1
0
Fork 0
mirror of synced 2025-03-06 20:59:54 +01:00
linux/drivers/gpu/drm/i915/display/intel_vrr.c
Ville Syrjälä 7a2ec4a0a5 drm/i915: Fix vblank timestamps with VRR
To get sensible vblank timestamping behaviour we need to feed
the vmax based timings to the vblank code, otherwise it'll chop
off the scanline counter when it exceeds the minumum vtotal.

Additionally with VRR we have three cases to consider when we
generate the vblank timestamp:
1) we are in vertical active
  -> nothing special needs to be done, just return the current
     scanout position and the core will calculate the timestamp
     corresponding to the past time when the current vertical
     active started
2) we are in vertical blank and no push has been sent
  -> the hardware will keep extending the vblank presumably
     to its maximum length, so we make the timestmap match the
     expected time when the max length vblank will end. Since
     the timings used for this are now based on vmax nothing
     special actually needs to be done
3) we are in vblank and a push has been sent so the vblank is
   about to terminate
  -> presumably we want the timestmap to accurately reflect
     when the vblank will terminate, so we use the sampled
     frame timestamp vs. current timestamp to guesstimate
     how far along the vblank exit we are, and then we
     adjust the reported scanout position accordingly so
     that the core will see that the vblank is close to
     ending.

v2:
* Fix the else if (use_scanline_Counter) (Manasi)

Signed-off-by: Manasi Navare <manasi.d.navare@intel.com>
Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com>
Reviewed-by: Manasi Navare <manasi.d.navare@intel.com>
Link: https://patchwork.freedesktop.org/patch/msgid/20210122232647.22688-17-manasi.d.navare@intel.com
2021-01-25 15:23:34 -08:00

209 lines
6.8 KiB
C

// SPDX-License-Identifier: MIT
/*
* Copyright © 2020 Intel Corporation
*
*/
#include "i915_drv.h"
#include "intel_display_types.h"
#include "intel_vrr.h"
bool intel_vrr_is_capable(struct drm_connector *connector)
{
struct intel_dp *intel_dp;
const struct drm_display_info *info = &connector->display_info;
struct drm_i915_private *i915 = to_i915(connector->dev);
if (connector->connector_type != DRM_MODE_CONNECTOR_eDP &&
connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
return false;
intel_dp = intel_attached_dp(to_intel_connector(connector));
/*
* DP Sink is capable of VRR video timings if
* Ignore MSA bit is set in DPCD.
* EDID monitor range also should be atleast 10 for reasonable
* Adaptive Sync or Variable Refresh Rate end user experience.
*/
return HAS_VRR(i915) &&
drm_dp_sink_can_do_video_without_timing_msa(intel_dp->dpcd) &&
info->monitor_range.max_vfreq - info->monitor_range.min_vfreq > 10;
}
void
intel_vrr_check_modeset(struct intel_atomic_state *state)
{
int i;
struct intel_crtc_state *old_crtc_state, *new_crtc_state;
struct intel_crtc *crtc;
for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
new_crtc_state, i) {
if (new_crtc_state->uapi.vrr_enabled !=
old_crtc_state->uapi.vrr_enabled)
new_crtc_state->uapi.mode_changed = true;
}
}
/*
* Without VRR registers get latched at:
* vblank_start
*
* With VRR the earliest registers can get latched is:
* intel_vrr_vmin_vblank_start(), which if we want to maintain
* the correct min vtotal is >=vblank_start+1
*
* The latest point registers can get latched is the vmax decision boundary:
* intel_vrr_vmax_vblank_start()
*
* Between those two points the vblank exit starts (and hence registers get
* latched) ASAP after a push is sent.
*
* framestart_delay is programmable 0-3.
*/
static int intel_vrr_vblank_exit_length(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *i915 = to_i915(crtc->base.dev);
/* The hw imposes the extra scanline before frame start */
return crtc_state->vrr.pipeline_full + i915->framestart_delay + 1;
}
int intel_vrr_vmin_vblank_start(const struct intel_crtc_state *crtc_state)
{
/* Min vblank actually determined by flipline that is always >=vmin+1 */
return crtc_state->vrr.vmin + 1 - intel_vrr_vblank_exit_length(crtc_state);
}
int intel_vrr_vmax_vblank_start(const struct intel_crtc_state *crtc_state)
{
return crtc_state->vrr.vmax - intel_vrr_vblank_exit_length(crtc_state);
}
void
intel_vrr_compute_config(struct intel_crtc_state *crtc_state,
struct drm_connector_state *conn_state)
{
struct intel_connector *connector =
to_intel_connector(conn_state->connector);
struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
const struct drm_display_info *info = &connector->base.display_info;
int vmin, vmax;
if (!intel_vrr_is_capable(&connector->base))
return;
if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
return;
if (!crtc_state->uapi.vrr_enabled)
return;
vmin = DIV_ROUND_UP(adjusted_mode->crtc_clock * 1000,
adjusted_mode->crtc_htotal * info->monitor_range.max_vfreq);
vmax = adjusted_mode->crtc_clock * 1000 /
(adjusted_mode->crtc_htotal * info->monitor_range.min_vfreq);
vmin = max_t(int, vmin, adjusted_mode->crtc_vtotal);
vmax = max_t(int, vmax, adjusted_mode->crtc_vtotal);
if (vmin >= vmax)
return;
/*
* flipline determines the min vblank length the hardware will
* generate, and flipline>=vmin+1, hence we reduce vmin by one
* to make sure we can get the actual min vblank length.
*/
crtc_state->vrr.vmin = vmin - 1;
crtc_state->vrr.vmax = vmax;
crtc_state->vrr.enable = true;
crtc_state->vrr.flipline = crtc_state->vrr.vmin + 1;
/*
* FIXME: s/4/framestart_delay+1/ to get consistent
* earliest/latest points for register latching regardless
* of the framestart_delay used?
*
* FIXME: this really needs the extra scanline to provide consistent
* behaviour for all framestart_delay values. Otherwise with
* framestart_delay==3 we will end up extending the min vblank by
* one extra line.
*/
crtc_state->vrr.pipeline_full =
min(255, crtc_state->vrr.vmin - adjusted_mode->crtc_vdisplay - 4 