\n", __func__,
(u32)rx_q->dma_rx_phy);
stmmac_clear_rx_descriptors(priv, dma_conf, queue);
xdp_rxq_info_unreg_mem_model(&rx_q->xdp_rxq);
rx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
if (rx_q->xsk_pool) {
WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
MEM_TYPE_XSK_BUFF_POOL,
NULL));
netdev_info(priv->dev,
"Register MEM_TYPE_XSK_BUFF_POOL RxQ-%d\n",
rx_q->queue_index);
xsk_pool_set_rxq_info(rx_q->xsk_pool, &rx_q->xdp_rxq);
} else {
WARN_ON(xdp_rxq_info_reg_mem_model(&rx_q->xdp_rxq,
MEM_TYPE_PAGE_POOL,
rx_q->page_pool));
netdev_info(priv->dev,
"Register MEM_TYPE_PAGE_POOL RxQ-%d\n",
rx_q->queue_index);
}
if (rx_q->xsk_pool) {
/* RX XDP ZC buffer pool may not be populated, e.g.
* xdpsock TX-only.
*/
stmmac_alloc_rx_buffers_zc(priv, dma_conf, queue);
} else {
ret = stmmac_alloc_rx_buffers(priv, dma_conf, queue, flags);
if (ret < 0)
return -ENOMEM;
}
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
stmmac_mode_init(priv, rx_q->dma_erx,
rx_q->dma_rx_phy,
dma_conf->dma_rx_size, 1);
else
stmmac_mode_init(priv, rx_q->dma_rx,
rx_q->dma_rx_phy,
dma_conf->dma_rx_size, 0);
}
return 0;
}
static int init_dma_rx_desc_rings(struct net_device *dev,
struct stmmac_dma_conf *dma_conf,
gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
int queue;
int ret;
/* RX INITIALIZATION */
netif_dbg(priv, probe, priv->dev,
"SKB addresses:\nskb\t\tskb data\tdma data\n");
for (queue = 0; queue < rx_count; queue++) {
ret = __init_dma_rx_desc_rings(priv, dma_conf, queue, flags);
if (ret)
goto err_init_rx_buffers;
}
return 0;
err_init_rx_buffers:
while (queue >= 0) {
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
if (rx_q->xsk_pool)
dma_free_rx_xskbufs(priv, dma_conf, queue);
else
dma_free_rx_skbufs(priv, dma_conf, queue);
rx_q->buf_alloc_num = 0;
rx_q->xsk_pool = NULL;
queue--;
}
return ret;
}
/**
* __init_dma_tx_desc_rings - init the TX descriptor ring (per queue)
* @priv: driver private structure
* @dma_conf: structure to take the dma data
* @queue: TX queue index
* Description: this function initializes the DMA TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int __init_dma_tx_desc_rings(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
int i;
netif_dbg(priv, probe, priv->dev,
"(%s) dma_tx_phy=0x%08x\n", __func__,
(u32)tx_q->dma_tx_phy);
/* Setup the chained descriptor addresses */
if (priv->mode == STMMAC_CHAIN_MODE) {
if (priv->extend_desc)
stmmac_mode_init(priv, tx_q->dma_etx,
tx_q->dma_tx_phy,
dma_conf->dma_tx_size, 1);
else if (!(tx_q->tbs & STMMAC_TBS_AVAIL))
stmmac_mode_init(priv, tx_q->dma_tx,
tx_q->dma_tx_phy,
dma_conf->dma_tx_size, 0);
}
tx_q->xsk_pool = stmmac_get_xsk_pool(priv, queue);
for (i = 0; i < dma_conf->dma_tx_size; i++) {
struct dma_desc *p;
if (priv->extend_desc)
p = &((tx_q->dma_etx + i)->basic);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &((tx_q->dma_entx + i)->basic);
else
p = tx_q->dma_tx + i;
stmmac_clear_desc(priv, p);
tx_q->tx_skbuff_dma[i].buf = 0;
tx_q->tx_skbuff_dma[i].map_as_page = false;
tx_q->tx_skbuff_dma[i].len = 0;
tx_q->tx_skbuff_dma[i].last_segment = false;
tx_q->tx_skbuff[i] = NULL;
}
return 0;
}
static int init_dma_tx_desc_rings(struct net_device *dev,
struct stmmac_dma_conf *dma_conf)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_queue_cnt;
u32 queue;
tx_queue_cnt = priv->plat->tx_queues_to_use;
for (queue = 0; queue < tx_queue_cnt; queue++)
__init_dma_tx_desc_rings(priv, dma_conf, queue);
return 0;
}
/**
* init_dma_desc_rings - init the RX/TX descriptor rings
* @dev: net device structure
* @dma_conf: structure to take the dma data
* @flags: gfp flag.
* Description: this function initializes the DMA RX/TX descriptors
* and allocates the socket buffers. It supports the chained and ring
* modes.
*/
static int init_dma_desc_rings(struct net_device *dev,
struct stmmac_dma_conf *dma_conf,
gfp_t flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
ret = init_dma_rx_desc_rings(dev, dma_conf, flags);
if (ret)
return ret;
ret = init_dma_tx_desc_rings(dev, dma_conf);
stmmac_clear_descriptors(priv, dma_conf);
if (netif_msg_hw(priv))
stmmac_display_rings(priv, dma_conf);
return ret;
}
/**
* dma_free_tx_skbufs - free TX dma buffers
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: TX queue index
*/
static void dma_free_tx_skbufs(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
int i;
tx_q->xsk_frames_done = 0;
for (i = 0; i < dma_conf->dma_tx_size; i++)
stmmac_free_tx_buffer(priv, dma_conf, queue, i);
if (tx_q->xsk_pool && tx_q->xsk_frames_done) {
xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
tx_q->xsk_frames_done = 0;
tx_q->xsk_pool = NULL;
}
}
/**
* stmmac_free_tx_skbufs - free TX skb buffers
* @priv: private structure
*/
static void stmmac_free_tx_skbufs(struct stmmac_priv *priv)
{
u32 tx_queue_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < tx_queue_cnt; queue++)
dma_free_tx_skbufs(priv, &priv->dma_conf, queue);
}
/**
* __free_dma_rx_desc_resources - free RX dma desc resources (per queue)
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
*/
static void __free_dma_rx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
/* Release the DMA RX socket buffers */
if (rx_q->xsk_pool)
dma_free_rx_xskbufs(priv, dma_conf, queue);
else
dma_free_rx_skbufs(priv, dma_conf, queue);
rx_q->buf_alloc_num = 0;
rx_q->xsk_pool = NULL;
/* Free DMA regions of consistent memory previously allocated */
if (!priv->extend_desc)
dma_free_coherent(priv->device, dma_conf->dma_rx_size *
sizeof(struct dma_desc),
rx_q->dma_rx, rx_q->dma_rx_phy);
else
dma_free_coherent(priv->device, dma_conf->dma_rx_size *
sizeof(struct dma_extended_desc),
rx_q->dma_erx, rx_q->dma_rx_phy);
if (xdp_rxq_info_is_reg(&rx_q->xdp_rxq))
xdp_rxq_info_unreg(&rx_q->xdp_rxq);
kfree(rx_q->buf_pool);
if (rx_q->page_pool)
page_pool_destroy(rx_q->page_pool);
}
static void free_dma_rx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 rx_count = priv->plat->rx_queues_to_use;
u32 queue;
/* Free RX queue resources */
for (queue = 0; queue < rx_count; queue++)
__free_dma_rx_desc_resources(priv, dma_conf, queue);
}
/**
* __free_dma_tx_desc_resources - free TX dma desc resources (per queue)
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: TX queue index
*/
static void __free_dma_tx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
size_t size;
void *addr;
/* Release the DMA TX socket buffers */
dma_free_tx_skbufs(priv, dma_conf, queue);
if (priv->extend_desc) {
size = sizeof(struct dma_extended_desc);
addr = tx_q->dma_etx;
} else if (tx_q->tbs & STMMAC_TBS_AVAIL) {
size = sizeof(struct dma_edesc);
addr = tx_q->dma_entx;
} else {
size = sizeof(struct dma_desc);
addr = tx_q->dma_tx;
}
size *= dma_conf->dma_tx_size;
dma_free_coherent(priv->device, size, addr, tx_q->dma_tx_phy);
kfree(tx_q->tx_skbuff_dma);
kfree(tx_q->tx_skbuff);
}
static void free_dma_tx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
/* Free TX queue resources */
for (queue = 0; queue < tx_count; queue++)
__free_dma_tx_desc_resources(priv, dma_conf, queue);
}
/**
* __alloc_dma_rx_desc_resources - alloc RX resources (per queue).
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: RX queue index
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int __alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_rx_queue *rx_q = &dma_conf->rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
bool xdp_prog = stmmac_xdp_is_enabled(priv);
struct page_pool_params pp_params = { 0 };
unsigned int dma_buf_sz_pad, num_pages;
unsigned int napi_id;
int ret;
dma_buf_sz_pad = stmmac_rx_offset(priv) + dma_conf->dma_buf_sz +
SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
num_pages = DIV_ROUND_UP(dma_buf_sz_pad, PAGE_SIZE);
rx_q->queue_index = queue;
rx_q->priv_data = priv;
rx_q->napi_skb_frag_size = num_pages * PAGE_SIZE;
pp_params.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV;
pp_params.pool_size = dma_conf->dma_rx_size;
pp_params.order = order_base_2(num_pages);
pp_params.nid = dev_to_node(priv->device);
pp_params.dev = priv->device;
pp_params.dma_dir = xdp_prog ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE;
pp_params.offset = stmmac_rx_offset(priv);
pp_params.max_len = dma_conf->dma_buf_sz;
if (priv->sph) {
pp_params.offset = 0;
pp_params.max_len += stmmac_rx_offset(priv);
}
rx_q->page_pool = page_pool_create(&pp_params);
if (IS_ERR(rx_q->page_pool)) {
ret = PTR_ERR(rx_q->page_pool);
rx_q->page_pool = NULL;
return ret;
}
rx_q->buf_pool = kcalloc(dma_conf->dma_rx_size,
sizeof(*rx_q->buf_pool),
GFP_KERNEL);
if (!rx_q->buf_pool)
return -ENOMEM;
if (priv->extend_desc) {
rx_q->dma_erx = dma_alloc_coherent(priv->device,
dma_conf->dma_rx_size *
sizeof(struct dma_extended_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_erx)
return -ENOMEM;
} else {
rx_q->dma_rx = dma_alloc_coherent(priv->device,
dma_conf->dma_rx_size *
sizeof(struct dma_desc),
&rx_q->dma_rx_phy,
GFP_KERNEL);
if (!rx_q->dma_rx)
return -ENOMEM;
}
if (stmmac_xdp_is_enabled(priv) &&
test_bit(queue, priv->af_xdp_zc_qps))
napi_id = ch->rxtx_napi.napi_id;
else
napi_id = ch->rx_napi.napi_id;
ret = xdp_rxq_info_reg(&rx_q->xdp_rxq, priv->dev,
rx_q->queue_index,
napi_id);
if (ret) {
netdev_err(priv->dev, "Failed to register xdp rxq info\n");
return -EINVAL;
}
return 0;
}
static int alloc_dma_rx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 rx_count = priv->plat->rx_queues_to_use;
u32 queue;
int ret;
/* RX queues buffers and DMA */
for (queue = 0; queue < rx_count; queue++) {
ret = __alloc_dma_rx_desc_resources(priv, dma_conf, queue);
if (ret)
goto err_dma;
}
return 0;
err_dma:
free_dma_rx_desc_resources(priv, dma_conf);
return ret;
}
/**
* __alloc_dma_tx_desc_resources - alloc TX resources (per queue).
* @priv: private structure
* @dma_conf: structure to take the dma data
* @queue: TX queue index
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int __alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf,
u32 queue)
{
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[queue];
size_t size;
void *addr;
tx_q->queue_index = queue;
tx_q->priv_data = priv;
tx_q->tx_skbuff_dma = kcalloc(dma_conf->dma_tx_size,
sizeof(*tx_q->tx_skbuff_dma),
GFP_KERNEL);
if (!tx_q->tx_skbuff_dma)
return -ENOMEM;
tx_q->tx_skbuff = kcalloc(dma_conf->dma_tx_size,
sizeof(struct sk_buff *),
GFP_KERNEL);
if (!tx_q->tx_skbuff)
return -ENOMEM;
if (priv->extend_desc)
size = sizeof(struct dma_extended_desc);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
size = sizeof(struct dma_edesc);
else
size = sizeof(struct dma_desc);
size *= dma_conf->dma_tx_size;
addr = dma_alloc_coherent(priv->device, size,
&tx_q->dma_tx_phy, GFP_KERNEL);
if (!addr)
return -ENOMEM;
if (priv->extend_desc)
tx_q->dma_etx = addr;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_q->dma_entx = addr;
else
tx_q->dma_tx = addr;
return 0;
}
static int alloc_dma_tx_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
int ret;
/* TX queues buffers and DMA */
for (queue = 0; queue < tx_count; queue++) {
ret = __alloc_dma_tx_desc_resources(priv, dma_conf, queue);
if (ret)
goto err_dma;
}
return 0;
err_dma:
free_dma_tx_desc_resources(priv, dma_conf);
return ret;
}
/**
* alloc_dma_desc_resources - alloc TX/RX resources.
* @priv: private structure
* @dma_conf: structure to take the dma data
* Description: according to which descriptor can be used (extend or basic)
* this function allocates the resources for TX and RX paths. In case of
* reception, for example, it pre-allocated the RX socket buffer in order to
* allow zero-copy mechanism.
*/
static int alloc_dma_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
/* RX Allocation */
int ret = alloc_dma_rx_desc_resources(priv, dma_conf);
if (ret)
return ret;
ret = alloc_dma_tx_desc_resources(priv, dma_conf);
return ret;
}
/**
* free_dma_desc_resources - free dma desc resources
* @priv: private structure
* @dma_conf: structure to take the dma data
*/
static void free_dma_desc_resources(struct stmmac_priv *priv,
struct stmmac_dma_conf *dma_conf)
{
/* Release the DMA TX socket buffers */
free_dma_tx_desc_resources(priv, dma_conf);
/* Release the DMA RX socket buffers later
* to ensure all pending XDP_TX buffers are returned.
*/
free_dma_rx_desc_resources(priv, dma_conf);
}
/**
* stmmac_mac_enable_rx_queues - Enable MAC rx queues
* @priv: driver private structure
* Description: It is used for enabling the rx queues in the MAC
*/
static void stmmac_mac_enable_rx_queues(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
int queue;
u8 mode;
for (queue = 0; queue < rx_queues_count; queue++) {
mode = priv->plat->rx_queues_cfg[queue].mode_to_use;
stmmac_rx_queue_enable(priv, priv->hw, mode, queue);
}
}
/**
* stmmac_start_rx_dma - start RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This starts a RX DMA channel
*/
static void stmmac_start_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes started in channel %d\n", chan);
stmmac_start_rx(priv, priv->ioaddr, chan);
}
/**
* stmmac_start_tx_dma - start TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This starts a TX DMA channel
*/
static void stmmac_start_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes started in channel %d\n", chan);
stmmac_start_tx(priv, priv->ioaddr, chan);
}
/**
* stmmac_stop_rx_dma - stop RX DMA channel
* @priv: driver private structure
* @chan: RX channel index
* Description:
* This stops a RX DMA channel
*/
static void stmmac_stop_rx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA RX processes stopped in channel %d\n", chan);
stmmac_stop_rx(priv, priv->ioaddr, chan);
}
/**
* stmmac_stop_tx_dma - stop TX DMA channel
* @priv: driver private structure
* @chan: TX channel index
* Description:
* This stops a TX DMA channel
*/
static void stmmac_stop_tx_dma(struct stmmac_priv *priv, u32 chan)
{
netdev_dbg(priv->dev, "DMA TX processes stopped in channel %d\n", chan);
stmmac_stop_tx(priv, priv->ioaddr, chan);
}
static void stmmac_enable_all_dma_irq(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
u32 chan;
for (chan = 0; chan < dma_csr_ch; chan++) {
struct stmmac_channel *ch = &priv->channel[chan];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
}
/**
* stmmac_start_all_dma - start all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This starts all the RX and TX DMA channels
*/
static void stmmac_start_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_start_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_start_tx_dma(priv, chan);
}
/**
* stmmac_stop_all_dma - stop all RX and TX DMA channels
* @priv: driver private structure
* Description:
* This stops the RX and TX DMA channels
*/
static void stmmac_stop_all_dma(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan = 0;
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_stop_rx_dma(priv, chan);
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_stop_tx_dma(priv, chan);
}
/**
* stmmac_dma_operation_mode - HW DMA operation mode
* @priv: driver private structure
* Description: it is used for configuring the DMA operation mode register in
* order to program the tx/rx DMA thresholds or Store-And-Forward mode.
*/
static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
u32 txmode = 0;
u32 rxmode = 0;
u32 chan = 0;
u8 qmode = 0;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Split up the shared Tx/Rx FIFO memory on DW QoS Eth and DW XGMAC */
if (priv->plat->has_gmac4 || priv->plat->has_xgmac) {
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
}
if (priv->plat->force_thresh_dma_mode) {
txmode = tc;
rxmode = tc;
} else if (priv->plat->force_sf_dma_mode || priv->plat->tx_coe) {
/*
* In case of GMAC, SF mode can be enabled
* to perform the TX COE in HW. This depends on:
* 1) TX COE if actually supported
* 2) There is no bugged Jumbo frame support
* that needs to not insert csum in the TDES.
*/
txmode = SF_DMA_MODE;
rxmode = SF_DMA_MODE;
priv->xstats.threshold = SF_DMA_MODE;
} else {
txmode = tc;
rxmode = SF_DMA_MODE;
}
/* configure all channels */
for (chan = 0; chan < rx_channels_count; chan++) {
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
u32 buf_size;
qmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan,
rxfifosz, qmode);
if (rx_q->xsk_pool) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
chan);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_conf.dma_buf_sz,
chan);
}
}
for (chan = 0; chan < tx_channels_count; chan++) {
qmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan,
txfifosz, qmode);
}
}
static void stmmac_xsk_request_timestamp(void *_priv)
{
struct stmmac_metadata_request *meta_req = _priv;
stmmac_enable_tx_timestamp(meta_req->priv, meta_req->tx_desc);
*meta_req->set_ic = true;
}
static u64 stmmac_xsk_fill_timestamp(void *_priv)
{
struct stmmac_xsk_tx_complete *tx_compl = _priv;
struct stmmac_priv *priv = tx_compl->priv;
struct dma_desc *desc = tx_compl->desc;
bool found = false;
u64 ns = 0;
if (!priv->hwts_tx_en)
return 0;
/* check tx tstamp status */
if (stmmac_get_tx_timestamp_status(priv, desc)) {
stmmac_get_timestamp(priv, desc, priv->adv_ts, &ns);
found = true;
} else if (!stmmac_get_mac_tx_timestamp(priv, priv->hw, &ns)) {
found = true;
}
if (found) {
ns -= priv->plat->cdc_error_adj;
return ns_to_ktime(ns);
}
return 0;
}
static const struct xsk_tx_metadata_ops stmmac_xsk_tx_metadata_ops = {
.tmo_request_timestamp = stmmac_xsk_request_timestamp,
.tmo_fill_timestamp = stmmac_xsk_fill_timestamp,
};
static bool stmmac_xdp_xmit_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
struct netdev_queue *nq = netdev_get_tx_queue(priv->dev, queue);
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
struct xsk_buff_pool *pool = tx_q->xsk_pool;
unsigned int entry = tx_q->cur_tx;
struct dma_desc *tx_desc = NULL;
struct xdp_desc xdp_desc;
bool work_done = true;
u32 tx_set_ic_bit = 0;
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
budget = min(budget, stmmac_tx_avail(priv, queue));
while (budget-- > 0) {
struct stmmac_metadata_request meta_req;
struct xsk_tx_metadata *meta = NULL;
dma_addr_t dma_addr;
bool set_ic;
/* We are sharing with slow path and stop XSK TX desc submission when
* available TX ring is less than threshold.
*/
if (unlikely(stmmac_tx_avail(priv, queue) < STMMAC_TX_XSK_AVAIL) ||
!netif_carrier_ok(priv->dev)) {
work_done = false;
break;
}
if (!xsk_tx_peek_desc(pool, &xdp_desc))
break;
if (priv->est && priv->est->enable &&
priv->est->max_sdu[queue] &&
xdp_desc.len > priv->est->max_sdu[queue]) {
priv->xstats.max_sdu_txq_drop[queue]++;
continue;
}
if (likely(priv->extend_desc))
tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_desc = &tx_q->dma_entx[entry].basic;
else
tx_desc = tx_q->dma_tx + entry;
dma_addr = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
meta = xsk_buff_get_metadata(pool, xdp_desc.addr);
xsk_buff_raw_dma_sync_for_device(pool, dma_addr, xdp_desc.len);
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XSK_TX;
/* To return XDP buffer to XSK pool, we simple call
* xsk_tx_completed(), so we don't need to fill up
* 'buf' and 'xdpf'.
*/
tx_q->tx_skbuff_dma[entry].buf = 0;
tx_q->xdpf[entry] = NULL;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
tx_q->tx_skbuff_dma[entry].len = xdp_desc.len;
tx_q->tx_skbuff_dma[entry].last_segment = true;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
stmmac_set_desc_addr(priv, tx_desc, dma_addr);
tx_q->tx_count_frames++;
if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
set_ic = true;
else
set_ic = false;
meta_req.priv = priv;
meta_req.tx_desc = tx_desc;
meta_req.set_ic = &set_ic;
xsk_tx_metadata_request(meta, &stmmac_xsk_tx_metadata_ops,
&meta_req);
if (set_ic) {
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, tx_desc);
tx_set_ic_bit++;
}
stmmac_prepare_tx_desc(priv, tx_desc, 1, xdp_desc.len,
true, priv->mode, true, true,
xdp_desc.len);
stmmac_enable_dma_transmission(priv, priv->ioaddr, queue);
xsk_tx_metadata_to_compl(meta,
&tx_q->tx_skbuff_dma[entry].xsk_meta);
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
entry = tx_q->cur_tx;
}
u64_stats_update_begin(&txq_stats->napi_syncp);
u64_stats_add(&txq_stats->napi.tx_set_ic_bit, tx_set_ic_bit);
u64_stats_update_end(&txq_stats->napi_syncp);
if (tx_desc) {
stmmac_flush_tx_descriptors(priv, queue);
xsk_tx_release(pool);
}
/* Return true if all of the 3 conditions are met
* a) TX Budget is still available
* b) work_done = true when XSK TX desc peek is empty (no more
* pending XSK TX for transmission)
*/
return !!budget && work_done;
}
static void stmmac_bump_dma_threshold(struct stmmac_priv *priv, u32 chan)
{
if (unlikely(priv->xstats.threshold != SF_DMA_MODE) && tc <= 256) {
tc += 64;
if (priv->plat->force_thresh_dma_mode)
stmmac_set_dma_operation_mode(priv, tc, tc, chan);
else
stmmac_set_dma_operation_mode(priv, tc, SF_DMA_MODE,
chan);
priv->xstats.threshold = tc;
}
}
/**
* stmmac_tx_clean - to manage the transmission completion
* @priv: driver private structure
* @budget: napi budget limiting this functions packet handling
* @queue: TX queue index
* @pending_packets: signal to arm the TX coal timer
* Description: it reclaims the transmit resources after transmission completes.
* If some packets still needs to be handled, due to TX coalesce, set
* pending_packets to true to make NAPI arm the TX coal timer.
*/
static int stmmac_tx_clean(struct stmmac_priv *priv, int budget, u32 queue,
bool *pending_packets)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
unsigned int bytes_compl = 0, pkts_compl = 0;
unsigned int entry, xmits = 0, count = 0;
u32 tx_packets = 0, tx_errors = 0;
__netif_tx_lock_bh(netdev_get_tx_queue(priv->dev, queue));
tx_q->xsk_frames_done = 0;
entry = tx_q->dirty_tx;
/* Try to clean all TX complete frame in 1 shot */
while ((entry != tx_q->cur_tx) && count < priv->dma_conf.dma_tx_size) {
struct xdp_frame *xdpf;
struct sk_buff *skb;
struct dma_desc *p;
int status;
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX ||
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
xdpf = tx_q->xdpf[entry];
skb = NULL;
} else if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
xdpf = NULL;
skb = tx_q->tx_skbuff[entry];
} else {
xdpf = NULL;
skb = NULL;
}
if (priv->extend_desc)
p = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[entry].basic;
else
p = tx_q->dma_tx + entry;
status = stmmac_tx_status(priv, &priv->xstats, p, priv->ioaddr);
/* Check if the descriptor is owned by the DMA */
if (unlikely(status & tx_dma_own))
break;
count++;
/* Make sure descriptor fields are read after reading
* the own bit.
*/
dma_rmb();
/* Just consider the last segment and ...*/
if (likely(!(status & tx_not_ls))) {
/* ... verify the status error condition */
if (unlikely(status & tx_err)) {
tx_errors++;
if (unlikely(status & tx_err_bump_tc))
stmmac_bump_dma_threshold(priv, queue);
} else {
tx_packets++;
}
if (skb) {
stmmac_get_tx_hwtstamp(priv, p, skb);
} else if (tx_q->xsk_pool &&
xp_tx_metadata_enabled(tx_q->xsk_pool)) {
struct stmmac_xsk_tx_complete tx_compl = {
.priv = priv,
.desc = p,
};
xsk_tx_metadata_complete(&tx_q->tx_skbuff_dma[entry].xsk_meta,
&stmmac_xsk_tx_metadata_ops,
&tx_compl);
}
}
if (likely(tx_q->tx_skbuff_dma[entry].buf &&
tx_q->tx_skbuff_dma[entry].buf_type != STMMAC_TXBUF_T_XDP_TX)) {
if (tx_q->tx_skbuff_dma[entry].map_as_page)
dma_unmap_page(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
else
dma_unmap_single(priv->device,
tx_q->tx_skbuff_dma[entry].buf,
tx_q->tx_skbuff_dma[entry].len,
DMA_TO_DEVICE);
tx_q->tx_skbuff_dma[entry].buf = 0;
tx_q->tx_skbuff_dma[entry].len = 0;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
}
stmmac_clean_desc3(priv, tx_q, p);
tx_q->tx_skbuff_dma[entry].last_segment = false;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
if (xdpf &&
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_TX) {
xdp_return_frame_rx_napi(xdpf);
tx_q->xdpf[entry] = NULL;
}
if (xdpf &&
tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XDP_NDO) {
xdp_return_frame(xdpf);
tx_q->xdpf[entry] = NULL;
}
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_XSK_TX)
tx_q->xsk_frames_done++;
if (tx_q->tx_skbuff_dma[entry].buf_type == STMMAC_TXBUF_T_SKB) {
if (likely(skb)) {
pkts_compl++;
bytes_compl += skb->len;
dev_consume_skb_any(skb);
tx_q->tx_skbuff[entry] = NULL;
}
}
stmmac_release_tx_desc(priv, p, priv->mode);
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
}
tx_q->dirty_tx = entry;
netdev_tx_completed_queue(netdev_get_tx_queue(priv->dev, queue),
pkts_compl, bytes_compl);
if (unlikely(netif_tx_queue_stopped(netdev_get_tx_queue(priv->dev,
queue))) &&
stmmac_tx_avail(priv, queue) > STMMAC_TX_THRESH(priv)) {
netif_dbg(priv, tx_done, priv->dev,
"%s: restart transmit\n", __func__);
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, queue));
}
if (tx_q->xsk_pool) {
bool work_done;
if (tx_q->xsk_frames_done)
xsk_tx_completed(tx_q->xsk_pool, tx_q->xsk_frames_done);
if (xsk_uses_need_wakeup(tx_q->xsk_pool))
xsk_set_tx_need_wakeup(tx_q->xsk_pool);
/* For XSK TX, we try to send as many as possible.
* If XSK work done (XSK TX desc empty and budget still
* available), return "budget - 1" to reenable TX IRQ.
* Else, return "budget" to make NAPI continue polling.
*/
work_done = stmmac_xdp_xmit_zc(priv, queue,
STMMAC_XSK_TX_BUDGET_MAX);
if (work_done)
xmits = budget - 1;
else
xmits = budget;
}
if (priv->eee_sw_timer_en && !priv->tx_path_in_lpi_mode)
stmmac_restart_sw_lpi_timer(priv);
/* We still have pending packets, let's call for a new scheduling */
if (tx_q->dirty_tx != tx_q->cur_tx)
*pending_packets = true;
u64_stats_update_begin(&txq_stats->napi_syncp);
u64_stats_add(&txq_stats->napi.tx_packets, tx_packets);
u64_stats_add(&txq_stats->napi.tx_pkt_n, tx_packets);
u64_stats_inc(&txq_stats->napi.tx_clean);
u64_stats_update_end(&txq_stats->napi_syncp);
priv->xstats.tx_errors += tx_errors;
__netif_tx_unlock_bh(netdev_get_tx_queue(priv->dev, queue));
/* Combine decisions from TX clean and XSK TX */
return max(count, xmits);
}
/**
* stmmac_tx_err - to manage the tx error
* @priv: driver private structure
* @chan: channel index
* Description: it cleans the descriptors and restarts the transmission
* in case of transmission errors.
*/
static void stmmac_tx_err(struct stmmac_priv *priv, u32 chan)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, chan));
stmmac_stop_tx_dma(priv, chan);
dma_free_tx_skbufs(priv, &priv->dma_conf, chan);
stmmac_clear_tx_descriptors(priv, &priv->dma_conf, chan);
stmmac_reset_tx_queue(priv, chan);
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
stmmac_start_tx_dma(priv, chan);
priv->xstats.tx_errors++;
netif_tx_wake_queue(netdev_get_tx_queue(priv->dev, chan));
}
/**
* stmmac_set_dma_operation_mode - Set DMA operation mode by channel
* @priv: driver private structure
* @txmode: TX operating mode
* @rxmode: RX operating mode
* @chan: channel index
* Description: it is used for configuring of the DMA operation mode in
* runtime in order to program the tx/rx DMA thresholds or Store-And-Forward
* mode.
*/
static void stmmac_set_dma_operation_mode(struct stmmac_priv *priv, u32 txmode,
u32 rxmode, u32 chan)
{
u8 rxqmode = priv->plat->rx_queues_cfg[chan].mode_to_use;
u8 txqmode = priv->plat->tx_queues_cfg[chan].mode_to_use;
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
int rxfifosz = priv->plat->rx_fifo_size;
int txfifosz = priv->plat->tx_fifo_size;
if (rxfifosz == 0)
rxfifosz = priv->dma_cap.rx_fifo_size;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
/* Adjust for real per queue fifo size */
rxfifosz /= rx_channels_count;
txfifosz /= tx_channels_count;
stmmac_dma_rx_mode(priv, priv->ioaddr, rxmode, chan, rxfifosz, rxqmode);
stmmac_dma_tx_mode(priv, priv->ioaddr, txmode, chan, txfifosz, txqmode);
}
static bool stmmac_safety_feat_interrupt(struct stmmac_priv *priv)
{
int ret;
ret = stmmac_safety_feat_irq_status(priv, priv->dev,
priv->ioaddr, priv->dma_cap.asp, &priv->sstats);
if (ret && (ret != -EINVAL)) {
stmmac_global_err(priv);
return true;
}
return false;
}
static int stmmac_napi_check(struct stmmac_priv *priv, u32 chan, u32 dir)
{
int status = stmmac_dma_interrupt_status(priv, priv->ioaddr,
&priv->xstats, chan, dir);
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[chan];
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
struct stmmac_channel *ch = &priv->channel[chan];
struct napi_struct *rx_napi;
struct napi_struct *tx_napi;
unsigned long flags;
rx_napi = rx_q->xsk_pool ? &ch->rxtx_napi : &ch->rx_napi;
tx_napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
if ((status & handle_rx) && (chan < priv->plat->rx_queues_to_use)) {
if (napi_schedule_prep(rx_napi)) {
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(rx_napi);
}
}
if ((status & handle_tx) && (chan < priv->plat->tx_queues_to_use)) {
if (napi_schedule_prep(tx_napi)) {
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(tx_napi);
}
}
return status;
}
/**
* stmmac_dma_interrupt - DMA ISR
* @priv: driver private structure
* Description: this is the DMA ISR. It is called by the main ISR.
* It calls the dwmac dma routine and schedule poll method in case of some
* work can be done.
*/
static void stmmac_dma_interrupt(struct stmmac_priv *priv)
{
u32 tx_channel_count = priv->plat->tx_queues_to_use;
u32 rx_channel_count = priv->plat->rx_queues_to_use;
u32 channels_to_check = tx_channel_count > rx_channel_count ?
tx_channel_count : rx_channel_count;
u32 chan;
int status[MAX_T(u32, MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES)];
/* Make sure we never check beyond our status buffer. */
if (WARN_ON_ONCE(channels_to_check > ARRAY_SIZE(status)))
channels_to_check = ARRAY_SIZE(status);
for (chan = 0; chan < channels_to_check; chan++)
status[chan] = stmmac_napi_check(priv, chan,
DMA_DIR_RXTX);
for (chan = 0; chan < tx_channel_count; chan++) {
if (unlikely(status[chan] & tx_hard_error_bump_tc)) {
/* Try to bump up the dma threshold on this failure */
stmmac_bump_dma_threshold(priv, chan);
} else if (unlikely(status[chan] == tx_hard_error)) {
stmmac_tx_err(priv, chan);
}
}
}
/**
* stmmac_mmc_setup: setup the Mac Management Counters (MMC)
* @priv: driver private structure
* Description: this masks the MMC irq, in fact, the counters are managed in SW.
*/
static void stmmac_mmc_setup(struct stmmac_priv *priv)
{
unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
stmmac_mmc_intr_all_mask(priv, priv->mmcaddr);
if (priv->dma_cap.rmon) {
stmmac_mmc_ctrl(priv, priv->mmcaddr, mode);
memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
} else
netdev_info(priv->dev, "No MAC Management Counters available\n");
}
/**
* stmmac_get_hw_features - get MAC capabilities from the HW cap. register.
* @priv: driver private structure
* Description:
* new GMAC chip generations have a new register to indicate the
* presence of the optional feature/functions.
* This can be also used to override the value passed through the
* platform and necessary for old MAC10/100 and GMAC chips.
*/
static int stmmac_get_hw_features(struct stmmac_priv *priv)
{
return stmmac_get_hw_feature(priv, priv->ioaddr, &priv->dma_cap) == 0;
}
/**
* stmmac_check_ether_addr - check if the MAC addr is valid
* @priv: driver private structure
* Description:
* it is to verify if the MAC address is valid, in case of failures it
* generates a random MAC address
*/
static void stmmac_check_ether_addr(struct stmmac_priv *priv)
{
u8 addr[ETH_ALEN];
if (!is_valid_ether_addr(priv->dev->dev_addr)) {
stmmac_get_umac_addr(priv, priv->hw, addr, 0);
if (is_valid_ether_addr(addr))
eth_hw_addr_set(priv->dev, addr);
else
eth_hw_addr_random(priv->dev);
dev_info(priv->device, "device MAC address %pM\n",
priv->dev->dev_addr);
}
}
/**
* stmmac_init_dma_engine - DMA init.
* @priv: driver private structure
* Description:
* It inits the DMA invoking the specific MAC/GMAC callback.
* Some DMA parameters can be passed from the platform;
* in case of these are not passed a default is kept for the MAC or GMAC.
*/
static int stmmac_init_dma_engine(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_channels_count, tx_channels_count);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 chan = 0;
int ret = 0;
if (!priv->plat->dma_cfg || !priv->plat->dma_cfg->pbl) {
dev_err(priv->device, "Invalid DMA configuration\n");
return -EINVAL;
}
if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
priv->plat->dma_cfg->atds = 1;
ret = stmmac_reset(priv, priv->ioaddr);
if (ret) {
dev_err(priv->device, "Failed to reset the dma\n");
return ret;
}
/* DMA Configuration */
stmmac_dma_init(priv, priv->ioaddr, priv->plat->dma_cfg);
if (priv->plat->axi)
stmmac_axi(priv, priv->ioaddr, priv->plat->axi);
/* DMA CSR Channel configuration */
for (chan = 0; chan < dma_csr_ch; chan++) {
stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
}
/* DMA RX Channel Configuration */
for (chan = 0; chan < rx_channels_count; chan++) {
rx_q = &priv->dma_conf.rx_queue[chan];
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, chan);
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, chan);
}
/* DMA TX Channel Configuration */
for (chan = 0; chan < tx_channels_count; chan++) {
tx_q = &priv->dma_conf.tx_queue[chan];
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, chan);
}
return ret;
}
static void stmmac_tx_timer_arm(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
u32 tx_coal_timer = priv->tx_coal_timer[queue];
struct stmmac_channel *ch;
struct napi_struct *napi;
if (!tx_coal_timer)
return;
ch = &priv->channel[tx_q->queue_index];
napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
/* Arm timer only if napi is not already scheduled.
* Try to cancel any timer if napi is scheduled, timer will be armed
* again in the next scheduled napi.
*/
if (unlikely(!napi_is_scheduled(napi)))
hrtimer_start(&tx_q->txtimer,
STMMAC_COAL_TIMER(tx_coal_timer),
HRTIMER_MODE_REL);
else
hrtimer_try_to_cancel(&tx_q->txtimer);
}
/**
* stmmac_tx_timer - mitigation sw timer for tx.
* @t: data pointer
* Description:
* This is the timer handler to directly invoke the stmmac_tx_clean.
*/
static enum hrtimer_restart stmmac_tx_timer(struct hrtimer *t)
{
struct stmmac_tx_queue *tx_q = container_of(t, struct stmmac_tx_queue, txtimer);
struct stmmac_priv *priv = tx_q->priv_data;
struct stmmac_channel *ch;
struct napi_struct *napi;
ch = &priv->channel[tx_q->queue_index];
napi = tx_q->xsk_pool ? &ch->rxtx_napi : &ch->tx_napi;
if (likely(napi_schedule_prep(napi))) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, ch->index, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
__napi_schedule(napi);
}
return HRTIMER_NORESTART;
}
/**
* stmmac_init_coalesce - init mitigation options.
* @priv: driver private structure
* Description:
* This inits the coalesce parameters: i.e. timer rate,
* timer handler and default threshold used for enabling the
* interrupt on completion bit.
*/
static void stmmac_init_coalesce(struct stmmac_priv *priv)
{
u32 tx_channel_count = priv->plat->tx_queues_to_use;
u32 rx_channel_count = priv->plat->rx_queues_to_use;
u32 chan;
for (chan = 0; chan < tx_channel_count; chan++) {
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
priv->tx_coal_frames[chan] = STMMAC_TX_FRAMES;
priv->tx_coal_timer[chan] = STMMAC_COAL_TX_TIMER;
hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx_q->txtimer.function = stmmac_tx_timer;
}
for (chan = 0; chan < rx_channel_count; chan++)
priv->rx_coal_frames[chan] = STMMAC_RX_FRAMES;
}
static void stmmac_set_rings_length(struct stmmac_priv *priv)
{
u32 rx_channels_count = priv->plat->rx_queues_to_use;
u32 tx_channels_count = priv->plat->tx_queues_to_use;
u32 chan;
/* set TX ring length */
for (chan = 0; chan < tx_channels_count; chan++)
stmmac_set_tx_ring_len(priv, priv->ioaddr,
(priv->dma_conf.dma_tx_size - 1), chan);
/* set RX ring length */
for (chan = 0; chan < rx_channels_count; chan++)
stmmac_set_rx_ring_len(priv, priv->ioaddr,
(priv->dma_conf.dma_rx_size - 1), chan);
}
/**
* stmmac_set_tx_queue_weight - Set TX queue weight
* @priv: driver private structure
* Description: It is used for setting TX queues weight
*/
static void stmmac_set_tx_queue_weight(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 weight;
u32 queue;
for (queue = 0; queue < tx_queues_count; queue++) {
weight = priv->plat->tx_queues_cfg[queue].weight;
stmmac_set_mtl_tx_queue_weight(priv, priv->hw, weight, queue);
}
}
/**
* stmmac_configure_cbs - Configure CBS in TX queue
* @priv: driver private structure
* Description: It is used for configuring CBS in AVB TX queues
*/
static void stmmac_configure_cbs(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 mode_to_use;
u32 queue;
/* queue 0 is reserved for legacy traffic */
for (queue = 1; queue < tx_queues_count; queue++) {
mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
if (mode_to_use == MTL_QUEUE_DCB)
continue;
stmmac_config_cbs(priv, priv->hw,
priv->plat->tx_queues_cfg[queue].send_slope,
priv->plat->tx_queues_cfg[queue].idle_slope,
priv->plat->tx_queues_cfg[queue].high_credit,
priv->plat->tx_queues_cfg[queue].low_credit,
queue);
}
}
/**
* stmmac_rx_queue_dma_chan_map - Map RX queue to RX dma channel
* @priv: driver private structure
* Description: It is used for mapping RX queues to RX dma channels
*/
static void stmmac_rx_queue_dma_chan_map(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 chan;
for (queue = 0; queue < rx_queues_count; queue++) {
chan = priv->plat->rx_queues_cfg[queue].chan;
stmmac_map_mtl_to_dma(priv, priv->hw, queue, chan);
}
}
/**
* stmmac_mac_config_rx_queues_prio - Configure RX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the RX Queue Priority
*/
static void stmmac_mac_config_rx_queues_prio(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < rx_queues_count; queue++) {
if (!priv->plat->rx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->rx_queues_cfg[queue].prio;
stmmac_rx_queue_prio(priv, priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_tx_queues_prio - Configure TX Queue priority
* @priv: driver private structure
* Description: It is used for configuring the TX Queue Priority
*/
static void stmmac_mac_config_tx_queues_prio(struct stmmac_priv *priv)
{
u32 tx_queues_count = priv->plat->tx_queues_to_use;
u32 queue;
u32 prio;
for (queue = 0; queue < tx_queues_count; queue++) {
if (!priv->plat->tx_queues_cfg[queue].use_prio)
continue;
prio = priv->plat->tx_queues_cfg[queue].prio;
stmmac_tx_queue_prio(priv, priv->hw, prio, queue);
}
}
/**
* stmmac_mac_config_rx_queues_routing - Configure RX Queue Routing
* @priv: driver private structure
* Description: It is used for configuring the RX queue routing
*/
static void stmmac_mac_config_rx_queues_routing(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 queue;
u8 packet;
for (queue = 0; queue < rx_queues_count; queue++) {
/* no specific packet type routing specified for the queue */
if (priv->plat->rx_queues_cfg[queue].pkt_route == 0x0)
continue;
packet = priv->plat->rx_queues_cfg[queue].pkt_route;
stmmac_rx_queue_routing(priv, priv->hw, packet, queue);
}
}
static void stmmac_mac_config_rss(struct stmmac_priv *priv)
{
if (!priv->dma_cap.rssen || !priv->plat->rss_en) {
priv->rss.enable = false;
return;
}
if (priv->dev->features & NETIF_F_RXHASH)
priv->rss.enable = true;
else
priv->rss.enable = false;
stmmac_rss_configure(priv, priv->hw, &priv->rss,
priv->plat->rx_queues_to_use);
}
/**
* stmmac_mtl_configuration - Configure MTL
* @priv: driver private structure
* Description: It is used for configurring MTL
*/
static void stmmac_mtl_configuration(struct stmmac_priv *priv)
{
u32 rx_queues_count = priv->plat->rx_queues_to_use;
u32 tx_queues_count = priv->plat->tx_queues_to_use;
if (tx_queues_count > 1)
stmmac_set_tx_queue_weight(priv);
/* Configure MTL RX algorithms */
if (rx_queues_count > 1)
stmmac_prog_mtl_rx_algorithms(priv, priv->hw,
priv->plat->rx_sched_algorithm);
/* Configure MTL TX algorithms */
if (tx_queues_count > 1)
stmmac_prog_mtl_tx_algorithms(priv, priv->hw,
priv->plat->tx_sched_algorithm);
/* Configure CBS in AVB TX queues */
if (tx_queues_count > 1)
stmmac_configure_cbs(priv);
/* Map RX MTL to DMA channels */
stmmac_rx_queue_dma_chan_map(priv);
/* Enable MAC RX Queues */
stmmac_mac_enable_rx_queues(priv);
/* Set RX priorities */
if (rx_queues_count > 1)
stmmac_mac_config_rx_queues_prio(priv);
/* Set TX priorities */
if (tx_queues_count > 1)
stmmac_mac_config_tx_queues_prio(priv);
/* Set RX routing */
if (rx_queues_count > 1)
stmmac_mac_config_rx_queues_routing(priv);
/* Receive Side Scaling */
if (rx_queues_count > 1)
stmmac_mac_config_rss(priv);
}
static void stmmac_safety_feat_configuration(struct stmmac_priv *priv)
{
if (priv->dma_cap.asp) {
netdev_info(priv->dev, "Enabling Safety Features\n");
stmmac_safety_feat_config(priv, priv->ioaddr, priv->dma_cap.asp,
priv->plat->safety_feat_cfg);
} else {
netdev_info(priv->dev, "No Safety Features support found\n");
}
}
/**
* stmmac_hw_setup - setup mac in a usable state.
* @dev : pointer to the device structure.
* @ptp_register: register PTP if set
* Description:
* this is the main function to setup the HW in a usable state because the
* dma engine is reset, the core registers are configured (e.g. AXI,
* Checksum features, timers). The DMA is ready to start receiving and
* transmitting.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_hw_setup(struct net_device *dev, bool ptp_register)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
bool sph_en;
u32 chan;
int ret;
/* Make sure RX clock is enabled */
if (priv->hw->phylink_pcs)
phylink_pcs_pre_init(priv->phylink, priv->hw->phylink_pcs);
/* DMA initialization and SW reset */
ret = stmmac_init_dma_engine(priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA engine initialization failed\n",
__func__);
return ret;
}
/* Copy the MAC addr into the HW */
stmmac_set_umac_addr(priv, priv->hw, dev->dev_addr, 0);
/* PS and related bits will be programmed according to the speed */
if (priv->hw->pcs) {
int speed = priv->plat->mac_port_sel_speed;
if ((speed == SPEED_10) || (speed == SPEED_100) ||
(speed == SPEED_1000)) {
priv->hw->ps = speed;
} else {
dev_warn(priv->device, "invalid port speed\n");
priv->hw->ps = 0;
}
}
/* Initialize the MAC Core */
stmmac_core_init(priv, priv->hw, dev);
/* Initialize MTL*/
stmmac_mtl_configuration(priv);
/* Initialize Safety Features */
stmmac_safety_feat_configuration(priv);
ret = stmmac_rx_ipc(priv, priv->hw);
if (!ret) {
netdev_warn(priv->dev, "RX IPC Checksum Offload disabled\n");
priv->plat->rx_coe = STMMAC_RX_COE_NONE;
priv->hw->rx_csum = 0;
}
/* Enable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, true);
/* Set the HW DMA mode and the COE */
stmmac_dma_operation_mode(priv);
stmmac_mmc_setup(priv);
if (ptp_register) {
ret = clk_prepare_enable(priv->plat->clk_ptp_ref);
if (ret < 0)
netdev_warn(priv->dev,
"failed to enable PTP reference clock: %pe\n",
ERR_PTR(ret));
}
ret = stmmac_init_ptp(priv);
if (ret == -EOPNOTSUPP)
netdev_info(priv->dev, "PTP not supported by HW\n");
else if (ret)
netdev_warn(priv->dev, "PTP init failed\n");
else if (ptp_register)
stmmac_ptp_register(priv);
if (priv->use_riwt) {
u32 queue;
for (queue = 0; queue < rx_cnt; queue++) {
if (!priv->rx_riwt[queue])
priv->rx_riwt[queue] = DEF_DMA_RIWT;
stmmac_rx_watchdog(priv, priv->ioaddr,
priv->rx_riwt[queue], queue);
}
}
if (priv->hw->pcs)
stmmac_pcs_ctrl_ane(priv, priv->ioaddr, 1, priv->hw->ps, 0);
/* set TX and RX rings length */
stmmac_set_rings_length(priv);
/* Enable TSO */
if (priv->tso) {
for (chan = 0; chan < tx_cnt; chan++) {
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
/* TSO and TBS cannot co-exist */
if (tx_q->tbs & STMMAC_TBS_AVAIL)
continue;
stmmac_enable_tso(priv, priv->ioaddr, 1, chan);
}
}
/* Enable Split Header */
sph_en = (priv->hw->rx_csum > 0) && priv->sph;
for (chan = 0; chan < rx_cnt; chan++)
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
/* VLAN Tag Insertion */
if (priv->dma_cap.vlins)
stmmac_enable_vlan(priv, priv->hw, STMMAC_VLAN_INSERT);
/* TBS */
for (chan = 0; chan < tx_cnt; chan++) {
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[chan];
int enable = tx_q->tbs & STMMAC_TBS_AVAIL;
stmmac_enable_tbs(priv, priv->ioaddr, enable, chan);
}
/* Configure real RX and TX queues */
netif_set_real_num_rx_queues(dev, priv->plat->rx_queues_to_use);
netif_set_real_num_tx_queues(dev, priv->plat->tx_queues_to_use);
/* Start the ball rolling... */
stmmac_start_all_dma(priv);
stmmac_set_hw_vlan_mode(priv, priv->hw);
return 0;
}
static void stmmac_hw_teardown(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
clk_disable_unprepare(priv->plat->clk_ptp_ref);
}
static void stmmac_free_irq(struct net_device *dev,
enum request_irq_err irq_err, int irq_idx)
{
struct stmmac_priv *priv = netdev_priv(dev);
int j;
switch (irq_err) {
case REQ_IRQ_ERR_ALL:
irq_idx = priv->plat->tx_queues_to_use;
fallthrough;
case REQ_IRQ_ERR_TX:
for (j = irq_idx - 1; j >= 0; j--) {
if (priv->tx_irq[j] > 0) {
irq_set_affinity_hint(priv->tx_irq[j], NULL);
free_irq(priv->tx_irq[j], &priv->dma_conf.tx_queue[j]);
}
}
irq_idx = priv->plat->rx_queues_to_use;
fallthrough;
case REQ_IRQ_ERR_RX:
for (j = irq_idx - 1; j >= 0; j--) {
if (priv->rx_irq[j] > 0) {
irq_set_affinity_hint(priv->rx_irq[j], NULL);
free_irq(priv->rx_irq[j], &priv->dma_conf.rx_queue[j]);
}
}
if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq)
free_irq(priv->sfty_ue_irq, dev);
fallthrough;
case REQ_IRQ_ERR_SFTY_UE:
if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq)
free_irq(priv->sfty_ce_irq, dev);
fallthrough;
case REQ_IRQ_ERR_SFTY_CE:
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq)
free_irq(priv->lpi_irq, dev);
fallthrough;
case REQ_IRQ_ERR_LPI:
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq)
free_irq(priv->wol_irq, dev);
fallthrough;
case REQ_IRQ_ERR_SFTY:
if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq)
free_irq(priv->sfty_irq, dev);
fallthrough;
case REQ_IRQ_ERR_WOL:
free_irq(dev->irq, dev);
fallthrough;
case REQ_IRQ_ERR_MAC:
case REQ_IRQ_ERR_NO:
/* If MAC IRQ request error, no more IRQ to free */
break;
}
}
static int stmmac_request_irq_multi_msi(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
enum request_irq_err irq_err;
cpumask_t cpu_mask;
int irq_idx = 0;
char *int_name;
int ret;
int i;
/* For common interrupt */
int_name = priv->int_name_mac;
sprintf(int_name, "%s:%s", dev->name, "mac");
ret = request_irq(dev->irq, stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc mac MSI %d (error: %d)\n",
__func__, dev->irq, ret);
irq_err = REQ_IRQ_ERR_MAC;
goto irq_error;
}
/* Request the Wake IRQ in case of another line
* is used for WoL
*/
priv->wol_irq_disabled = true;
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
int_name = priv->int_name_wol;
sprintf(int_name, "%s:%s", dev->name, "wol");
ret = request_irq(priv->wol_irq,
stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc wol MSI %d (error: %d)\n",
__func__, priv->wol_irq, ret);
irq_err = REQ_IRQ_ERR_WOL;
goto irq_error;
}
}
/* Request the LPI IRQ in case of another line
* is used for LPI
*/
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
int_name = priv->int_name_lpi;
sprintf(int_name, "%s:%s", dev->name, "lpi");
ret = request_irq(priv->lpi_irq,
stmmac_mac_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc lpi MSI %d (error: %d)\n",
__func__, priv->lpi_irq, ret);
irq_err = REQ_IRQ_ERR_LPI;
goto irq_error;
}
}
/* Request the common Safety Feature Correctible/Uncorrectible
* Error line in case of another line is used
*/
if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) {
int_name = priv->int_name_sfty;
sprintf(int_name, "%s:%s", dev->name, "safety");
ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc sfty MSI %d (error: %d)\n",
__func__, priv->sfty_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY;
goto irq_error;
}
}
/* Request the Safety Feature Correctible Error line in
* case of another line is used
*/
if (priv->sfty_ce_irq > 0 && priv->sfty_ce_irq != dev->irq) {
int_name = priv->int_name_sfty_ce;
sprintf(int_name, "%s:%s", dev->name, "safety-ce");
ret = request_irq(priv->sfty_ce_irq,
stmmac_safety_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc sfty ce MSI %d (error: %d)\n",
__func__, priv->sfty_ce_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY_CE;
goto irq_error;
}
}
/* Request the Safety Feature Uncorrectible Error line in
* case of another line is used
*/
if (priv->sfty_ue_irq > 0 && priv->sfty_ue_irq != dev->irq) {
int_name = priv->int_name_sfty_ue;
sprintf(int_name, "%s:%s", dev->name, "safety-ue");
ret = request_irq(priv->sfty_ue_irq,
stmmac_safety_interrupt,
0, int_name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc sfty ue MSI %d (error: %d)\n",
__func__, priv->sfty_ue_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY_UE;
goto irq_error;
}
}
/* Request Rx MSI irq */
for (i = 0; i < priv->plat->rx_queues_to_use; i++) {
if (i >= MTL_MAX_RX_QUEUES)
break;
if (priv->rx_irq[i] == 0)
continue;
int_name = priv->int_name_rx_irq[i];
sprintf(int_name, "%s:%s-%d", dev->name, "rx", i);
ret = request_irq(priv->rx_irq[i],
stmmac_msi_intr_rx,
0, int_name, &priv->dma_conf.rx_queue[i]);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc rx-%d MSI %d (error: %d)\n",
__func__, i, priv->rx_irq[i], ret);
irq_err = REQ_IRQ_ERR_RX;
irq_idx = i;
goto irq_error;
}
cpumask_clear(&cpu_mask);
cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
irq_set_affinity_hint(priv->rx_irq[i], &cpu_mask);
}
/* Request Tx MSI irq */
for (i = 0; i < priv->plat->tx_queues_to_use; i++) {
if (i >= MTL_MAX_TX_QUEUES)
break;
if (priv->tx_irq[i] == 0)
continue;
int_name = priv->int_name_tx_irq[i];
sprintf(int_name, "%s:%s-%d", dev->name, "tx", i);
ret = request_irq(priv->tx_irq[i],
stmmac_msi_intr_tx,
0, int_name, &priv->dma_conf.tx_queue[i]);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: alloc tx-%d MSI %d (error: %d)\n",
__func__, i, priv->tx_irq[i], ret);
irq_err = REQ_IRQ_ERR_TX;
irq_idx = i;
goto irq_error;
}
cpumask_clear(&cpu_mask);
cpumask_set_cpu(i % num_online_cpus(), &cpu_mask);
irq_set_affinity_hint(priv->tx_irq[i], &cpu_mask);
}
return 0;
irq_error:
stmmac_free_irq(dev, irq_err, irq_idx);
return ret;
}
static int stmmac_request_irq_single(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
enum request_irq_err irq_err;
int ret;
ret = request_irq(dev->irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the IRQ %d (error: %d)\n",
__func__, dev->irq, ret);
irq_err = REQ_IRQ_ERR_MAC;
goto irq_error;
}
/* Request the Wake IRQ in case of another line
* is used for WoL
*/
priv->wol_irq_disabled = true;
if (priv->wol_irq > 0 && priv->wol_irq != dev->irq) {
ret = request_irq(priv->wol_irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the WoL IRQ %d (%d)\n",
__func__, priv->wol_irq, ret);
irq_err = REQ_IRQ_ERR_WOL;
goto irq_error;
}
}
/* Request the IRQ lines */
if (priv->lpi_irq > 0 && priv->lpi_irq != dev->irq) {
ret = request_irq(priv->lpi_irq, stmmac_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the LPI IRQ %d (%d)\n",
__func__, priv->lpi_irq, ret);
irq_err = REQ_IRQ_ERR_LPI;
goto irq_error;
}
}
/* Request the common Safety Feature Correctible/Uncorrectible
* Error line in case of another line is used
*/
if (priv->sfty_irq > 0 && priv->sfty_irq != dev->irq) {
ret = request_irq(priv->sfty_irq, stmmac_safety_interrupt,
IRQF_SHARED, dev->name, dev);
if (unlikely(ret < 0)) {
netdev_err(priv->dev,
"%s: ERROR: allocating the sfty IRQ %d (%d)\n",
__func__, priv->sfty_irq, ret);
irq_err = REQ_IRQ_ERR_SFTY;
goto irq_error;
}
}
return 0;
irq_error:
stmmac_free_irq(dev, irq_err, 0);
return ret;
}
static int stmmac_request_irq(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret;
/* Request the IRQ lines */
if (priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN)
ret = stmmac_request_irq_multi_msi(dev);
else
ret = stmmac_request_irq_single(dev);
return ret;
}
/**
* stmmac_setup_dma_desc - Generate a dma_conf and allocate DMA queue
* @priv: driver private structure
* @mtu: MTU to setup the dma queue and buf with
* Description: Allocate and generate a dma_conf based on the provided MTU.
* Allocate the Tx/Rx DMA queue and init them.
* Return value:
* the dma_conf allocated struct on success and an appropriate ERR_PTR on failure.
*/
static struct stmmac_dma_conf *
stmmac_setup_dma_desc(struct stmmac_priv *priv, unsigned int mtu)
{
struct stmmac_dma_conf *dma_conf;
int chan, bfsize, ret;
dma_conf = kzalloc(sizeof(*dma_conf), GFP_KERNEL);
if (!dma_conf) {
netdev_err(priv->dev, "%s: DMA conf allocation failed\n",
__func__);
return ERR_PTR(-ENOMEM);
}
bfsize = stmmac_set_16kib_bfsize(priv, mtu);
if (bfsize < 0)
bfsize = 0;
if (bfsize < BUF_SIZE_16KiB)
bfsize = stmmac_set_bfsize(mtu, 0);
dma_conf->dma_buf_sz = bfsize;
/* Chose the tx/rx size from the already defined one in the
* priv struct. (if defined)
*/
dma_conf->dma_tx_size = priv->dma_conf.dma_tx_size;
dma_conf->dma_rx_size = priv->dma_conf.dma_rx_size;
if (!dma_conf->dma_tx_size)
dma_conf->dma_tx_size = DMA_DEFAULT_TX_SIZE;
if (!dma_conf->dma_rx_size)
dma_conf->dma_rx_size = DMA_DEFAULT_RX_SIZE;
/* Earlier check for TBS */
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++) {
struct stmmac_tx_queue *tx_q = &dma_conf->tx_queue[chan];
int tbs_en = priv->plat->tx_queues_cfg[chan].tbs_en;
/* Setup per-TXQ tbs flag before TX descriptor alloc */
tx_q->tbs |= tbs_en ? STMMAC_TBS_AVAIL : 0;
}
ret = alloc_dma_desc_resources(priv, dma_conf);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto alloc_error;
}
ret = init_dma_desc_rings(priv->dev, dma_conf, GFP_KERNEL);
if (ret < 0) {
netdev_err(priv->dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
return dma_conf;
init_error:
free_dma_desc_resources(priv, dma_conf);
alloc_error:
kfree(dma_conf);
return ERR_PTR(ret);
}
/**
* __stmmac_open - open entry point of the driver
* @dev : pointer to the device structure.
* @dma_conf : structure to take the dma data
* Description:
* This function is the open entry point of the driver.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int __stmmac_open(struct net_device *dev,
struct stmmac_dma_conf *dma_conf)
{
struct stmmac_priv *priv = netdev_priv(dev);
int mode = priv->plat->phy_interface;
u32 chan;
int ret;
/* Initialise the tx lpi timer, converting from msec to usec */
if (!priv->tx_lpi_timer)
priv->tx_lpi_timer = eee_timer * 1000;
ret = pm_runtime_resume_and_get(priv->device);
if (ret < 0)
return ret;
if ((!priv->hw->xpcs ||
xpcs_get_an_mode(priv->hw->xpcs, mode) != DW_AN_C73)) {
ret = stmmac_init_phy(dev);
if (ret) {
netdev_err(priv->dev,
"%s: Cannot attach to PHY (error: %d)\n",
__func__, ret);
goto init_phy_error;
}
}
buf_sz = dma_conf->dma_buf_sz;
for (int i = 0; i < MTL_MAX_TX_QUEUES; i++)
if (priv->dma_conf.tx_queue[i].tbs & STMMAC_TBS_EN)
dma_conf->tx_queue[i].tbs = priv->dma_conf.tx_queue[i].tbs;
memcpy(&priv->dma_conf, dma_conf, sizeof(*dma_conf));
stmmac_reset_queues_param(priv);
if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
priv->plat->serdes_powerup) {
ret = priv->plat->serdes_powerup(dev, priv->plat->bsp_priv);
if (ret < 0) {
netdev_err(priv->dev, "%s: Serdes powerup failed\n",
__func__);
goto init_error;
}
}
ret = stmmac_hw_setup(dev, true);
if (ret < 0) {
netdev_err(priv->dev, "%s: Hw setup failed\n", __func__);
goto init_error;
}
stmmac_init_coalesce(priv);
phylink_start(priv->phylink);
/* We may have called phylink_speed_down before */
phylink_speed_up(priv->phylink);
ret = stmmac_request_irq(dev);
if (ret)
goto irq_error;
stmmac_enable_all_queues(priv);
netif_tx_start_all_queues(priv->dev);
stmmac_enable_all_dma_irq(priv);
return 0;
irq_error:
phylink_stop(priv->phylink);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
stmmac_hw_teardown(dev);
init_error:
phylink_disconnect_phy(priv->phylink);
init_phy_error:
pm_runtime_put(priv->device);
return ret;
}
static int stmmac_open(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct stmmac_dma_conf *dma_conf;
int ret;
dma_conf = stmmac_setup_dma_desc(priv, dev->mtu);
if (IS_ERR(dma_conf))
return PTR_ERR(dma_conf);
ret = __stmmac_open(dev, dma_conf);
if (ret)
free_dma_desc_resources(priv, dma_conf);
kfree(dma_conf);
return ret;
}
/**
* stmmac_release - close entry point of the driver
* @dev : device pointer.
* Description:
* This is the stop entry point of the driver.
*/
static int stmmac_release(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 chan;
if (device_may_wakeup(priv->device))
phylink_speed_down(priv->phylink, false);
/* Stop and disconnect the PHY */
phylink_stop(priv->phylink);
phylink_disconnect_phy(priv->phylink);
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
netif_tx_disable(dev);
/* Free the IRQ lines */
stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
/* Stop TX/RX DMA and clear the descriptors */
stmmac_stop_all_dma(priv);
/* Release and free the Rx/Tx resources */
free_dma_desc_resources(priv, &priv->dma_conf);
/* Disable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, false);
/* Powerdown Serdes if there is */
if (priv->plat->serdes_powerdown)
priv->plat->serdes_powerdown(dev, priv->plat->bsp_priv);
stmmac_release_ptp(priv);
if (stmmac_fpe_supported(priv))
timer_shutdown_sync(&priv->fpe_cfg.verify_timer);
pm_runtime_put(priv->device);
return 0;
}
static bool stmmac_vlan_insert(struct stmmac_priv *priv, struct sk_buff *skb,
struct stmmac_tx_queue *tx_q)
{
u16 tag = 0x0, inner_tag = 0x0;
u32 inner_type = 0x0;
struct dma_desc *p;
if (!priv->dma_cap.vlins)
return false;
if (!skb_vlan_tag_present(skb))
return false;
if (skb->vlan_proto == htons(ETH_P_8021AD)) {
inner_tag = skb_vlan_tag_get(skb);
inner_type = STMMAC_VLAN_INSERT;
}
tag = skb_vlan_tag_get(skb);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
p = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
p = &tx_q->dma_tx[tx_q->cur_tx];
if (stmmac_set_desc_vlan_tag(priv, p, tag, inner_tag, inner_type))
return false;
stmmac_set_tx_owner(priv, p);
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
return true;
}
/**
* stmmac_tso_allocator - close entry point of the driver
* @priv: driver private structure
* @des: buffer start address
* @total_len: total length to fill in descriptors
* @last_segment: condition for the last descriptor
* @queue: TX queue index
* Description:
* This function fills descriptor and request new descriptors according to
* buffer length to fill
*/
static void stmmac_tso_allocator(struct stmmac_priv *priv, dma_addr_t des,
int total_len, bool last_segment, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
struct dma_desc *desc;
u32 buff_size;
int tmp_len;
tmp_len = total_len;
while (tmp_len > 0) {
dma_addr_t curr_addr;
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
priv->dma_conf.dma_tx_size);
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
desc = &tx_q->dma_tx[tx_q->cur_tx];
curr_addr = des + (total_len - tmp_len);
stmmac_set_desc_addr(priv, desc, curr_addr);
buff_size = tmp_len >= TSO_MAX_BUFF_SIZE ?
TSO_MAX_BUFF_SIZE : tmp_len;
stmmac_prepare_tso_tx_desc(priv, desc, 0, buff_size,
0, 1,
(last_segment) && (tmp_len <= TSO_MAX_BUFF_SIZE),
0, 0);
tmp_len -= TSO_MAX_BUFF_SIZE;
}
}
static void stmmac_flush_tx_descriptors(struct stmmac_priv *priv, int queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
int desc_size;
if (likely(priv->extend_desc))
desc_size = sizeof(struct dma_extended_desc);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc_size = sizeof(struct dma_edesc);
else
desc_size = sizeof(struct dma_desc);
/* The own bit must be the latest setting done when prepare the
* descriptor and then barrier is needed to make sure that
* all is coherent before granting the DMA engine.
*/
wmb();
tx_q->tx_tail_addr = tx_q->dma_tx_phy + (tx_q->cur_tx * desc_size);
stmmac_set_tx_tail_ptr(priv, priv->ioaddr, tx_q->tx_tail_addr, queue);
}
/**
* stmmac_tso_xmit - Tx entry point of the driver for oversized frames (TSO)
* @skb : the socket buffer
* @dev : device pointer
* Description: this is the transmit function that is called on TSO frames
* (support available on GMAC4 and newer chips).
* Diagram below show the ring programming in case of TSO frames:
*
* First Descriptor
* --------
* | DES0 |---> buffer1 = L2/L3/L4 header
* | DES1 |---> can be used as buffer2 for TCP Payload if the DMA AXI address
* | | width is 32-bit, but we never use it.
* | | Also can be used as the most-significant 8-bits or 16-bits of
* | | buffer1 address pointer if the DMA AXI address width is 40-bit
* | | or 48-bit, and we always use it.
* | DES2 |---> buffer1 len
* | DES3 |---> must set TSE, TCP hdr len-> [22:19]. TCP payload len [17:0]
* --------
* --------
* | DES0 |---> buffer1 = TCP Payload (can continue on next descr...)
* | DES1 |---> same as the First Descriptor
* | DES2 |---> buffer1 len
* | DES3 |
* --------
* |
* ...
* |
* --------
* | DES0 |---> buffer1 = Split TCP Payload
* | DES1 |---> same as the First Descriptor
* | DES2 |---> buffer1 len
* | DES3 |
* --------
*
* mss is fixed when enable tso, so w/o programming the TDES3 ctx field.
*/
static netdev_tx_t stmmac_tso_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct dma_desc *desc, *first, *mss_desc = NULL;
struct stmmac_priv *priv = netdev_priv(dev);
unsigned int first_entry, tx_packets;
struct stmmac_txq_stats *txq_stats;
struct stmmac_tx_queue *tx_q;
u32 pay_len, mss, queue;
int i, first_tx, nfrags;
u8 proto_hdr_len, hdr;
dma_addr_t des;
bool set_ic;
/* Always insert VLAN tag to SKB payload for TSO frames.
*
* Never insert VLAN tag by HW, since segments splited by
* TSO engine will be un-tagged by mistake.
*/
if (skb_vlan_tag_present(skb)) {
skb = __vlan_hwaccel_push_inside(skb);
if (unlikely(!skb)) {
priv->xstats.tx_dropped++;
return NETDEV_TX_OK;
}
}
nfrags = skb_shinfo(skb)->nr_frags;
queue = skb_get_queue_mapping(skb);
tx_q = &priv->dma_conf.tx_queue[queue];
txq_stats = &priv->xstats.txq_stats[queue];
first_tx = tx_q->cur_tx;
/* Compute header lengths */
if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
proto_hdr_len = skb_transport_offset(skb) + sizeof(struct udphdr);
hdr = sizeof(struct udphdr);
} else {
proto_hdr_len = skb_tcp_all_headers(skb);
hdr = tcp_hdrlen(skb);
}
/* Desc availability based on threshold should be enough safe */
if (unlikely(stmmac_tx_avail(priv, queue) <
(((skb->len - proto_hdr_len) / TSO_MAX_BUFF_SIZE + 1)))) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
pay_len = skb_headlen(skb) - proto_hdr_len; /* no frags */
mss = skb_shinfo(skb)->gso_size;
/* set new MSS value if needed */
if (mss != tx_q->mss) {
if (tx_q->tbs & STMMAC_TBS_AVAIL)
mss_desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
mss_desc = &tx_q->dma_tx[tx_q->cur_tx];
stmmac_set_mss(priv, mss_desc, mss);
tx_q->mss = mss;
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx,
priv->dma_conf.dma_tx_size);
WARN_ON(tx_q->tx_skbuff[tx_q->cur_tx]);
}
if (netif_msg_tx_queued(priv)) {
pr_info("%s: hdrlen %d, hdr_len %d, pay_len %d, mss %d\n",
__func__, hdr, proto_hdr_len, pay_len, mss);
pr_info("\tskb->len %d, skb->data_len %d\n", skb->len,
skb->data_len);
}
first_entry = tx_q->cur_tx;
WARN_ON(tx_q->tx_skbuff[first_entry]);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[first_entry].basic;
else
desc = &tx_q->dma_tx[first_entry];
first = desc;
/* first descriptor: fill Headers on Buf1 */
des = dma_map_single(priv->device, skb->data, skb_headlen(skb),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
stmmac_set_desc_addr(priv, first, des);
stmmac_tso_allocator(priv, des + proto_hdr_len, pay_len,
(nfrags == 0), queue);
/* In case two or more DMA transmit descriptors are allocated for this
* non-paged SKB data, the DMA buffer address should be saved to
* tx_q->tx_skbuff_dma[].buf corresponding to the last descriptor,
* and leave the other tx_q->tx_skbuff_dma[].buf as NULL to guarantee
* that stmmac_tx_clean() does not unmap the entire DMA buffer too early
* since the tail areas of the DMA buffer can be accessed by DMA engine
* sooner or later.
* By saving the DMA buffer address to tx_q->tx_skbuff_dma[].buf
* corresponding to the last descriptor, stmmac_tx_clean() will unmap
* this DMA buffer right after the DMA engine completely finishes the
* full buffer transmission.
*/
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_headlen(skb);
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = false;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
/* Prepare fragments */
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
des = skb_frag_dma_map(priv->device, frag, 0,
skb_frag_size(frag),
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
stmmac_tso_allocator(priv, des, skb_frag_size(frag),
(i == nfrags - 1), queue);
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf = des;
tx_q->tx_skbuff_dma[tx_q->cur_tx].len = skb_frag_size(frag);
tx_q->tx_skbuff_dma[tx_q->cur_tx].map_as_page = true;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
}
tx_q->tx_skbuff_dma[tx_q->cur_tx].last_segment = true;
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[tx_q->cur_tx] = skb;
tx_q->tx_skbuff_dma[tx_q->cur_tx].buf_type = STMMAC_TXBUF_T_SKB;
/* Manage tx mitigation */
tx_packets = (tx_q->cur_tx + 1) - first_tx;
tx_q->tx_count_frames += tx_packets;
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
set_ic = true;
else if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_packets > priv->tx_coal_frames[queue])
set_ic = true;
else if ((tx_q->tx_count_frames %
priv->tx_coal_frames[queue]) < tx_packets)
set_ic = true;
else
set_ic = false;
if (set_ic) {
if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[tx_q->cur_tx].basic;
else
desc = &tx_q->dma_tx[tx_q->cur_tx];
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, desc);
}
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
tx_q->cur_tx = STMMAC_GET_ENTRY(tx_q->cur_tx, priv->dma_conf.dma_tx_size);
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
u64_stats_update_begin(&txq_stats->q_syncp);
u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
u64_stats_inc(&txq_stats->q.tx_tso_frames);
u64_stats_add(&txq_stats->q.tx_tso_nfrags, nfrags);
if (set_ic)
u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
u64_stats_update_end(&txq_stats->q_syncp);
if (priv->sarc_type)
stmmac_set_desc_sarc(priv, first, priv->sarc_type);
skb_tx_timestamp(skb);
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
stmmac_enable_tx_timestamp(priv, first);
}
/* Complete the first descriptor before granting the DMA */
stmmac_prepare_tso_tx_desc(priv, first, 1, proto_hdr_len, 0, 1,
tx_q->tx_skbuff_dma[first_entry].last_segment,
hdr / 4, (skb->len - proto_hdr_len));
/* If context desc is used to change MSS */
if (mss_desc) {
/* Make sure that first descriptor has been completely
* written, including its own bit. This is because MSS is
* actually before first descriptor, so we need to make
* sure that MSS's own bit is the last thing written.
*/
dma_wmb();
stmmac_set_tx_owner(priv, mss_desc);
}
if (netif_msg_pktdata(priv)) {
pr_info("%s: curr=%d dirty=%d f=%d, e=%d, f_p=%p, nfrags %d\n",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
tx_q->cur_tx, first, nfrags);
pr_info(">>> frame to be transmitted: ");
print_pkt(skb->data, skb_headlen(skb));
}
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
return NETDEV_TX_OK;
dma_map_err:
dev_err(priv->device, "Tx dma map failed\n");
dev_kfree_skb(skb);
priv->xstats.tx_dropped++;
return NETDEV_TX_OK;
}
/**
* stmmac_has_ip_ethertype() - Check if packet has IP ethertype
* @skb: socket buffer to check
*
* Check if a packet has an ethertype that will trigger the IP header checks
* and IP/TCP checksum engine of the stmmac core.
*
* Return: true if the ethertype can trigger the checksum engine, false
* otherwise
*/
static bool stmmac_has_ip_ethertype(struct sk_buff *skb)
{
int depth = 0;
__be16 proto;
proto = __vlan_get_protocol(skb, eth_header_parse_protocol(skb),
&depth);
return (depth <= ETH_HLEN) &&
(proto == htons(ETH_P_IP) || proto == htons(ETH_P_IPV6));
}
/**
* stmmac_xmit - Tx entry point of the driver
* @skb : the socket buffer
* @dev : device pointer
* Description : this is the tx entry point of the driver.
* It programs the chain or the ring and supports oversized frames
* and SG feature.
*/
static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
{
unsigned int first_entry, tx_packets, enh_desc;
struct stmmac_priv *priv = netdev_priv(dev);
unsigned int nopaged_len = skb_headlen(skb);
int i, csum_insertion = 0, is_jumbo = 0;
u32 queue = skb_get_queue_mapping(skb);
int nfrags = skb_shinfo(skb)->nr_frags;
int gso = skb_shinfo(skb)->gso_type;
struct stmmac_txq_stats *txq_stats;
struct dma_edesc *tbs_desc = NULL;
struct dma_desc *desc, *first;
struct stmmac_tx_queue *tx_q;
bool has_vlan, set_ic;
int entry, first_tx;
dma_addr_t des;
tx_q = &priv->dma_conf.tx_queue[queue];
txq_stats = &priv->xstats.txq_stats[queue];
first_tx = tx_q->cur_tx;
if (priv->tx_path_in_lpi_mode && priv->eee_sw_timer_en)
stmmac_stop_sw_lpi(priv);
/* Manage oversized TCP frames for GMAC4 device */
if (skb_is_gso(skb) && priv->tso) {
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))
return stmmac_tso_xmit(skb, dev);
if (priv->plat->has_gmac4 && (gso & SKB_GSO_UDP_L4))
return stmmac_tso_xmit(skb, dev);
}
if (priv->est && priv->est->enable &&
priv->est->max_sdu[queue] &&
skb->len > priv->est->max_sdu[queue]){
priv->xstats.max_sdu_txq_drop[queue]++;
goto max_sdu_err;
}
if (unlikely(stmmac_tx_avail(priv, queue) < nfrags + 1)) {
if (!netif_tx_queue_stopped(netdev_get_tx_queue(dev, queue))) {
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev,
queue));
/* This is a hard error, log it. */
netdev_err(priv->dev,
"%s: Tx Ring full when queue awake\n",
__func__);
}
return NETDEV_TX_BUSY;
}
/* Check if VLAN can be inserted by HW */
has_vlan = stmmac_vlan_insert(priv, skb, tx_q);
entry = tx_q->cur_tx;
first_entry = entry;
WARN_ON(tx_q->tx_skbuff[first_entry]);
csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
/* DWMAC IPs can be synthesized to support tx coe only for a few tx
* queues. In that case, checksum offloading for those queues that don't
* support tx coe needs to fallback to software checksum calculation.
*
* Packets that won't trigger the COE e.g. most DSA-tagged packets will
* also have to be checksummed in software.
*/
if (csum_insertion &&
(priv->plat->tx_queues_cfg[queue].coe_unsupported ||
!stmmac_has_ip_ethertype(skb))) {
if (unlikely(skb_checksum_help(skb)))
goto dma_map_err;
csum_insertion = !csum_insertion;
}
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = tx_q->dma_tx + entry;
first = desc;
if (has_vlan)
stmmac_set_desc_vlan(priv, first, STMMAC_VLAN_INSERT);
enh_desc = priv->plat->enh_desc;
/* To program the descriptors according to the size of the frame */
if (enh_desc)
is_jumbo = stmmac_is_jumbo_frm(priv, skb->len, enh_desc);
if (unlikely(is_jumbo)) {
entry = stmmac_jumbo_frm(priv, tx_q, skb, csum_insertion);
if (unlikely(entry < 0) && (entry != -EINVAL))
goto dma_map_err;
}
for (i = 0; i < nfrags; i++) {
const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
int len = skb_frag_size(frag);
bool last_segment = (i == (nfrags - 1));
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
WARN_ON(tx_q->tx_skbuff[entry]);
if (likely(priv->extend_desc))
desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = tx_q->dma_tx + entry;
des = skb_frag_dma_map(priv->device, frag, 0, len,
DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err; /* should reuse desc w/o issues */
tx_q->tx_skbuff_dma[entry].buf = des;
stmmac_set_desc_addr(priv, desc, des);
tx_q->tx_skbuff_dma[entry].map_as_page = true;
tx_q->tx_skbuff_dma[entry].len = len;
tx_q->tx_skbuff_dma[entry].last_segment = last_segment;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
/* Prepare the descriptor and set the own bit too */
stmmac_prepare_tx_desc(priv, desc, 0, len, csum_insertion,
priv->mode, 1, last_segment, skb->len);
}
/* Only the last descriptor gets to point to the skb. */
tx_q->tx_skbuff[entry] = skb;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_SKB;
/* According to the coalesce parameter the IC bit for the latest
* segment is reset and the timer re-started to clean the tx status.
* This approach takes care about the fragments: desc is the first
* element in case of no SG.
*/
tx_packets = (entry + 1) - first_tx;
tx_q->tx_count_frames += tx_packets;
if ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) && priv->hwts_tx_en)
set_ic = true;
else if (!priv->tx_coal_frames[queue])
set_ic = false;
else if (tx_packets > priv->tx_coal_frames[queue])
set_ic = true;
else if ((tx_q->tx_count_frames %
priv->tx_coal_frames[queue]) < tx_packets)
set_ic = true;
else
set_ic = false;
if (set_ic) {
if (likely(priv->extend_desc))
desc = &tx_q->dma_etx[entry].basic;
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
desc = &tx_q->dma_entx[entry].basic;
else
desc = &tx_q->dma_tx[entry];
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, desc);
}
/* We've used all descriptors we need for this skb, however,
* advance cur_tx so that it references a fresh descriptor.
* ndo_start_xmit will fill this descriptor the next time it's
* called and stmmac_tx_clean may clean up to this descriptor.
*/
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
tx_q->cur_tx = entry;
if (netif_msg_pktdata(priv)) {
netdev_dbg(priv->dev,
"%s: curr=%d dirty=%d f=%d, e=%d, first=%p, nfrags=%d",
__func__, tx_q->cur_tx, tx_q->dirty_tx, first_entry,
entry, first, nfrags);
netdev_dbg(priv->dev, ">>> frame to be transmitted: ");
print_pkt(skb->data, skb->len);
}
if (unlikely(stmmac_tx_avail(priv, queue) <= (MAX_SKB_FRAGS + 1))) {
netif_dbg(priv, hw, priv->dev, "%s: stop transmitted packets\n",
__func__);
netif_tx_stop_queue(netdev_get_tx_queue(priv->dev, queue));
}
u64_stats_update_begin(&txq_stats->q_syncp);
u64_stats_add(&txq_stats->q.tx_bytes, skb->len);
if (set_ic)
u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
u64_stats_update_end(&txq_stats->q_syncp);
if (priv->sarc_type)
stmmac_set_desc_sarc(priv, first, priv->sarc_type);
skb_tx_timestamp(skb);
/* Ready to fill the first descriptor and set the OWN bit w/o any
* problems because all the descriptors are actually ready to be
* passed to the DMA engine.
*/
if (likely(!is_jumbo)) {
bool last_segment = (nfrags == 0);
des = dma_map_single(priv->device, skb->data,
nopaged_len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, des))
goto dma_map_err;
tx_q->tx_skbuff_dma[first_entry].buf = des;
tx_q->tx_skbuff_dma[first_entry].buf_type = STMMAC_TXBUF_T_SKB;
tx_q->tx_skbuff_dma[first_entry].map_as_page = false;
stmmac_set_desc_addr(priv, first, des);
tx_q->tx_skbuff_dma[first_entry].len = nopaged_len;
tx_q->tx_skbuff_dma[first_entry].last_segment = last_segment;
if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
priv->hwts_tx_en)) {
/* declare that device is doing timestamping */
skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
stmmac_enable_tx_timestamp(priv, first);
}
/* Prepare the first descriptor setting the OWN bit too */
stmmac_prepare_tx_desc(priv, first, 1, nopaged_len,
csum_insertion, priv->mode, 0, last_segment,
skb->len);
}
if (tx_q->tbs & STMMAC_TBS_EN) {
struct timespec64 ts = ns_to_timespec64(skb->tstamp);
tbs_desc = &tx_q->dma_entx[first_entry];
stmmac_set_desc_tbs(priv, tbs_desc, ts.tv_sec, ts.tv_nsec);
}
stmmac_set_tx_owner(priv, first);
netdev_tx_sent_queue(netdev_get_tx_queue(dev, queue), skb->len);
stmmac_enable_dma_transmission(priv, priv->ioaddr, queue);
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
return NETDEV_TX_OK;
dma_map_err:
netdev_err(priv->dev, "Tx DMA map failed\n");
max_sdu_err:
dev_kfree_skb(skb);
priv->xstats.tx_dropped++;
return NETDEV_TX_OK;
}
static void stmmac_rx_vlan(struct net_device *dev, struct sk_buff *skb)
{
struct vlan_ethhdr *veth = skb_vlan_eth_hdr(skb);
__be16 vlan_proto = veth->h_vlan_proto;
u16 vlanid;
if ((vlan_proto == htons(ETH_P_8021Q) &&
dev->features & NETIF_F_HW_VLAN_CTAG_RX) ||
(vlan_proto == htons(ETH_P_8021AD) &&
dev->features & NETIF_F_HW_VLAN_STAG_RX)) {
/* pop the vlan tag */
vlanid = ntohs(veth->h_vlan_TCI);
memmove(skb->data + VLAN_HLEN, veth, ETH_ALEN * 2);
skb_pull(skb, VLAN_HLEN);
__vlan_hwaccel_put_tag(skb, vlan_proto, vlanid);
}
}
/**
* stmmac_rx_refill - refill used skb preallocated buffers
* @priv: driver private structure
* @queue: RX queue index
* Description : this is to reallocate the skb for the reception process
* that is based on zero-copy.
*/
static inline void stmmac_rx_refill(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int entry = rx_q->dirty_rx;
gfp_t gfp = (GFP_ATOMIC | __GFP_NOWARN);
if (priv->dma_cap.host_dma_width <= 32)
gfp |= GFP_DMA32;
while (dirty-- > 0) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
struct dma_desc *p;
bool use_rx_wd;
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
if (!buf->page) {
buf->page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->page)
break;
}
if (priv->sph && !buf->sec_page) {
buf->sec_page = page_pool_alloc_pages(rx_q->page_pool, gfp);
if (!buf->sec_page)
break;
buf->sec_addr = page_pool_get_dma_addr(buf->sec_page);
}
buf->addr = page_pool_get_dma_addr(buf->page) + buf->page_offset;
stmmac_set_desc_addr(priv, p, buf->addr);
if (priv->sph)
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, true);
else
stmmac_set_desc_sec_addr(priv, p, buf->sec_addr, false);
stmmac_refill_desc3(priv, rx_q, p);
rx_q->rx_count_frames++;
rx_q->rx_count_frames += priv->rx_coal_frames[queue];
if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
rx_q->rx_count_frames = 0;
use_rx_wd = !priv->rx_coal_frames[queue];
use_rx_wd |= rx_q->rx_count_frames > 0;
if (!priv->use_riwt)
use_rx_wd = false;
dma_wmb();
stmmac_set_rx_owner(priv, p, use_rx_wd);
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
}
rx_q->dirty_rx = entry;
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->dirty_rx * sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
}
static unsigned int stmmac_rx_buf1_len(struct stmmac_priv *priv,
struct dma_desc *p,
int status, unsigned int len)
{
unsigned int plen = 0, hlen = 0;
int coe = priv->hw->rx_csum;
/* Not first descriptor, buffer is always zero */
if (priv->sph && len)
return 0;
/* First descriptor, get split header length */
stmmac_get_rx_header_len(priv, p, &hlen);
if (priv->sph && hlen) {
priv->xstats.rx_split_hdr_pkt_n++;
return hlen;
}
/* First descriptor, not last descriptor and not split header */
if (status & rx_not_ls)
return priv->dma_conf.dma_buf_sz;
plen = stmmac_get_rx_frame_len(priv, p, coe);
/* First descriptor and last descriptor and not split header */
return min_t(unsigned int, priv->dma_conf.dma_buf_sz, plen);
}
static unsigned int stmmac_rx_buf2_len(struct stmmac_priv *priv,
struct dma_desc *p,
int status, unsigned int len)
{
int coe = priv->hw->rx_csum;
unsigned int plen = 0;
/* Not split header, buffer is not available */
if (!priv->sph)
return 0;
/* Not last descriptor */
if (status & rx_not_ls)
return priv->dma_conf.dma_buf_sz;
plen = stmmac_get_rx_frame_len(priv, p, coe);
/* Last descriptor */
return plen - len;
}
static int stmmac_xdp_xmit_xdpf(struct stmmac_priv *priv, int queue,
struct xdp_frame *xdpf, bool dma_map)
{
struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[queue];
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
unsigned int entry = tx_q->cur_tx;
struct dma_desc *tx_desc;
dma_addr_t dma_addr;
bool set_ic;
if (stmmac_tx_avail(priv, queue) < STMMAC_TX_THRESH(priv))
return STMMAC_XDP_CONSUMED;
if (priv->est && priv->est->enable &&
priv->est->max_sdu[queue] &&
xdpf->len > priv->est->max_sdu[queue]) {
priv->xstats.max_sdu_txq_drop[queue]++;
return STMMAC_XDP_CONSUMED;
}
if (likely(priv->extend_desc))
tx_desc = (struct dma_desc *)(tx_q->dma_etx + entry);
else if (tx_q->tbs & STMMAC_TBS_AVAIL)
tx_desc = &tx_q->dma_entx[entry].basic;
else
tx_desc = tx_q->dma_tx + entry;
if (dma_map) {
dma_addr = dma_map_single(priv->device, xdpf->data,
xdpf->len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->device, dma_addr))
return STMMAC_XDP_CONSUMED;
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_NDO;
} else {
struct page *page = virt_to_page(xdpf->data);
dma_addr = page_pool_get_dma_addr(page) + sizeof(*xdpf) +
xdpf->headroom;
dma_sync_single_for_device(priv->device, dma_addr,
xdpf->len, DMA_BIDIRECTIONAL);
tx_q->tx_skbuff_dma[entry].buf_type = STMMAC_TXBUF_T_XDP_TX;
}
tx_q->tx_skbuff_dma[entry].buf = dma_addr;
tx_q->tx_skbuff_dma[entry].map_as_page = false;
tx_q->tx_skbuff_dma[entry].len = xdpf->len;
tx_q->tx_skbuff_dma[entry].last_segment = true;
tx_q->tx_skbuff_dma[entry].is_jumbo = false;
tx_q->xdpf[entry] = xdpf;
stmmac_set_desc_addr(priv, tx_desc, dma_addr);
stmmac_prepare_tx_desc(priv, tx_desc, 1, xdpf->len,
true, priv->mode, true, true,
xdpf->len);
tx_q->tx_count_frames++;
if (tx_q->tx_count_frames % priv->tx_coal_frames[queue] == 0)
set_ic = true;
else
set_ic = false;
if (set_ic) {
tx_q->tx_count_frames = 0;
stmmac_set_tx_ic(priv, tx_desc);
u64_stats_update_begin(&txq_stats->q_syncp);
u64_stats_inc(&txq_stats->q.tx_set_ic_bit);
u64_stats_update_end(&txq_stats->q_syncp);
}
stmmac_enable_dma_transmission(priv, priv->ioaddr, queue);
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_tx_size);
tx_q->cur_tx = entry;
return STMMAC_XDP_TX;
}
static int stmmac_xdp_get_tx_queue(struct stmmac_priv *priv,
int cpu)
{
int index = cpu;
if (unlikely(index < 0))
index = 0;
while (index >= priv->plat->tx_queues_to_use)
index -= priv->plat->tx_queues_to_use;
return index;
}
static int stmmac_xdp_xmit_back(struct stmmac_priv *priv,
struct xdp_buff *xdp)
{
struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
int cpu = smp_processor_id();
struct netdev_queue *nq;
int queue;
int res;
if (unlikely(!xdpf))
return STMMAC_XDP_CONSUMED;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
nq = netdev_get_tx_queue(priv->dev, queue);
__netif_tx_lock(nq, cpu);
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
res = stmmac_xdp_xmit_xdpf(priv, queue, xdpf, false);
if (res == STMMAC_XDP_TX)
stmmac_flush_tx_descriptors(priv, queue);
__netif_tx_unlock(nq);
return res;
}
static int __stmmac_xdp_run_prog(struct stmmac_priv *priv,
struct bpf_prog *prog,
struct xdp_buff *xdp)
{
u32 act;
int res;
act = bpf_prog_run_xdp(prog, xdp);
switch (act) {
case XDP_PASS:
res = STMMAC_XDP_PASS;
break;
case XDP_TX:
res = stmmac_xdp_xmit_back(priv, xdp);
break;
case XDP_REDIRECT:
if (xdp_do_redirect(priv->dev, xdp, prog) < 0)
res = STMMAC_XDP_CONSUMED;
else
res = STMMAC_XDP_REDIRECT;
break;
default:
bpf_warn_invalid_xdp_action(priv->dev, prog, act);
fallthrough;
case XDP_ABORTED:
trace_xdp_exception(priv->dev, prog, act);
fallthrough;
case XDP_DROP:
res = STMMAC_XDP_CONSUMED;
break;
}
return res;
}
static struct sk_buff *stmmac_xdp_run_prog(struct stmmac_priv *priv,
struct xdp_buff *xdp)
{
struct bpf_prog *prog;
int res;
prog = READ_ONCE(priv->xdp_prog);
if (!prog) {
res = STMMAC_XDP_PASS;
goto out;
}
res = __stmmac_xdp_run_prog(priv, prog, xdp);
out:
return ERR_PTR(-res);
}
static void stmmac_finalize_xdp_rx(struct stmmac_priv *priv,
int xdp_status)
{
int cpu = smp_processor_id();
int queue;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
if (xdp_status & STMMAC_XDP_TX)
stmmac_tx_timer_arm(priv, queue);
if (xdp_status & STMMAC_XDP_REDIRECT)
xdp_do_flush();
}
static struct sk_buff *stmmac_construct_skb_zc(struct stmmac_channel *ch,
struct xdp_buff *xdp)
{
unsigned int metasize = xdp->data - xdp->data_meta;
unsigned int datasize = xdp->data_end - xdp->data;
struct sk_buff *skb;
skb = napi_alloc_skb(&ch->rxtx_napi,
xdp->data_end - xdp->data_hard_start);
if (unlikely(!skb))
return NULL;
skb_reserve(skb, xdp->data - xdp->data_hard_start);
memcpy(__skb_put(skb, datasize), xdp->data, datasize);
if (metasize)
skb_metadata_set(skb, metasize);
return skb;
}
static void stmmac_dispatch_skb_zc(struct stmmac_priv *priv, u32 queue,
struct dma_desc *p, struct dma_desc *np,
struct xdp_buff *xdp)
{
struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned int len = xdp->data_end - xdp->data;
enum pkt_hash_types hash_type;
int coe = priv->hw->rx_csum;
struct sk_buff *skb;
u32 hash;
skb = stmmac_construct_skb_zc(ch, xdp);
if (!skb) {
priv->xstats.rx_dropped++;
return;
}
stmmac_get_rx_hwtstamp(priv, p, np, skb);
if (priv->hw->hw_vlan_en)
/* MAC level stripping. */
stmmac_rx_hw_vlan(priv, priv->hw, p, skb);
else
/* Driver level stripping. */
stmmac_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
skb_set_hash(skb, hash, hash_type);
skb_record_rx_queue(skb, queue);
napi_gro_receive(&ch->rxtx_napi, skb);
u64_stats_update_begin(&rxq_stats->napi_syncp);
u64_stats_inc(&rxq_stats->napi.rx_pkt_n);
u64_stats_add(&rxq_stats->napi.rx_bytes, len);
u64_stats_update_end(&rxq_stats->napi_syncp);
}
static bool stmmac_rx_refill_zc(struct stmmac_priv *priv, u32 queue, u32 budget)
{
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
unsigned int entry = rx_q->dirty_rx;
struct dma_desc *rx_desc = NULL;
bool ret = true;
budget = min(budget, stmmac_rx_dirty(priv, queue));
while (budget-- > 0 && entry != rx_q->cur_rx) {
struct stmmac_rx_buffer *buf = &rx_q->buf_pool[entry];
dma_addr_t dma_addr;
bool use_rx_wd;
if (!buf->xdp) {
buf->xdp = xsk_buff_alloc(rx_q->xsk_pool);
if (!buf->xdp) {
ret = false;
break;
}
}
if (priv->extend_desc)
rx_desc = (struct dma_desc *)(rx_q->dma_erx + entry);
else
rx_desc = rx_q->dma_rx + entry;
dma_addr = xsk_buff_xdp_get_dma(buf->xdp);
stmmac_set_desc_addr(priv, rx_desc, dma_addr);
stmmac_set_desc_sec_addr(priv, rx_desc, 0, false);
stmmac_refill_desc3(priv, rx_q, rx_desc);
rx_q->rx_count_frames++;
rx_q->rx_count_frames += priv->rx_coal_frames[queue];
if (rx_q->rx_count_frames > priv->rx_coal_frames[queue])
rx_q->rx_count_frames = 0;
use_rx_wd = !priv->rx_coal_frames[queue];
use_rx_wd |= rx_q->rx_count_frames > 0;
if (!priv->use_riwt)
use_rx_wd = false;
dma_wmb();
stmmac_set_rx_owner(priv, rx_desc, use_rx_wd);
entry = STMMAC_GET_ENTRY(entry, priv->dma_conf.dma_rx_size);
}
if (rx_desc) {
rx_q->dirty_rx = entry;
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->dirty_rx * sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr, rx_q->rx_tail_addr, queue);
}
return ret;
}
static struct stmmac_xdp_buff *xsk_buff_to_stmmac_ctx(struct xdp_buff *xdp)
{
/* In XDP zero copy data path, xdp field in struct xdp_buff_xsk is used
* to represent incoming packet, whereas cb field in the same structure
* is used to store driver specific info. Thus, struct stmmac_xdp_buff
* is laid on top of xdp and cb fields of struct xdp_buff_xsk.
*/
return (struct stmmac_xdp_buff *)xdp;
}
static int stmmac_rx_zc(struct stmmac_priv *priv, int limit, u32 queue)
{
struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
unsigned int count = 0, error = 0, len = 0;
int dirty = stmmac_rx_dirty(priv, queue);
unsigned int next_entry = rx_q->cur_rx;
u32 rx_errors = 0, rx_dropped = 0;
unsigned int desc_size;
struct bpf_prog *prog;
bool failure = false;
int xdp_status = 0;
int status = 0;
if (netif_msg_rx_status(priv)) {
void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc) {
rx_head = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
rx_head = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
while (count < limit) {
struct stmmac_rx_buffer *buf;
struct stmmac_xdp_buff *ctx;
unsigned int buf1_len = 0;
struct dma_desc *np, *p;
int entry;
int res;
if (!count && rx_q->state_saved) {
error = rx_q->state.error;
len = rx_q->state.len;
} else {
rx_q->state_saved = false;
error = 0;
len = 0;
}
if (count >= limit)
break;
read_again:
buf1_len = 0;
entry = next_entry;
buf = &rx_q->buf_pool[entry];
if (dirty >= STMMAC_RX_FILL_BATCH) {
failure = failure ||
!stmmac_rx_refill_zc(priv, queue, dirty);
dirty = 0;
}
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */
status = stmmac_rx_status(priv, &priv->xstats, p);
/* check if managed by the DMA otherwise go ahead */
if (unlikely(status & dma_own))
break;
/* Prefetch the next RX descriptor */
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
priv->dma_conf.dma_rx_size);
next_entry = rx_q->cur_rx;
if (priv->extend_desc)
np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else
np = rx_q->dma_rx + next_entry;
prefetch(np);
/* Ensure a valid XSK buffer before proceed */
if (!buf->xdp)
break;
if (priv->extend_desc)
stmmac_rx_extended_status(priv, &priv->xstats,
rx_q->dma_erx + entry);
if (unlikely(status == discard_frame)) {
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
dirty++;
error = 1;
if (!priv->hwts_rx_en)
rx_errors++;
}
if (unlikely(error && (status & rx_not_ls)))
goto read_again;
if (unlikely(error)) {
count++;
continue;
}
/* XSK pool expects RX frame 1:1 mapped to XSK buffer */
if (likely(status & rx_not_ls)) {
xsk_buff_free(buf->xdp);
buf->xdp = NULL;
dirty++;
count++;
goto read_again;
}
ctx = xsk_buff_to_stmmac_ctx(buf->xdp);
ctx->priv = priv;
ctx->desc = p;
ctx->ndesc = np;
/* XDP ZC Frame only support primary buffers for now */
buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
len += buf1_len;
/* ACS is disabled; strip manually. */
if (likely(!(status & rx_not_ls))) {
buf1_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
}
/* RX buffer is good and fit into a XSK pool buffer */
buf->xdp->data_end = buf->xdp->data + buf1_len;
xsk_buff_dma_sync_for_cpu(buf->xdp);
prog = READ_ONCE(priv->xdp_prog);
res = __stmmac_xdp_run_prog(priv, prog, buf->xdp);
switch (res) {
case STMMAC_XDP_PASS:
stmmac_dispatch_skb_zc(priv, queue, p, np, buf->xdp);
xsk_buff_free(buf->xdp);
break;
case STMMAC_XDP_CONSUMED:
xsk_buff_free(buf->xdp);
rx_dropped++;
break;
case STMMAC_XDP_TX:
case STMMAC_XDP_REDIRECT:
xdp_status |= res;
break;
}
buf->xdp = NULL;
dirty++;
count++;
}
if (status & rx_not_ls) {
rx_q->state_saved = true;
rx_q->state.error = error;
rx_q->state.len = len;
}
stmmac_finalize_xdp_rx(priv, xdp_status);
u64_stats_update_begin(&rxq_stats->napi_syncp);
u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
u64_stats_update_end(&rxq_stats->napi_syncp);
priv->xstats.rx_dropped += rx_dropped;
priv->xstats.rx_errors += rx_errors;
if (xsk_uses_need_wakeup(rx_q->xsk_pool)) {
if (failure || stmmac_rx_dirty(priv, queue) > 0)
xsk_set_rx_need_wakeup(rx_q->xsk_pool);
else
xsk_clear_rx_need_wakeup(rx_q->xsk_pool);
return (int)count;
}
return failure ? limit : (int)count;
}
/**
* stmmac_rx - manage the receive process
* @priv: driver private structure
* @limit: napi bugget
* @queue: RX queue index.
* Description : this the function called by the napi poll method.
* It gets all the frames inside the ring.
*/
static int stmmac_rx(struct stmmac_priv *priv, int limit, u32 queue)
{
u32 rx_errors = 0, rx_dropped = 0, rx_bytes = 0, rx_packets = 0;
struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[queue];
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned int count = 0, error = 0, len = 0;
int status = 0, coe = priv->hw->rx_csum;
unsigned int next_entry = rx_q->cur_rx;
enum dma_data_direction dma_dir;
unsigned int desc_size;
struct sk_buff *skb = NULL;
struct stmmac_xdp_buff ctx;
int xdp_status = 0;
int buf_sz;
dma_dir = page_pool_get_dma_dir(rx_q->page_pool);
buf_sz = DIV_ROUND_UP(priv->dma_conf.dma_buf_sz, PAGE_SIZE) * PAGE_SIZE;
limit = min(priv->dma_conf.dma_rx_size - 1, (unsigned int)limit);
if (netif_msg_rx_status(priv)) {
void *rx_head;
netdev_dbg(priv->dev, "%s: descriptor ring:\n", __func__);
if (priv->extend_desc) {
rx_head = (void *)rx_q->dma_erx;
desc_size = sizeof(struct dma_extended_desc);
} else {
rx_head = (void *)rx_q->dma_rx;
desc_size = sizeof(struct dma_desc);
}
stmmac_display_ring(priv, rx_head, priv->dma_conf.dma_rx_size, true,
rx_q->dma_rx_phy, desc_size);
}
while (count < limit) {
unsigned int buf1_len = 0, buf2_len = 0;
enum pkt_hash_types hash_type;
struct stmmac_rx_buffer *buf;
struct dma_desc *np, *p;
int entry;
u32 hash;
if (!count && rx_q->state_saved) {
skb = rx_q->state.skb;
error = rx_q->state.error;
len = rx_q->state.len;
} else {
rx_q->state_saved = false;
skb = NULL;
error = 0;
len = 0;
}
read_again:
if (count >= limit)
break;
buf1_len = 0;
buf2_len = 0;
entry = next_entry;
buf = &rx_q->buf_pool[entry];
if (priv->extend_desc)
p = (struct dma_desc *)(rx_q->dma_erx + entry);
else
p = rx_q->dma_rx + entry;
/* read the status of the incoming frame */
status = stmmac_rx_status(priv, &priv->xstats, p);
/* check if managed by the DMA otherwise go ahead */
if (unlikely(status & dma_own))
break;
rx_q->cur_rx = STMMAC_GET_ENTRY(rx_q->cur_rx,
priv->dma_conf.dma_rx_size);
next_entry = rx_q->cur_rx;
if (priv->extend_desc)
np = (struct dma_desc *)(rx_q->dma_erx + next_entry);
else
np = rx_q->dma_rx + next_entry;
prefetch(np);
if (priv->extend_desc)
stmmac_rx_extended_status(priv, &priv->xstats, rx_q->dma_erx + entry);
if (unlikely(status == discard_frame)) {
page_pool_put_page(rx_q->page_pool, buf->page, 0, true);
buf->page = NULL;
error = 1;
if (!priv->hwts_rx_en)
rx_errors++;
}
if (unlikely(error && (status & rx_not_ls)))
goto read_again;
if (unlikely(error)) {
dev_kfree_skb(skb);
skb = NULL;
count++;
continue;
}
/* Buffer is good. Go on. */
buf1_len = stmmac_rx_buf1_len(priv, p, status, len);
len += buf1_len;
buf2_len = stmmac_rx_buf2_len(priv, p, status, len);
len += buf2_len;
/* ACS is disabled; strip manually. */
if (likely(!(status & rx_not_ls))) {
if (buf2_len) {
buf2_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
} else if (buf1_len) {
buf1_len -= ETH_FCS_LEN;
len -= ETH_FCS_LEN;
}
}
if (!skb) {
unsigned int pre_len, sync_len;
dma_sync_single_for_cpu(priv->device, buf->addr,
buf1_len, dma_dir);
net_prefetch(page_address(buf->page) +
buf->page_offset);
xdp_init_buff(&ctx.xdp, buf_sz, &rx_q->xdp_rxq);
xdp_prepare_buff(&ctx.xdp, page_address(buf->page),
buf->page_offset, buf1_len, true);
pre_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
buf->page_offset;
ctx.priv = priv;
ctx.desc = p;
ctx.ndesc = np;
skb = stmmac_xdp_run_prog(priv, &ctx.xdp);
/* Due xdp_adjust_tail: DMA sync for_device
* cover max len CPU touch
*/
sync_len = ctx.xdp.data_end - ctx.xdp.data_hard_start -
buf->page_offset;
sync_len = max(sync_len, pre_len);
/* For Not XDP_PASS verdict */
if (IS_ERR(skb)) {
unsigned int xdp_res = -PTR_ERR(skb);
if (xdp_res & STMMAC_XDP_CONSUMED) {
page_pool_put_page(rx_q->page_pool,
virt_to_head_page(ctx.xdp.data),
sync_len, true);
buf->page = NULL;
rx_dropped++;
/* Clear skb as it was set as
* status by XDP program.
*/
skb = NULL;
if (unlikely((status & rx_not_ls)))
goto read_again;
count++;
continue;
} else if (xdp_res & (STMMAC_XDP_TX |
STMMAC_XDP_REDIRECT)) {
xdp_status |= xdp_res;
buf->page = NULL;
skb = NULL;
count++;
continue;
}
}
}
if (!skb) {
unsigned int head_pad_len;
/* XDP program may expand or reduce tail */
buf1_len = ctx.xdp.data_end - ctx.xdp.data;
skb = napi_build_skb(page_address(buf->page),
rx_q->napi_skb_frag_size);
if (!skb) {
page_pool_recycle_direct(rx_q->page_pool,
buf->page);
rx_dropped++;
count++;
goto drain_data;
}
/* XDP program may adjust header */
head_pad_len = ctx.xdp.data - ctx.xdp.data_hard_start;
skb_reserve(skb, head_pad_len);
skb_put(skb, buf1_len);
skb_mark_for_recycle(skb);
buf->page = NULL;
} else if (buf1_len) {
dma_sync_single_for_cpu(priv->device, buf->addr,
buf1_len, dma_dir);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
buf->page, buf->page_offset, buf1_len,
priv->dma_conf.dma_buf_sz);
buf->page = NULL;
}
if (buf2_len) {
dma_sync_single_for_cpu(priv->device, buf->sec_addr,
buf2_len, dma_dir);
skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
buf->sec_page, 0, buf2_len,
priv->dma_conf.dma_buf_sz);
buf->sec_page = NULL;
}
drain_data:
if (likely(status & rx_not_ls))
goto read_again;
if (!skb)
continue;
/* Got entire packet into SKB. Finish it. */
stmmac_get_rx_hwtstamp(priv, p, np, skb);
if (priv->hw->hw_vlan_en)
/* MAC level stripping. */
stmmac_rx_hw_vlan(priv, priv->hw, p, skb);
else
/* Driver level stripping. */
stmmac_rx_vlan(priv->dev, skb);
skb->protocol = eth_type_trans(skb, priv->dev);
if (unlikely(!coe) || !stmmac_has_ip_ethertype(skb))
skb_checksum_none_assert(skb);
else
skb->ip_summed = CHECKSUM_UNNECESSARY;
if (!stmmac_get_rx_hash(priv, p, &hash, &hash_type))
skb_set_hash(skb, hash, hash_type);
skb_record_rx_queue(skb, queue);
napi_gro_receive(&ch->rx_napi, skb);
skb = NULL;
rx_packets++;
rx_bytes += len;
count++;
}
if (status & rx_not_ls || skb) {
rx_q->state_saved = true;
rx_q->state.skb = skb;
rx_q->state.error = error;
rx_q->state.len = len;
}
stmmac_finalize_xdp_rx(priv, xdp_status);
stmmac_rx_refill(priv, queue);
u64_stats_update_begin(&rxq_stats->napi_syncp);
u64_stats_add(&rxq_stats->napi.rx_packets, rx_packets);
u64_stats_add(&rxq_stats->napi.rx_bytes, rx_bytes);
u64_stats_add(&rxq_stats->napi.rx_pkt_n, count);
u64_stats_update_end(&rxq_stats->napi_syncp);
priv->xstats.rx_dropped += rx_dropped;
priv->xstats.rx_errors += rx_errors;
return count;
}
static int stmmac_napi_poll_rx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, rx_napi);
struct stmmac_priv *priv = ch->priv_data;
struct stmmac_rxq_stats *rxq_stats;
u32 chan = ch->index;
int work_done;
rxq_stats = &priv->xstats.rxq_stats[chan];
u64_stats_update_begin(&rxq_stats->napi_syncp);
u64_stats_inc(&rxq_stats->napi.poll);
u64_stats_update_end(&rxq_stats->napi_syncp);
work_done = stmmac_rx(priv, budget, chan);
if (work_done < budget && napi_complete_done(napi, work_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
}
return work_done;
}
static int stmmac_napi_poll_tx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, tx_napi);
struct stmmac_priv *priv = ch->priv_data;
struct stmmac_txq_stats *txq_stats;
bool pending_packets = false;
u32 chan = ch->index;
int work_done;
txq_stats = &priv->xstats.txq_stats[chan];
u64_stats_update_begin(&txq_stats->napi_syncp);
u64_stats_inc(&txq_stats->napi.poll);
u64_stats_update_end(&txq_stats->napi_syncp);
work_done = stmmac_tx_clean(priv, budget, chan, &pending_packets);
work_done = min(work_done, budget);
if (work_done < budget && napi_complete_done(napi, work_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
/* TX still have packet to handle, check if we need to arm tx timer */
if (pending_packets)
stmmac_tx_timer_arm(priv, chan);
return work_done;
}
static int stmmac_napi_poll_rxtx(struct napi_struct *napi, int budget)
{
struct stmmac_channel *ch =
container_of(napi, struct stmmac_channel, rxtx_napi);
struct stmmac_priv *priv = ch->priv_data;
bool tx_pending_packets = false;
int rx_done, tx_done, rxtx_done;
struct stmmac_rxq_stats *rxq_stats;
struct stmmac_txq_stats *txq_stats;
u32 chan = ch->index;
rxq_stats = &priv->xstats.rxq_stats[chan];
u64_stats_update_begin(&rxq_stats->napi_syncp);
u64_stats_inc(&rxq_stats->napi.poll);
u64_stats_update_end(&rxq_stats->napi_syncp);
txq_stats = &priv->xstats.txq_stats[chan];
u64_stats_update_begin(&txq_stats->napi_syncp);
u64_stats_inc(&txq_stats->napi.poll);
u64_stats_update_end(&txq_stats->napi_syncp);
tx_done = stmmac_tx_clean(priv, budget, chan, &tx_pending_packets);
tx_done = min(tx_done, budget);
rx_done = stmmac_rx_zc(priv, budget, chan);
rxtx_done = max(tx_done, rx_done);
/* If either TX or RX work is not complete, return budget
* and keep pooling
*/
if (rxtx_done >= budget)
return budget;
/* all work done, exit the polling mode */
if (napi_complete_done(napi, rxtx_done)) {
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
/* Both RX and TX work done are compelte,
* so enable both RX & TX IRQs.
*/
stmmac_enable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
/* TX still have packet to handle, check if we need to arm tx timer */
if (tx_pending_packets)
stmmac_tx_timer_arm(priv, chan);
return min(rxtx_done, budget - 1);
}
/**
* stmmac_tx_timeout
* @dev : Pointer to net device structure
* @txqueue: the index of the hanging transmit queue
* Description: this function is called when a packet transmission fails to
* complete within a reasonable time. The driver will mark the error in the
* netdev structure and arrange for the device to be reset to a sane state
* in order to transmit a new packet.
*/
static void stmmac_tx_timeout(struct net_device *dev, unsigned int txqueue)
{
struct stmmac_priv *priv = netdev_priv(dev);
stmmac_global_err(priv);
}
/**
* stmmac_set_rx_mode - entry point for multicast addressing
* @dev : pointer to the device structure
* Description:
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled.
* Return value:
* void.
*/
static void stmmac_set_rx_mode(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
stmmac_set_filter(priv, priv->hw, dev);
}
/**
* stmmac_change_mtu - entry point to change MTU size for the device.
* @dev : device pointer.
* @new_mtu : the new MTU size for the device.
* Description: the Maximum Transfer Unit (MTU) is used by the network layer
* to drive packet transmission. Ethernet has an MTU of 1500 octets
* (ETH_DATA_LEN). This value can be changed with ifconfig.
* Return value:
* 0 on success and an appropriate (-)ve integer as defined in errno.h
* file on failure.
*/
static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
{
struct stmmac_priv *priv = netdev_priv(dev);
int txfifosz = priv->plat->tx_fifo_size;
struct stmmac_dma_conf *dma_conf;
const int mtu = new_mtu;
int ret;
if (txfifosz == 0)
txfifosz = priv->dma_cap.tx_fifo_size;
txfifosz /= priv->plat->tx_queues_to_use;
if (stmmac_xdp_is_enabled(priv) && new_mtu > ETH_DATA_LEN) {
netdev_dbg(priv->dev, "Jumbo frames not supported for XDP\n");
return -EINVAL;
}
new_mtu = STMMAC_ALIGN(new_mtu);
/* If condition true, FIFO is too small or MTU too large */
if ((txfifosz < new_mtu) || (new_mtu > BUF_SIZE_16KiB))
return -EINVAL;
if (netif_running(dev)) {
netdev_dbg(priv->dev, "restarting interface to change its MTU\n");
/* Try to allocate the new DMA conf with the new mtu */
dma_conf = stmmac_setup_dma_desc(priv, mtu);
if (IS_ERR(dma_conf)) {
netdev_err(priv->dev, "failed allocating new dma conf for new MTU %d\n",
mtu);
return PTR_ERR(dma_conf);
}
stmmac_release(dev);
ret = __stmmac_open(dev, dma_conf);
if (ret) {
free_dma_desc_resources(priv, dma_conf);
kfree(dma_conf);
netdev_err(priv->dev, "failed reopening the interface after MTU change\n");
return ret;
}
kfree(dma_conf);
stmmac_set_rx_mode(dev);
}
WRITE_ONCE(dev->mtu, mtu);
netdev_update_features(dev);
return 0;
}
static netdev_features_t stmmac_fix_features(struct net_device *dev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(dev);
if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
features &= ~NETIF_F_RXCSUM;
if (!priv->plat->tx_coe)
features &= ~NETIF_F_CSUM_MASK;
/* Some GMAC devices have a bugged Jumbo frame support that
* needs to have the Tx COE disabled for oversized frames
* (due to limited buffer sizes). In this case we disable
* the TX csum insertion in the TDES and not use SF.
*/
if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
features &= ~NETIF_F_CSUM_MASK;
/* Disable tso if asked by ethtool */
if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
if (features & NETIF_F_TSO)
priv->tso = true;
else
priv->tso = false;
}
return features;
}
static int stmmac_set_features(struct net_device *netdev,
netdev_features_t features)
{
struct stmmac_priv *priv = netdev_priv(netdev);
/* Keep the COE Type in case of csum is supporting */
if (features & NETIF_F_RXCSUM)
priv->hw->rx_csum = priv->plat->rx_coe;
else
priv->hw->rx_csum = 0;
/* No check needed because rx_coe has been set before and it will be
* fixed in case of issue.
*/
stmmac_rx_ipc(priv, priv->hw);
if (priv->sph_cap) {
bool sph_en = (priv->hw->rx_csum > 0) && priv->sph;
u32 chan;
for (chan = 0; chan < priv->plat->rx_queues_to_use; chan++)
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
}
if (features & NETIF_F_HW_VLAN_CTAG_RX)
priv->hw->hw_vlan_en = true;
else
priv->hw->hw_vlan_en = false;
stmmac_set_hw_vlan_mode(priv, priv->hw);
return 0;
}
static void stmmac_common_interrupt(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queues_count;
u32 queue;
bool xmac;
xmac = priv->plat->has_gmac4 || priv->plat->has_xgmac;
queues_count = (rx_cnt > tx_cnt) ? rx_cnt : tx_cnt;
if (priv->irq_wake)
pm_wakeup_event(priv->device, 0);
if (priv->dma_cap.estsel)
stmmac_est_irq_status(priv, priv, priv->dev,
&priv->xstats, tx_cnt);
if (stmmac_fpe_supported(priv))
stmmac_fpe_irq_status(priv);
/* To handle GMAC own interrupts */
if ((priv->plat->has_gmac) || xmac) {
int status = stmmac_host_irq_status(priv, priv->hw, &priv->xstats);
if (unlikely(status)) {
/* For LPI we need to save the tx status */
if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
priv->tx_path_in_lpi_mode = true;
if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
priv->tx_path_in_lpi_mode = false;
}
for (queue = 0; queue < queues_count; queue++)
stmmac_host_mtl_irq_status(priv, priv->hw, queue);
/* PCS link status */
if (priv->hw->pcs &&
!(priv->plat->flags & STMMAC_FLAG_HAS_INTEGRATED_PCS)) {
if (priv->xstats.pcs_link)
netif_carrier_on(priv->dev);
else
netif_carrier_off(priv->dev);
}
stmmac_timestamp_interrupt(priv, priv);
}
}
/**
* stmmac_interrupt - main ISR
* @irq: interrupt number.
* @dev_id: to pass the net device pointer.
* Description: this is the main driver interrupt service routine.
* It can call:
* o DMA service routine (to manage incoming frame reception and transmission
* status)
* o Core interrupts to manage: remote wake-up, management counter, LPI
* interrupts.
*/
static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* Check ASP error if it isn't delivered via an individual IRQ */
if (priv->sfty_irq <= 0 && stmmac_safety_feat_interrupt(priv))
return IRQ_HANDLED;
/* To handle Common interrupts */
stmmac_common_interrupt(priv);
/* To handle DMA interrupts */
stmmac_dma_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_mac_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* To handle Common interrupts */
stmmac_common_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_safety_interrupt(int irq, void *dev_id)
{
struct net_device *dev = (struct net_device *)dev_id;
struct stmmac_priv *priv = netdev_priv(dev);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
/* Check if a fatal error happened */
stmmac_safety_feat_interrupt(priv);
return IRQ_HANDLED;
}
static irqreturn_t stmmac_msi_intr_tx(int irq, void *data)
{
struct stmmac_tx_queue *tx_q = (struct stmmac_tx_queue *)data;
struct stmmac_dma_conf *dma_conf;
int chan = tx_q->queue_index;
struct stmmac_priv *priv;
int status;
dma_conf = container_of(tx_q, struct stmmac_dma_conf, tx_queue[chan]);
priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
status = stmmac_napi_check(priv, chan, DMA_DIR_TX);
if (unlikely(status & tx_hard_error_bump_tc)) {
/* Try to bump up the dma threshold on this failure */
stmmac_bump_dma_threshold(priv, chan);
} else if (unlikely(status == tx_hard_error)) {
stmmac_tx_err(priv, chan);
}
return IRQ_HANDLED;
}
static irqreturn_t stmmac_msi_intr_rx(int irq, void *data)
{
struct stmmac_rx_queue *rx_q = (struct stmmac_rx_queue *)data;
struct stmmac_dma_conf *dma_conf;
int chan = rx_q->queue_index;
struct stmmac_priv *priv;
dma_conf = container_of(rx_q, struct stmmac_dma_conf, rx_queue[chan]);
priv = container_of(dma_conf, struct stmmac_priv, dma_conf);
/* Check if adapter is up */
if (test_bit(STMMAC_DOWN, &priv->state))
return IRQ_HANDLED;
stmmac_napi_check(priv, chan, DMA_DIR_RX);
return IRQ_HANDLED;
}
/**
* stmmac_ioctl - Entry point for the Ioctl
* @dev: Device pointer.
* @rq: An IOCTL specefic structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd: IOCTL command
* Description:
* Currently it supports the phy_mii_ioctl(...) and HW time stamping.
*/
static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
struct stmmac_priv *priv = netdev_priv (dev);
int ret = -EOPNOTSUPP;
if (!netif_running(dev))
return -EINVAL;
switch (cmd) {
case SIOCGMIIPHY:
case SIOCGMIIREG:
case SIOCSMIIREG:
ret = phylink_mii_ioctl(priv->phylink, rq, cmd);
break;
case SIOCSHWTSTAMP:
ret = stmmac_hwtstamp_set(dev, rq);
break;
case SIOCGHWTSTAMP:
ret = stmmac_hwtstamp_get(dev, rq);
break;
default:
break;
}
return ret;
}
static int stmmac_setup_tc_block_cb(enum tc_setup_type type, void *type_data,
void *cb_priv)
{
struct stmmac_priv *priv = cb_priv;
int ret = -EOPNOTSUPP;
if (!tc_cls_can_offload_and_chain0(priv->dev, type_data))
return ret;
__stmmac_disable_all_queues(priv);
switch (type) {
case TC_SETUP_CLSU32:
ret = stmmac_tc_setup_cls_u32(priv, priv, type_data);
break;
case TC_SETUP_CLSFLOWER:
ret = stmmac_tc_setup_cls(priv, priv, type_data);
break;
default:
break;
}
stmmac_enable_all_queues(priv);
return ret;
}
static LIST_HEAD(stmmac_block_cb_list);
static int stmmac_setup_tc(struct net_device *ndev, enum tc_setup_type type,
void *type_data)
{
struct stmmac_priv *priv = netdev_priv(ndev);
switch (type) {
case TC_QUERY_CAPS:
return stmmac_tc_query_caps(priv, priv, type_data);
case TC_SETUP_QDISC_MQPRIO:
return stmmac_tc_setup_mqprio(priv, priv, type_data);
case TC_SETUP_BLOCK:
return flow_block_cb_setup_simple(type_data,
&stmmac_block_cb_list,
stmmac_setup_tc_block_cb,
priv, priv, true);
case TC_SETUP_QDISC_CBS:
return stmmac_tc_setup_cbs(priv, priv, type_data);
case TC_SETUP_QDISC_TAPRIO:
return stmmac_tc_setup_taprio(priv, priv, type_data);
case TC_SETUP_QDISC_ETF:
return stmmac_tc_setup_etf(priv, priv, type_data);
default:
return -EOPNOTSUPP;
}
}
static u16 stmmac_select_queue(struct net_device *dev, struct sk_buff *skb,
struct net_device *sb_dev)
{
int gso = skb_shinfo(skb)->gso_type;
if (gso & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6 | SKB_GSO_UDP_L4)) {
/*
* There is no way to determine the number of TSO/USO
* capable Queues. Let's use always the Queue 0
* because if TSO/USO is supported then at least this
* one will be capable.
*/
return 0;
}
return netdev_pick_tx(dev, skb, NULL) % dev->real_num_tx_queues;
}
static int stmmac_set_mac_address(struct net_device *ndev, void *addr)
{
struct stmmac_priv *priv = netdev_priv(ndev);
int ret = 0;
ret = pm_runtime_resume_and_get(priv->device);
if (ret < 0)
return ret;
ret = eth_mac_addr(ndev, addr);
if (ret)
goto set_mac_error;
stmmac_set_umac_addr(priv, priv->hw, ndev->dev_addr, 0);
set_mac_error:
pm_runtime_put(priv->device);
return ret;
}
#ifdef CONFIG_DEBUG_FS
static struct dentry *stmmac_fs_dir;
static void sysfs_display_ring(void *head, int size, int extend_desc,
struct seq_file *seq, dma_addr_t dma_phy_addr)
{
struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
struct dma_desc *p = (struct dma_desc *)head;
unsigned int desc_size;
dma_addr_t dma_addr;
int i;
desc_size = extend_desc ? sizeof(*ep) : sizeof(*p);
for (i = 0; i < size; i++) {
dma_addr = dma_phy_addr + i * desc_size;
seq_printf(seq, "%d [%pad]: 0x%x 0x%x 0x%x 0x%x\n",
i, &dma_addr,
le32_to_cpu(p->des0), le32_to_cpu(p->des1),
le32_to_cpu(p->des2), le32_to_cpu(p->des3));
if (extend_desc)
p = &(++ep)->basic;
else
p++;
}
}
static int stmmac_rings_status_show(struct seq_file *seq, void *v)
{
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_count = priv->plat->rx_queues_to_use;
u32 tx_count = priv->plat->tx_queues_to_use;
u32 queue;
if ((dev->flags & IFF_UP) == 0)
return 0;
for (queue = 0; queue < rx_count; queue++) {
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
seq_printf(seq, "RX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_erx,
priv->dma_conf.dma_rx_size, 1, seq, rx_q->dma_rx_phy);
} else {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)rx_q->dma_rx,
priv->dma_conf.dma_rx_size, 0, seq, rx_q->dma_rx_phy);
}
}
for (queue = 0; queue < tx_count; queue++) {
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
seq_printf(seq, "TX Queue %d:\n", queue);
if (priv->extend_desc) {
seq_printf(seq, "Extended descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_etx,
priv->dma_conf.dma_tx_size, 1, seq, tx_q->dma_tx_phy);
} else if (!(tx_q->tbs & STMMAC_TBS_AVAIL)) {
seq_printf(seq, "Descriptor ring:\n");
sysfs_display_ring((void *)tx_q->dma_tx,
priv->dma_conf.dma_tx_size, 0, seq, tx_q->dma_tx_phy);
}
}
return 0;
}
DEFINE_SHOW_ATTRIBUTE(stmmac_rings_status);
static int stmmac_dma_cap_show(struct seq_file *seq, void *v)
{
static const char * const dwxgmac_timestamp_source[] = {
"None",
"Internal",
"External",
"Both",
};
static const char * const dwxgmac_safety_feature_desc[] = {
"No",
"All Safety Features with ECC and Parity",
"All Safety Features without ECC or Parity",
"All Safety Features with Parity Only",
"ECC Only",
"UNDEFINED",
"UNDEFINED",
"UNDEFINED",
};
struct net_device *dev = seq->private;
struct stmmac_priv *priv = netdev_priv(dev);
if (!priv->hw_cap_support) {
seq_printf(seq, "DMA HW features not supported\n");
return 0;
}
seq_printf(seq, "==============================\n");
seq_printf(seq, "\tDMA HW features\n");
seq_printf(seq, "==============================\n");
seq_printf(seq, "\t10/100 Mbps: %s\n",
(priv->dma_cap.mbps_10_100) ? "Y" : "N");
seq_printf(seq, "\t1000 Mbps: %s\n",
(priv->dma_cap.mbps_1000) ? "Y" : "N");
seq_printf(seq, "\tHalf duplex: %s\n",
(priv->dma_cap.half_duplex) ? "Y" : "N");
if (priv->plat->has_xgmac) {
seq_printf(seq,
"\tNumber of Additional MAC address registers: %d\n",
priv->dma_cap.multi_addr);
} else {
seq_printf(seq, "\tHash Filter: %s\n",
(priv->dma_cap.hash_filter) ? "Y" : "N");
seq_printf(seq, "\tMultiple MAC address registers: %s\n",
(priv->dma_cap.multi_addr) ? "Y" : "N");
}
seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfaces): %s\n",
(priv->dma_cap.pcs) ? "Y" : "N");
seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
(priv->dma_cap.sma_mdio) ? "Y" : "N");
seq_printf(seq, "\tPMT Remote wake up: %s\n",
(priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
seq_printf(seq, "\tPMT Magic Frame: %s\n",
(priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
seq_printf(seq, "\tRMON module: %s\n",
(priv->dma_cap.rmon) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
(priv->dma_cap.time_stamp) ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp: %s\n",
(priv->dma_cap.atime_stamp) ? "Y" : "N");
if (priv->plat->has_xgmac)
seq_printf(seq, "\tTimestamp System Time Source: %s\n",
dwxgmac_timestamp_source[priv->dma_cap.tssrc]);
seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE): %s\n",
(priv->dma_cap.eee) ? "Y" : "N");
seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
seq_printf(seq, "\tChecksum Offload in TX: %s\n",
(priv->dma_cap.tx_coe) ? "Y" : "N");
if (priv->synopsys_id >= DWMAC_CORE_4_00 ||
priv->plat->has_xgmac) {
seq_printf(seq, "\tIP Checksum Offload in RX: %s\n",
(priv->dma_cap.rx_coe) ? "Y" : "N");
} else {
seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
(priv->dma_cap.rx_coe_type1) ? "Y" : "N");
seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
(priv->dma_cap.rx_coe_type2) ? "Y" : "N");
seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
(priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
}
seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
priv->dma_cap.number_rx_channel);
seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
priv->dma_cap.number_tx_channel);
seq_printf(seq, "\tNumber of Additional RX queues: %d\n",
priv->dma_cap.number_rx_queues);
seq_printf(seq, "\tNumber of Additional TX queues: %d\n",
priv->dma_cap.number_tx_queues);
seq_printf(seq, "\tEnhanced descriptors: %s\n",
(priv->dma_cap.enh_desc) ? "Y" : "N");
seq_printf(seq, "\tTX Fifo Size: %d\n", priv->dma_cap.tx_fifo_size);
seq_printf(seq, "\tRX Fifo Size: %d\n", priv->dma_cap.rx_fifo_size);
seq_printf(seq, "\tHash Table Size: %lu\n", priv->dma_cap.hash_tb_sz ?
(BIT(priv->dma_cap.hash_tb_sz) << 5) : 0);
seq_printf(seq, "\tTSO: %s\n", priv->dma_cap.tsoen ? "Y" : "N");
seq_printf(seq, "\tNumber of PPS Outputs: %d\n",
priv->dma_cap.pps_out_num);
seq_printf(seq, "\tSafety Features: %s\n",
dwxgmac_safety_feature_desc[priv->dma_cap.asp]);
seq_printf(seq, "\tFlexible RX Parser: %s\n",
priv->dma_cap.frpsel ? "Y" : "N");
seq_printf(seq, "\tEnhanced Addressing: %d\n",
priv->dma_cap.host_dma_width);
seq_printf(seq, "\tReceive Side Scaling: %s\n",
priv->dma_cap.rssen ? "Y" : "N");
seq_printf(seq, "\tVLAN Hash Filtering: %s\n",
priv->dma_cap.vlhash ? "Y" : "N");
seq_printf(seq, "\tSplit Header: %s\n",
priv->dma_cap.sphen ? "Y" : "N");
seq_printf(seq, "\tVLAN TX Insertion: %s\n",
priv->dma_cap.vlins ? "Y" : "N");
seq_printf(seq, "\tDouble VLAN: %s\n",
priv->dma_cap.dvlan ? "Y" : "N");
seq_printf(seq, "\tNumber of L3/L4 Filters: %d\n",
priv->dma_cap.l3l4fnum);
seq_printf(seq, "\tARP Offloading: %s\n",
priv->dma_cap.arpoffsel ? "Y" : "N");
seq_printf(seq, "\tEnhancements to Scheduled Traffic (EST): %s\n",
priv->dma_cap.estsel ? "Y" : "N");
seq_printf(seq, "\tFrame Preemption (FPE): %s\n",
priv->dma_cap.fpesel ? "Y" : "N");
seq_printf(seq, "\tTime-Based Scheduling (TBS): %s\n",
priv->dma_cap.tbssel ? "Y" : "N");
seq_printf(seq, "\tNumber of DMA Channels Enabled for TBS: %d\n",
priv->dma_cap.tbs_ch_num);
seq_printf(seq, "\tPer-Stream Filtering: %s\n",
priv->dma_cap.sgfsel ? "Y" : "N");
seq_printf(seq, "\tTX Timestamp FIFO Depth: %lu\n",
BIT(priv->dma_cap.ttsfd) >> 1);
seq_printf(seq, "\tNumber of Traffic Classes: %d\n",
priv->dma_cap.numtc);
seq_printf(seq, "\tDCB Feature: %s\n",
priv->dma_cap.dcben ? "Y" : "N");
seq_printf(seq, "\tIEEE 1588 High Word Register: %s\n",
priv->dma_cap.advthword ? "Y" : "N");
seq_printf(seq, "\tPTP Offload: %s\n",
priv->dma_cap.ptoen ? "Y" : "N");
seq_printf(seq, "\tOne-Step Timestamping: %s\n",
priv->dma_cap.osten ? "Y" : "N");
seq_printf(seq, "\tPriority-Based Flow Control: %s\n",
priv->dma_cap.pfcen ? "Y" : "N");
seq_printf(seq, "\tNumber of Flexible RX Parser Instructions: %lu\n",
BIT(priv->dma_cap.frpes) << 6);
seq_printf(seq, "\tNumber of Flexible RX Parser Parsable Bytes: %lu\n",
BIT(priv->dma_cap.frpbs) << 6);
seq_printf(seq, "\tParallel Instruction Processor Engines: %d\n",
priv->dma_cap.frppipe_num);
seq_printf(seq, "\tNumber of Extended VLAN Tag Filters: %lu\n",
priv->dma_cap.nrvf_num ?
(BIT(priv->dma_cap.nrvf_num) << 1) : 0);
seq_printf(seq, "\tWidth of the Time Interval Field in GCL: %d\n",
priv->dma_cap.estwid ? 4 * priv->dma_cap.estwid + 12 : 0);
seq_printf(seq, "\tDepth of GCL: %lu\n",
priv->dma_cap.estdep ? (BIT(priv->dma_cap.estdep) << 5) : 0);
seq_printf(seq, "\tQueue/Channel-Based VLAN Tag Insertion on TX: %s\n",
priv->dma_cap.cbtisel ? "Y" : "N");
seq_printf(seq, "\tNumber of Auxiliary Snapshot Inputs: %d\n",
priv->dma_cap.aux_snapshot_n);
seq_printf(seq, "\tOne-Step Timestamping for PTP over UDP/IP: %s\n",
priv->dma_cap.pou_ost_en ? "Y" : "N");
seq_printf(seq, "\tEnhanced DMA: %s\n",
priv->dma_cap.edma ? "Y" : "N");
seq_printf(seq, "\tDifferent Descriptor Cache: %s\n",
priv->dma_cap.ediffc ? "Y" : "N");
seq_printf(seq, "\tVxLAN/NVGRE: %s\n",
priv->dma_cap.vxn ? "Y" : "N");
seq_printf(seq, "\tDebug Memory Interface: %s\n",
priv->dma_cap.dbgmem ? "Y" : "N");
seq_printf(seq, "\tNumber of Policing Counters: %lu\n",
priv->dma_cap.pcsel ? BIT(priv->dma_cap.pcsel + 3) : 0);
return 0;
}
DEFINE_SHOW_ATTRIBUTE(stmmac_dma_cap);
/* Use network device events to rename debugfs file entries.
*/
static int stmmac_device_event(struct notifier_block *unused,
unsigned long event, void *ptr)
{
struct net_device *dev = netdev_notifier_info_to_dev(ptr);
struct stmmac_priv *priv = netdev_priv(dev);
if (dev->netdev_ops != &stmmac_netdev_ops)
goto done;
switch (event) {
case NETDEV_CHANGENAME:
debugfs_change_name(priv->dbgfs_dir, "%s", dev->name);
break;
}
done:
return NOTIFY_DONE;
}
static struct notifier_block stmmac_notifier = {
.notifier_call = stmmac_device_event,
};
static void stmmac_init_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
rtnl_lock();
/* Create per netdev entries */
priv->dbgfs_dir = debugfs_create_dir(dev->name, stmmac_fs_dir);
/* Entry to report DMA RX/TX rings */
debugfs_create_file("descriptors_status", 0444, priv->dbgfs_dir, dev,
&stmmac_rings_status_fops);
/* Entry to report the DMA HW features */
debugfs_create_file("dma_cap", 0444, priv->dbgfs_dir, dev,
&stmmac_dma_cap_fops);
rtnl_unlock();
}
static void stmmac_exit_fs(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
debugfs_remove_recursive(priv->dbgfs_dir);
}
#endif /* CONFIG_DEBUG_FS */
static u32 stmmac_vid_crc32_le(__le16 vid_le)
{
unsigned char *data = (unsigned char *)&vid_le;
unsigned char data_byte = 0;
u32 crc = ~0x0;
u32 temp = 0;
int i, bits;
bits = get_bitmask_order(VLAN_VID_MASK);
for (i = 0; i < bits; i++) {
if ((i % 8) == 0)
data_byte = data[i / 8];
temp = ((crc & 1) ^ data_byte) & 1;
crc >>= 1;
data_byte >>= 1;
if (temp)
crc ^= 0xedb88320;
}
return crc;
}
static int stmmac_vlan_update(struct stmmac_priv *priv, bool is_double)
{
u32 crc, hash = 0;
u16 pmatch = 0;
int count = 0;
u16 vid = 0;
for_each_set_bit(vid, priv->active_vlans, VLAN_N_VID) {
__le16 vid_le = cpu_to_le16(vid);
crc = bitrev32(~stmmac_vid_crc32_le(vid_le)) >> 28;
hash |= (1 << crc);
count++;
}
if (!priv->dma_cap.vlhash) {
if (count > 2) /* VID = 0 always passes filter */
return -EOPNOTSUPP;
pmatch = vid;
hash = 0;
}
return stmmac_update_vlan_hash(priv, priv->hw, hash, pmatch, is_double);
}
static int stmmac_vlan_rx_add_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct stmmac_priv *priv = netdev_priv(ndev);
bool is_double = false;
int ret;
ret = pm_runtime_resume_and_get(priv->device);
if (ret < 0)
return ret;
if (be16_to_cpu(proto) == ETH_P_8021AD)
is_double = true;
set_bit(vid, priv->active_vlans);
ret = stmmac_vlan_update(priv, is_double);
if (ret) {
clear_bit(vid, priv->active_vlans);
goto err_pm_put;
}
if (priv->hw->num_vlan) {
ret = stmmac_add_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
if (ret)
goto err_pm_put;
}
err_pm_put:
pm_runtime_put(priv->device);
return ret;
}
static int stmmac_vlan_rx_kill_vid(struct net_device *ndev, __be16 proto, u16 vid)
{
struct stmmac_priv *priv = netdev_priv(ndev);
bool is_double = false;
int ret;
ret = pm_runtime_resume_and_get(priv->device);
if (ret < 0)
return ret;
if (be16_to_cpu(proto) == ETH_P_8021AD)
is_double = true;
clear_bit(vid, priv->active_vlans);
if (priv->hw->num_vlan) {
ret = stmmac_del_hw_vlan_rx_fltr(priv, ndev, priv->hw, proto, vid);
if (ret)
goto del_vlan_error;
}
ret = stmmac_vlan_update(priv, is_double);
del_vlan_error:
pm_runtime_put(priv->device);
return ret;
}
static int stmmac_bpf(struct net_device *dev, struct netdev_bpf *bpf)
{
struct stmmac_priv *priv = netdev_priv(dev);
switch (bpf->command) {
case XDP_SETUP_PROG:
return stmmac_xdp_set_prog(priv, bpf->prog, bpf->extack);
case XDP_SETUP_XSK_POOL:
return stmmac_xdp_setup_pool(priv, bpf->xsk.pool,
bpf->xsk.queue_id);
default:
return -EOPNOTSUPP;
}
}
static int stmmac_xdp_xmit(struct net_device *dev, int num_frames,
struct xdp_frame **frames, u32 flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
int cpu = smp_processor_id();
struct netdev_queue *nq;
int i, nxmit = 0;
int queue;
if (unlikely(test_bit(STMMAC_DOWN, &priv->state)))
return -ENETDOWN;
if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
return -EINVAL;
queue = stmmac_xdp_get_tx_queue(priv, cpu);
nq = netdev_get_tx_queue(priv->dev, queue);
__netif_tx_lock(nq, cpu);
/* Avoids TX time-out as we are sharing with slow path */
txq_trans_cond_update(nq);
for (i = 0; i < num_frames; i++) {
int res;
res = stmmac_xdp_xmit_xdpf(priv, queue, frames[i], true);
if (res == STMMAC_XDP_CONSUMED)
break;
nxmit++;
}
if (flags & XDP_XMIT_FLUSH) {
stmmac_flush_tx_descriptors(priv, queue);
stmmac_tx_timer_arm(priv, queue);
}
__netif_tx_unlock(nq);
return nxmit;
}
void stmmac_disable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
stmmac_stop_rx_dma(priv, queue);
__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
}
void stmmac_enable_rx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
u32 buf_size;
int ret;
ret = __alloc_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
if (ret) {
netdev_err(priv->dev, "Failed to alloc RX desc.\n");
return;
}
ret = __init_dma_rx_desc_rings(priv, &priv->dma_conf, queue, GFP_KERNEL);
if (ret) {
__free_dma_rx_desc_resources(priv, &priv->dma_conf, queue);
netdev_err(priv->dev, "Failed to init RX desc.\n");
return;
}
stmmac_reset_rx_queue(priv, queue);
stmmac_clear_rx_descriptors(priv, &priv->dma_conf, queue);
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, rx_q->queue_index);
rx_q->rx_tail_addr = rx_q->dma_rx_phy + (rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, rx_q->queue_index);
if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
rx_q->queue_index);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_conf.dma_buf_sz,
rx_q->queue_index);
}
stmmac_start_rx_dma(priv, queue);
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 1, 0);
spin_unlock_irqrestore(&ch->lock, flags);
}
void stmmac_disable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
spin_lock_irqsave(&ch->lock, flags);
stmmac_disable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
stmmac_stop_tx_dma(priv, queue);
__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
}
void stmmac_enable_tx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
struct stmmac_channel *ch = &priv->channel[queue];
unsigned long flags;
int ret;
ret = __alloc_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
if (ret) {
netdev_err(priv->dev, "Failed to alloc TX desc.\n");
return;
}
ret = __init_dma_tx_desc_rings(priv, &priv->dma_conf, queue);
if (ret) {
__free_dma_tx_desc_resources(priv, &priv->dma_conf, queue);
netdev_err(priv->dev, "Failed to init TX desc.\n");
return;
}
stmmac_reset_tx_queue(priv, queue);
stmmac_clear_tx_descriptors(priv, &priv->dma_conf, queue);
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, tx_q->queue_index);
if (tx_q->tbs & STMMAC_TBS_AVAIL)
stmmac_enable_tbs(priv, priv->ioaddr, 1, tx_q->queue_index);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, tx_q->queue_index);
stmmac_start_tx_dma(priv, queue);
spin_lock_irqsave(&ch->lock, flags);
stmmac_enable_dma_irq(priv, priv->ioaddr, queue, 0, 1);
spin_unlock_irqrestore(&ch->lock, flags);
}
void stmmac_xdp_release(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 chan;
/* Ensure tx function is not running */
netif_tx_disable(dev);
/* Disable NAPI process */
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
/* Free the IRQ lines */
stmmac_free_irq(dev, REQ_IRQ_ERR_ALL, 0);
/* Stop TX/RX DMA channels */
stmmac_stop_all_dma(priv);
/* Release and free the Rx/Tx resources */
free_dma_desc_resources(priv, &priv->dma_conf);
/* Disable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, false);
/* set trans_start so we don't get spurious
* watchdogs during reset
*/
netif_trans_update(dev);
netif_carrier_off(dev);
}
int stmmac_xdp_open(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 dma_csr_ch = max(rx_cnt, tx_cnt);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
u32 buf_size;
bool sph_en;
u32 chan;
int ret;
ret = alloc_dma_desc_resources(priv, &priv->dma_conf);
if (ret < 0) {
netdev_err(dev, "%s: DMA descriptors allocation failed\n",
__func__);
goto dma_desc_error;
}
ret = init_dma_desc_rings(dev, &priv->dma_conf, GFP_KERNEL);
if (ret < 0) {
netdev_err(dev, "%s: DMA descriptors initialization failed\n",
__func__);
goto init_error;
}
stmmac_reset_queues_param(priv);
/* DMA CSR Channel configuration */
for (chan = 0; chan < dma_csr_ch; chan++) {
stmmac_init_chan(priv, priv->ioaddr, priv->plat->dma_cfg, chan);
stmmac_disable_dma_irq(priv, priv->ioaddr, chan, 1, 1);
}
/* Adjust Split header */
sph_en = (priv->hw->rx_csum > 0) && priv->sph;
/* DMA RX Channel Configuration */
for (chan = 0; chan < rx_cnt; chan++) {
rx_q = &priv->dma_conf.rx_queue[chan];
stmmac_init_rx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
rx_q->dma_rx_phy, chan);
rx_q->rx_tail_addr = rx_q->dma_rx_phy +
(rx_q->buf_alloc_num *
sizeof(struct dma_desc));
stmmac_set_rx_tail_ptr(priv, priv->ioaddr,
rx_q->rx_tail_addr, chan);
if (rx_q->xsk_pool && rx_q->buf_alloc_num) {
buf_size = xsk_pool_get_rx_frame_size(rx_q->xsk_pool);
stmmac_set_dma_bfsize(priv, priv->ioaddr,
buf_size,
rx_q->queue_index);
} else {
stmmac_set_dma_bfsize(priv, priv->ioaddr,
priv->dma_conf.dma_buf_sz,
rx_q->queue_index);
}
stmmac_enable_sph(priv, priv->ioaddr, sph_en, chan);
}
/* DMA TX Channel Configuration */
for (chan = 0; chan < tx_cnt; chan++) {
tx_q = &priv->dma_conf.tx_queue[chan];
stmmac_init_tx_chan(priv, priv->ioaddr, priv->plat->dma_cfg,
tx_q->dma_tx_phy, chan);
tx_q->tx_tail_addr = tx_q->dma_tx_phy;
stmmac_set_tx_tail_ptr(priv, priv->ioaddr,
tx_q->tx_tail_addr, chan);
hrtimer_init(&tx_q->txtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
tx_q->txtimer.function = stmmac_tx_timer;
}
/* Enable the MAC Rx/Tx */
stmmac_mac_set(priv, priv->ioaddr, true);
/* Start Rx & Tx DMA Channels */
stmmac_start_all_dma(priv);
ret = stmmac_request_irq(dev);
if (ret)
goto irq_error;
/* Enable NAPI process*/
stmmac_enable_all_queues(priv);
netif_carrier_on(dev);
netif_tx_start_all_queues(dev);
stmmac_enable_all_dma_irq(priv);
return 0;
irq_error:
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
stmmac_hw_teardown(dev);
init_error:
free_dma_desc_resources(priv, &priv->dma_conf);
dma_desc_error:
return ret;
}
int stmmac_xsk_wakeup(struct net_device *dev, u32 queue, u32 flags)
{
struct stmmac_priv *priv = netdev_priv(dev);
struct stmmac_rx_queue *rx_q;
struct stmmac_tx_queue *tx_q;
struct stmmac_channel *ch;
if (test_bit(STMMAC_DOWN, &priv->state) ||
!netif_carrier_ok(priv->dev))
return -ENETDOWN;
if (!stmmac_xdp_is_enabled(priv))
return -EINVAL;
if (queue >= priv->plat->rx_queues_to_use ||
queue >= priv->plat->tx_queues_to_use)
return -EINVAL;
rx_q = &priv->dma_conf.rx_queue[queue];
tx_q = &priv->dma_conf.tx_queue[queue];
ch = &priv->channel[queue];
if (!rx_q->xsk_pool && !tx_q->xsk_pool)
return -EINVAL;
if (!napi_if_scheduled_mark_missed(&ch->rxtx_napi)) {
/* EQoS does not have per-DMA channel SW interrupt,
* so we schedule RX Napi straight-away.
*/
if (likely(napi_schedule_prep(&ch->rxtx_napi)))
__napi_schedule(&ch->rxtx_napi);
}
return 0;
}
static void stmmac_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 rx_cnt = priv->plat->rx_queues_to_use;
unsigned int start;
int q;
for (q = 0; q < tx_cnt; q++) {
struct stmmac_txq_stats *txq_stats = &priv->xstats.txq_stats[q];
u64 tx_packets;
u64 tx_bytes;
do {
start = u64_stats_fetch_begin(&txq_stats->q_syncp);
tx_bytes = u64_stats_read(&txq_stats->q.tx_bytes);
} while (u64_stats_fetch_retry(&txq_stats->q_syncp, start));
do {
start = u64_stats_fetch_begin(&txq_stats->napi_syncp);
tx_packets = u64_stats_read(&txq_stats->napi.tx_packets);
} while (u64_stats_fetch_retry(&txq_stats->napi_syncp, start));
stats->tx_packets += tx_packets;
stats->tx_bytes += tx_bytes;
}
for (q = 0; q < rx_cnt; q++) {
struct stmmac_rxq_stats *rxq_stats = &priv->xstats.rxq_stats[q];
u64 rx_packets;
u64 rx_bytes;
do {
start = u64_stats_fetch_begin(&rxq_stats->napi_syncp);
rx_packets = u64_stats_read(&rxq_stats->napi.rx_packets);
rx_bytes = u64_stats_read(&rxq_stats->napi.rx_bytes);
} while (u64_stats_fetch_retry(&rxq_stats->napi_syncp, start));
stats->rx_packets += rx_packets;
stats->rx_bytes += rx_bytes;
}
stats->rx_dropped = priv->xstats.rx_dropped;
stats->rx_errors = priv->xstats.rx_errors;
stats->tx_dropped = priv->xstats.tx_dropped;
stats->tx_errors = priv->xstats.tx_errors;
stats->tx_carrier_errors = priv->xstats.tx_losscarrier + priv->xstats.tx_carrier;
stats->collisions = priv->xstats.tx_collision + priv->xstats.rx_collision;
stats->rx_length_errors = priv->xstats.rx_length;
stats->rx_crc_errors = priv->xstats.rx_crc_errors;
stats->rx_over_errors = priv->xstats.rx_overflow_cntr;
stats->rx_missed_errors = priv->xstats.rx_missed_cntr;
}
static const struct net_device_ops stmmac_netdev_ops = {
.ndo_open = stmmac_open,
.ndo_start_xmit = stmmac_xmit,
.ndo_stop = stmmac_release,
.ndo_change_mtu = stmmac_change_mtu,
.ndo_fix_features = stmmac_fix_features,
.ndo_set_features = stmmac_set_features,
.ndo_set_rx_mode = stmmac_set_rx_mode,
.ndo_tx_timeout = stmmac_tx_timeout,
.ndo_eth_ioctl = stmmac_ioctl,
.ndo_get_stats64 = stmmac_get_stats64,
.ndo_setup_tc = stmmac_setup_tc,
.ndo_select_queue = stmmac_select_queue,
.ndo_set_mac_address = stmmac_set_mac_address,
.ndo_vlan_rx_add_vid = stmmac_vlan_rx_add_vid,
.ndo_vlan_rx_kill_vid = stmmac_vlan_rx_kill_vid,
.ndo_bpf = stmmac_bpf,
.ndo_xdp_xmit = stmmac_xdp_xmit,
.ndo_xsk_wakeup = stmmac_xsk_wakeup,
};
static void stmmac_reset_subtask(struct stmmac_priv *priv)
{
if (!test_and_clear_bit(STMMAC_RESET_REQUESTED, &priv->state))
return;
if (test_bit(STMMAC_DOWN, &priv->state))
return;
netdev_err(priv->dev, "Reset adapter.\n");
rtnl_lock();
netif_trans_update(priv->dev);
while (test_and_set_bit(STMMAC_RESETING, &priv->state))
usleep_range(1000, 2000);
set_bit(STMMAC_DOWN, &priv->state);
dev_close(priv->dev);
dev_open(priv->dev, NULL);
clear_bit(STMMAC_DOWN, &priv->state);
clear_bit(STMMAC_RESETING, &priv->state);
rtnl_unlock();
}
static void stmmac_service_task(struct work_struct *work)
{
struct stmmac_priv *priv = container_of(work, struct stmmac_priv,
service_task);
stmmac_reset_subtask(priv);
clear_bit(STMMAC_SERVICE_SCHED, &priv->state);
}
/**
* stmmac_hw_init - Init the MAC device
* @priv: driver private structure
* Description: this function is to configure the MAC device according to
* some platform parameters or the HW capability register. It prepares the
* driver to use either ring or chain modes and to setup either enhanced or
* normal descriptors.
*/
static int stmmac_hw_init(struct stmmac_priv *priv)
{
int ret;
/* dwmac-sun8i only work in chain mode */
if (priv->plat->flags & STMMAC_FLAG_HAS_SUN8I)
chain_mode = 1;
priv->chain_mode = chain_mode;
/* Initialize HW Interface */
ret = stmmac_hwif_init(priv);
if (ret)
return ret;
/* Get the HW capability (new GMAC newer than 3.50a) */
priv->hw_cap_support = stmmac_get_hw_features(priv);
if (priv->hw_cap_support) {
dev_info(priv->device, "DMA HW capability register supported\n");
/* We can override some gmac/dma configuration fields: e.g.
* enh_desc, tx_coe (e.g. that are passed through the
* platform) with the values from the HW capability
* register (if supported).
*/
priv->plat->enh_desc = priv->dma_cap.enh_desc;
priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up &&
!(priv->plat->flags & STMMAC_FLAG_USE_PHY_WOL);
priv->hw->pmt = priv->plat->pmt;
if (priv->dma_cap.hash_tb_sz) {
priv->hw->multicast_filter_bins =
(BIT(priv->dma_cap.hash_tb_sz) << 5);
priv->hw->mcast_bits_log2 =
ilog2(priv->hw->multicast_filter_bins);
}
/* TXCOE doesn't work in thresh DMA mode */
if (priv->plat->force_thresh_dma_mode)
priv->plat->tx_coe = 0;
else
priv->plat->tx_coe = priv->dma_cap.tx_coe;
/* In case of GMAC4 rx_coe is from HW cap register. */
priv->plat->rx_coe = priv->dma_cap.rx_coe;
if (priv->dma_cap.rx_coe_type2)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
else if (priv->dma_cap.rx_coe_type1)
priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
} else {
dev_info(priv->device, "No HW DMA feature register supported\n");
}
if (priv->plat->rx_coe) {
priv->hw->rx_csum = priv->plat->rx_coe;
dev_info(priv->device, "RX Checksum Offload Engine supported\n");
if (priv->synopsys_id < DWMAC_CORE_4_00)
dev_info(priv->device, "COE Type %d\n", priv->hw->rx_csum);
}
if (priv->plat->tx_coe)
dev_info(priv->device, "TX Checksum insertion supported\n");
if (priv->plat->pmt) {
dev_info(priv->device, "Wake-Up On Lan supported\n");
device_set_wakeup_capable(priv->device, 1);
}
if (priv->dma_cap.tsoen)
dev_info(priv->device, "TSO supported\n");
if (priv->dma_cap.number_rx_queues &&
priv->plat->rx_queues_to_use > priv->dma_cap.number_rx_queues) {
dev_warn(priv->device,
"Number of Rx queues (%u) exceeds dma capability\n",
priv->plat->rx_queues_to_use);
priv->plat->rx_queues_to_use = priv->dma_cap.number_rx_queues;
}
if (priv->dma_cap.number_tx_queues &&
priv->plat->tx_queues_to_use > priv->dma_cap.number_tx_queues) {
dev_warn(priv->device,
"Number of Tx queues (%u) exceeds dma capability\n",
priv->plat->tx_queues_to_use);
priv->plat->tx_queues_to_use = priv->dma_cap.number_tx_queues;
}
if (priv->dma_cap.rx_fifo_size &&
priv->plat->rx_fifo_size > priv->dma_cap.rx_fifo_size) {
dev_warn(priv->device,
"Rx FIFO size (%u) exceeds dma capability\n",
priv->plat->rx_fifo_size);
priv->plat->rx_fifo_size = priv->dma_cap.rx_fifo_size;
}
if (priv->dma_cap.tx_fifo_size &&
priv->plat->tx_fifo_size > priv->dma_cap.tx_fifo_size) {
dev_warn(priv->device,
"Tx FIFO size (%u) exceeds dma capability\n",
priv->plat->tx_fifo_size);
priv->plat->tx_fifo_size = priv->dma_cap.tx_fifo_size;
}
priv->hw->vlan_fail_q_en =
(priv->plat->flags & STMMAC_FLAG_VLAN_FAIL_Q_EN);
priv->hw->vlan_fail_q = priv->plat->vlan_fail_q;
/* Run HW quirks, if any */
if (priv->hwif_quirks) {
ret = priv->hwif_quirks(priv);
if (ret)
return ret;
}
/* Rx Watchdog is available in the COREs newer than the 3.40.
* In some case, for example on bugged HW this feature
* has to be disable and this can be done by passing the
* riwt_off field from the platform.
*/
if (((priv->synopsys_id >= DWMAC_CORE_3_50) ||
(priv->plat->has_xgmac)) && (!priv->plat->riwt_off)) {
priv->use_riwt = 1;
dev_info(priv->device,
"Enable RX Mitigation via HW Watchdog Timer\n");
}
return 0;
}
static void stmmac_napi_add(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 queue, maxq;
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
ch->priv_data = priv;
ch->index = queue;
spin_lock_init(&ch->lock);
if (queue < priv->plat->rx_queues_to_use) {
netif_napi_add(dev, &ch->rx_napi, stmmac_napi_poll_rx);
}
if (queue < priv->plat->tx_queues_to_use) {
netif_napi_add_tx(dev, &ch->tx_napi,
stmmac_napi_poll_tx);
}
if (queue < priv->plat->rx_queues_to_use &&
queue < priv->plat->tx_queues_to_use) {
netif_napi_add(dev, &ch->rxtx_napi,
stmmac_napi_poll_rxtx);
}
}
}
static void stmmac_napi_del(struct net_device *dev)
{
struct stmmac_priv *priv = netdev_priv(dev);
u32 queue, maxq;
maxq = max(priv->plat->rx_queues_to_use, priv->plat->tx_queues_to_use);
for (queue = 0; queue < maxq; queue++) {
struct stmmac_channel *ch = &priv->channel[queue];
if (queue < priv->plat->rx_queues_to_use)
netif_napi_del(&ch->rx_napi);
if (queue < priv->plat->tx_queues_to_use)
netif_napi_del(&ch->tx_napi);
if (queue < priv->plat->rx_queues_to_use &&
queue < priv->plat->tx_queues_to_use) {
netif_napi_del(&ch->rxtx_napi);
}
}
}
int stmmac_reinit_queues(struct net_device *dev, u32 rx_cnt, u32 tx_cnt)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret = 0, i;
if (netif_running(dev))
stmmac_release(dev);
stmmac_napi_del(dev);
priv->plat->rx_queues_to_use = rx_cnt;
priv->plat->tx_queues_to_use = tx_cnt;
if (!netif_is_rxfh_configured(dev))
for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
priv->rss.table[i] = ethtool_rxfh_indir_default(i,
rx_cnt);
stmmac_napi_add(dev);
if (netif_running(dev))
ret = stmmac_open(dev);
return ret;
}
int stmmac_reinit_ringparam(struct net_device *dev, u32 rx_size, u32 tx_size)
{
struct stmmac_priv *priv = netdev_priv(dev);
int ret = 0;
if (netif_running(dev))
stmmac_release(dev);
priv->dma_conf.dma_rx_size = rx_size;
priv->dma_conf.dma_tx_size = tx_size;
if (netif_running(dev))
ret = stmmac_open(dev);
return ret;
}
static int stmmac_xdp_rx_timestamp(const struct xdp_md *_ctx, u64 *timestamp)
{
const struct stmmac_xdp_buff *ctx = (void *)_ctx;
struct dma_desc *desc_contains_ts = ctx->desc;
struct stmmac_priv *priv = ctx->priv;
struct dma_desc *ndesc = ctx->ndesc;
struct dma_desc *desc = ctx->desc;
u64 ns = 0;
if (!priv->hwts_rx_en)
return -ENODATA;
/* For GMAC4, the valid timestamp is from CTX next desc. */
if (priv->plat->has_gmac4 || priv->plat->has_xgmac)
desc_contains_ts = ndesc;
/* Check if timestamp is available */
if (stmmac_get_rx_timestamp_status(priv, desc, ndesc, priv->adv_ts)) {
stmmac_get_timestamp(priv, desc_contains_ts, priv->adv_ts, &ns);
ns -= priv->plat->cdc_error_adj;
*timestamp = ns_to_ktime(ns);
return 0;
}
return -ENODATA;
}
static const struct xdp_metadata_ops stmmac_xdp_metadata_ops = {
.xmo_rx_timestamp = stmmac_xdp_rx_timestamp,
};
/**
* stmmac_dvr_probe
* @device: device pointer
* @plat_dat: platform data pointer
* @res: stmmac resource pointer
* Description: this is the main probe function used to
* call the alloc_etherdev, allocate the priv structure.
* Return:
* returns 0 on success, otherwise errno.
*/
int stmmac_dvr_probe(struct device *device,
struct plat_stmmacenet_data *plat_dat,
struct stmmac_resources *res)
{
struct net_device *ndev = NULL;
struct stmmac_priv *priv;
u32 rxq;
int i, ret = 0;
ndev = devm_alloc_etherdev_mqs(device, sizeof(struct stmmac_priv),
MTL_MAX_TX_QUEUES, MTL_MAX_RX_QUEUES);
if (!ndev)
return -ENOMEM;
SET_NETDEV_DEV(ndev, device);
priv = netdev_priv(ndev);
priv->device = device;
priv->dev = ndev;
for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
u64_stats_init(&priv->xstats.rxq_stats[i].napi_syncp);
for (i = 0; i < MTL_MAX_TX_QUEUES; i++) {
u64_stats_init(&priv->xstats.txq_stats[i].q_syncp);
u64_stats_init(&priv->xstats.txq_stats[i].napi_syncp);
}
priv->xstats.pcpu_stats =
devm_netdev_alloc_pcpu_stats(device, struct stmmac_pcpu_stats);
if (!priv->xstats.pcpu_stats)
return -ENOMEM;
stmmac_set_ethtool_ops(ndev);
priv->pause = pause;
priv->plat = plat_dat;
priv->ioaddr = res->addr;
priv->dev->base_addr = (unsigned long)res->addr;
priv->plat->dma_cfg->multi_msi_en =
(priv->plat->flags & STMMAC_FLAG_MULTI_MSI_EN);
priv->dev->irq = res->irq;
priv->wol_irq = res->wol_irq;
priv->lpi_irq = res->lpi_irq;
priv->sfty_irq = res->sfty_irq;
priv->sfty_ce_irq = res->sfty_ce_irq;
priv->sfty_ue_irq = res->sfty_ue_irq;
for (i = 0; i < MTL_MAX_RX_QUEUES; i++)
priv->rx_irq[i] = res->rx_irq[i];
for (i = 0; i < MTL_MAX_TX_QUEUES; i++)
priv->tx_irq[i] = res->tx_irq[i];
if (!is_zero_ether_addr(res->mac))
eth_hw_addr_set(priv->dev, res->mac);
dev_set_drvdata(device, priv->dev);
/* Verify driver arguments */
stmmac_verify_args();
priv->af_xdp_zc_qps = bitmap_zalloc(MTL_MAX_TX_QUEUES, GFP_KERNEL);
if (!priv->af_xdp_zc_qps)
return -ENOMEM;
/* Allocate workqueue */
priv->wq = create_singlethread_workqueue("stmmac_wq");
if (!priv->wq) {
dev_err(priv->device, "failed to create workqueue\n");
ret = -ENOMEM;
goto error_wq_init;
}
INIT_WORK(&priv->service_task, stmmac_service_task);
timer_setup(&priv->eee_ctrl_timer, stmmac_eee_ctrl_timer, 0);
/* Override with kernel parameters if supplied XXX CRS XXX
* this needs to have multiple instances
*/
if ((phyaddr >= 0) && (phyaddr <= 31))
priv->plat->phy_addr = phyaddr;
if (priv->plat->stmmac_rst) {
ret = reset_control_assert(priv->plat->stmmac_rst);
reset_control_deassert(priv->plat->stmmac_rst);
/* Some reset controllers have only reset callback instead of
* assert + deassert callbacks pair.
*/
if (ret == -ENOTSUPP)
reset_control_reset(priv->plat->stmmac_rst);
}
ret = reset_control_deassert(priv->plat->stmmac_ahb_rst);
if (ret == -ENOTSUPP)
dev_err(priv->device, "unable to bring out of ahb reset: %pe\n",
ERR_PTR(ret));
/* Wait a bit for the reset to take effect */
udelay(10);
/* Init MAC and get the capabilities */
ret = stmmac_hw_init(priv);
if (ret)
goto error_hw_init;
/* Only DWMAC core version 5.20 onwards supports HW descriptor prefetch.
*/
if (priv->synopsys_id < DWMAC_CORE_5_20)
priv->plat->dma_cfg->dche = false;
stmmac_check_ether_addr(priv);
ndev->netdev_ops = &stmmac_netdev_ops;
ndev->xdp_metadata_ops = &stmmac_xdp_metadata_ops;
ndev->xsk_tx_metadata_ops = &stmmac_xsk_tx_metadata_ops;
ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
NETIF_F_RXCSUM;
ndev->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT |
NETDEV_XDP_ACT_XSK_ZEROCOPY;
ret = stmmac_tc_init(priv, priv);
if (!ret) {
ndev->hw_features |= NETIF_F_HW_TC;
}
if ((priv->plat->flags & STMMAC_FLAG_TSO_EN) && (priv->dma_cap.tsoen)) {
ndev->hw_features |= NETIF_F_TSO | NETIF_F_TSO6;
if (priv->plat->has_gmac4)
ndev->hw_features |= NETIF_F_GSO_UDP_L4;
priv->tso = true;
dev_info(priv->device, "TSO feature enabled\n");
}
if (priv->dma_cap.sphen &&
!(priv->plat->flags & STMMAC_FLAG_SPH_DISABLE)) {
ndev->hw_features |= NETIF_F_GRO;
priv->sph_cap = true;
priv->sph = priv->sph_cap;
dev_info(priv->device, "SPH feature enabled\n");
}
/* Ideally our host DMA address width is the same as for the
* device. However, it may differ and then we have to use our
* host DMA width for allocation and the device DMA width for
* register handling.
*/
if (priv->plat->host_dma_width)
priv->dma_cap.host_dma_width = priv->plat->host_dma_width;
else
priv->dma_cap.host_dma_width = priv->dma_cap.addr64;
if (priv->dma_cap.host_dma_width) {
ret = dma_set_mask_and_coherent(device,
DMA_BIT_MASK(priv->dma_cap.host_dma_width));
if (!ret) {
dev_info(priv->device, "Using %d/%d bits DMA host/device width\n",
priv->dma_cap.host_dma_width, priv->dma_cap.addr64);
/*
* If more than 32 bits can be addressed, make sure to
* enable enhanced addressing mode.
*/
if (IS_ENABLED(CONFIG_ARCH_DMA_ADDR_T_64BIT))
priv->plat->dma_cfg->eame = true;
} else {
ret = dma_set_mask_and_coherent(device, DMA_BIT_MASK(32));
if (ret) {
dev_err(priv->device, "Failed to set DMA Mask\n");
goto error_hw_init;
}
priv->dma_cap.host_dma_width = 32;
}
}
ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
#ifdef STMMAC_VLAN_TAG_USED
/* Both mac100 and gmac support receive VLAN tag detection */
ndev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX;
if (priv->plat->has_gmac4) {
ndev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
priv->hw->hw_vlan_en = true;
}
if (priv->dma_cap.vlhash) {
ndev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
ndev->features |= NETIF_F_HW_VLAN_STAG_FILTER;
}
if (priv->dma_cap.vlins) {
ndev->features |= NETIF_F_HW_VLAN_CTAG_TX;
if (priv->dma_cap.dvlan)
ndev->features |= NETIF_F_HW_VLAN_STAG_TX;
}
#endif
priv->msg_enable = netif_msg_init(debug, default_msg_level);
priv->xstats.threshold = tc;
/* Initialize RSS */
rxq = priv->plat->rx_queues_to_use;
netdev_rss_key_fill(priv->rss.key, sizeof(priv->rss.key));
for (i = 0; i < ARRAY_SIZE(priv->rss.table); i++)
priv->rss.table[i] = ethtool_rxfh_indir_default(i, rxq);
if (priv->dma_cap.rssen && priv->plat->rss_en)
ndev->features |= NETIF_F_RXHASH;
ndev->vlan_features |= ndev->features;
/* MTU range: 46 - hw-specific max */
ndev->min_mtu = ETH_ZLEN - ETH_HLEN;
if (priv->plat->has_xgmac)
ndev->max_mtu = XGMAC_JUMBO_LEN;
else if ((priv->plat->enh_desc) || (priv->synopsys_id >= DWMAC_CORE_4_00))
ndev->max_mtu = JUMBO_LEN;
else
ndev->max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
/* Will not overwrite ndev->max_mtu if plat->maxmtu > ndev->max_mtu
* as well as plat->maxmtu < ndev->min_mtu which is a invalid range.
*/
if ((priv->plat->maxmtu < ndev->max_mtu) &&
(priv->plat->maxmtu >= ndev->min_mtu))
ndev->max_mtu = priv->plat->maxmtu;
else if (priv->plat->maxmtu < ndev->min_mtu)
dev_warn(priv->device,
"%s: warning: maxmtu having invalid value (%d)\n",
__func__, priv->plat->maxmtu);
if (flow_ctrl)
priv->flow_ctrl = FLOW_AUTO; /* RX/TX pause on */
ndev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
/* Setup channels NAPI */
stmmac_napi_add(ndev);
mutex_init(&priv->lock);
stmmac_fpe_init(priv);
/* If a specific clk_csr value is passed from the platform
* this means that the CSR Clock Range selection cannot be
* changed at run-time and it is fixed. Viceversa the driver'll try to
* set the MDC clock dynamically according to the csr actual
* clock input.
*/
if (priv->plat->clk_csr >= 0)
priv->clk_csr = priv->plat->clk_csr;
else
stmmac_clk_csr_set(priv);
stmmac_check_pcs_mode(priv);
pm_runtime_get_noresume(device);
pm_runtime_set_active(device);
if (!pm_runtime_enabled(device))
pm_runtime_enable(device);
ret = stmmac_mdio_register(ndev);
if (ret < 0) {
dev_err_probe(priv->device, ret,
"MDIO bus (id: %d) registration failed\n",
priv->plat->bus_id);
goto error_mdio_register;
}
if (priv->plat->speed_mode_2500)
priv->plat->speed_mode_2500(ndev, priv->plat->bsp_priv);
ret = stmmac_pcs_setup(ndev);
if (ret)
goto error_pcs_setup;
ret = stmmac_phy_setup(priv);
if (ret) {
netdev_err(ndev, "failed to setup phy (%d)\n", ret);
goto error_phy_setup;
}
ret = register_netdev(ndev);
if (ret) {
dev_err(priv->device, "%s: ERROR %i registering the device\n",
__func__, ret);
goto error_netdev_register;
}
#ifdef CONFIG_DEBUG_FS
stmmac_init_fs(ndev);
#endif
if (priv->plat->dump_debug_regs)
priv->plat->dump_debug_regs(priv->plat->bsp_priv);
/* Let pm_runtime_put() disable the clocks.
* If CONFIG_PM is not enabled, the clocks will stay powered.
*/
pm_runtime_put(device);
return ret;
error_netdev_register:
phylink_destroy(priv->phylink);
error_phy_setup:
stmmac_pcs_clean(ndev);
error_pcs_setup:
stmmac_mdio_unregister(ndev);
error_mdio_register:
stmmac_napi_del(ndev);
error_hw_init:
destroy_workqueue(priv->wq);
error_wq_init:
bitmap_free(priv->af_xdp_zc_qps);
return ret;
}
EXPORT_SYMBOL_GPL(stmmac_dvr_probe);
/**
* stmmac_dvr_remove
* @dev: device pointer
* Description: this function resets the TX/RX processes, disables the MAC RX/TX
* changes the link status, releases the DMA descriptor rings.
*/
void stmmac_dvr_remove(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
netdev_info(priv->dev, "%s: removing driver", __func__);
pm_runtime_get_sync(dev);
stmmac_stop_all_dma(priv);
stmmac_mac_set(priv, priv->ioaddr, false);
unregister_netdev(ndev);
#ifdef CONFIG_DEBUG_FS
stmmac_exit_fs(ndev);
#endif
phylink_destroy(priv->phylink);
if (priv->plat->stmmac_rst)
reset_control_assert(priv->plat->stmmac_rst);
reset_control_assert(priv->plat->stmmac_ahb_rst);
stmmac_pcs_clean(ndev);
stmmac_mdio_unregister(ndev);
destroy_workqueue(priv->wq);
mutex_destroy(&priv->lock);
bitmap_free(priv->af_xdp_zc_qps);
pm_runtime_disable(dev);
pm_runtime_put_noidle(dev);
}
EXPORT_SYMBOL_GPL(stmmac_dvr_remove);
/**
* stmmac_suspend - suspend callback
* @dev: device pointer
* Description: this is the function to suspend the device and it is called
* by the platform driver to stop the network queue, release the resources,
* program the PMT register (for WoL), clean and release driver resources.
*/
int stmmac_suspend(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
u32 chan;
if (!ndev || !netif_running(ndev))
return 0;
mutex_lock(&priv->lock);
netif_device_detach(ndev);
stmmac_disable_all_queues(priv);
for (chan = 0; chan < priv->plat->tx_queues_to_use; chan++)
hrtimer_cancel(&priv->dma_conf.tx_queue[chan].txtimer);
if (priv->eee_sw_timer_en) {
priv->tx_path_in_lpi_mode = false;
del_timer_sync(&priv->eee_ctrl_timer);
}
/* Stop TX/RX DMA */
stmmac_stop_all_dma(priv);
if (priv->plat->serdes_powerdown)
priv->plat->serdes_powerdown(ndev, priv->plat->bsp_priv);
/* Enable Power down mode by programming the PMT regs */
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
stmmac_pmt(priv, priv->hw, priv->wolopts);
priv->irq_wake = 1;
} else {
stmmac_mac_set(priv, priv->ioaddr, false);
pinctrl_pm_select_sleep_state(priv->device);
}
mutex_unlock(&priv->lock);
rtnl_lock();
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
phylink_suspend(priv->phylink, true);
} else {
if (device_may_wakeup(priv->device))
phylink_speed_down(priv->phylink, false);
phylink_suspend(priv->phylink, false);
}
rtnl_unlock();
if (stmmac_fpe_supported(priv))
timer_shutdown_sync(&priv->fpe_cfg.verify_timer);
priv->speed = SPEED_UNKNOWN;
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_suspend);
static void stmmac_reset_rx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_rx_queue *rx_q = &priv->dma_conf.rx_queue[queue];
rx_q->cur_rx = 0;
rx_q->dirty_rx = 0;
}
static void stmmac_reset_tx_queue(struct stmmac_priv *priv, u32 queue)
{
struct stmmac_tx_queue *tx_q = &priv->dma_conf.tx_queue[queue];
tx_q->cur_tx = 0;
tx_q->dirty_tx = 0;
tx_q->mss = 0;
netdev_tx_reset_queue(netdev_get_tx_queue(priv->dev, queue));
}
/**
* stmmac_reset_queues_param - reset queue parameters
* @priv: device pointer
*/
static void stmmac_reset_queues_param(struct stmmac_priv *priv)
{
u32 rx_cnt = priv->plat->rx_queues_to_use;
u32 tx_cnt = priv->plat->tx_queues_to_use;
u32 queue;
for (queue = 0; queue < rx_cnt; queue++)
stmmac_reset_rx_queue(priv, queue);
for (queue = 0; queue < tx_cnt; queue++)
stmmac_reset_tx_queue(priv, queue);
}
/**
* stmmac_resume - resume callback
* @dev: device pointer
* Description: when resume this function is invoked to setup the DMA and CORE
* in a usable state.
*/
int stmmac_resume(struct device *dev)
{
struct net_device *ndev = dev_get_drvdata(dev);
struct stmmac_priv *priv = netdev_priv(ndev);
int ret;
if (!netif_running(ndev))
return 0;
/* Power Down bit, into the PM register, is cleared
* automatically as soon as a magic packet or a Wake-up frame
* is received. Anyway, it's better to manually clear
* this bit because it can generate problems while resuming
* from another devices (e.g. serial console).
*/
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
mutex_lock(&priv->lock);
stmmac_pmt(priv, priv->hw, 0);
mutex_unlock(&priv->lock);
priv->irq_wake = 0;
} else {
pinctrl_pm_select_default_state(priv->device);
/* reset the phy so that it's ready */
if (priv->mii)
stmmac_mdio_reset(priv->mii);
}
if (!(priv->plat->flags & STMMAC_FLAG_SERDES_UP_AFTER_PHY_LINKUP) &&
priv->plat->serdes_powerup) {
ret = priv->plat->serdes_powerup(ndev,
priv->plat->bsp_priv);
if (ret < 0)
return ret;
}
rtnl_lock();
if (device_may_wakeup(priv->device) && priv->plat->pmt) {
phylink_resume(priv->phylink);
} else {
phylink_resume(priv->phylink);
if (device_may_wakeup(priv->device))
phylink_speed_up(priv->phylink);
}
rtnl_unlock();
rtnl_lock();
mutex_lock(&priv->lock);
stmmac_reset_queues_param(priv);
stmmac_free_tx_skbufs(priv);
stmmac_clear_descriptors(priv, &priv->dma_conf);
stmmac_hw_setup(ndev, false);
stmmac_init_coalesce(priv);
stmmac_set_rx_mode(ndev);
stmmac_restore_hw_vlan_rx_fltr(priv, ndev, priv->hw);
stmmac_enable_all_queues(priv);
stmmac_enable_all_dma_irq(priv);
mutex_unlock(&priv->lock);
rtnl_unlock();
netif_device_attach(ndev);
return 0;
}
EXPORT_SYMBOL_GPL(stmmac_resume);
#ifndef MODULE
static int __init stmmac_cmdline_opt(char *str)
{
char *opt;
if (!str || !*str)
return 1;
while ((opt = strsep(&str, ",")) != NULL) {
if (!strncmp(opt, "debug:", 6)) {
if (kstrtoint(opt + 6, 0, &debug))
goto err;
} else if (!strncmp(opt, "phyaddr:", 8)) {
if (kstrtoint(opt + 8, 0, &phyaddr))
goto err;
} else if (!strncmp(opt, "buf_sz:", 7)) {
if (kstrtoint(opt + 7, 0, &buf_sz))
goto err;
} else if (!strncmp(opt, "tc:", 3)) {
if (kstrtoint(opt + 3, 0, &tc))
goto err;
} else if (!strncmp(opt, "watchdog:", 9)) {
if (kstrtoint(opt + 9, 0, &watchdog))
goto err;
} else if (!strncmp(opt, "flow_ctrl:", 10)) {
if (kstrtoint(opt + 10, 0, &flow_ctrl))
goto err;
} else if (!strncmp(opt, "pause:", 6)) {
if (kstrtoint(opt + 6, 0, &pause))
goto err;
} else if (!strncmp(opt, "eee_timer:", 10)) {
if (kstrtoint(opt + 10, 0, &eee_timer))
goto err;
} else if (!strncmp(opt, "chain_mode:", 11)) {
if (kstrtoint(opt + 11, 0, &chain_mode))
goto err;
}
}
return 1;
err:
pr_err("%s: ERROR broken module parameter conversion", __func__);
return 1;
}
__setup("stmmaceth=", stmmac_cmdline_opt);
#endif /* MODULE */
static int __init stmmac_init(void)
{
#ifdef CONFIG_DEBUG_FS
/* Create debugfs main directory if it doesn't exist yet */
if (!stmmac_fs_dir)
stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
register_netdevice_notifier(&stmmac_notifier);
#endif
return 0;
}
static void __exit stmmac_exit(void)
{
#ifdef CONFIG_DEBUG_FS
unregister_netdevice_notifier(&stmmac_notifier);
debugfs_remove_recursive(stmmac_fs_dir);
#endif
}
module_init(stmmac_init)
module_exit(stmmac_exit)
MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
MODULE_LICENSE("GPL");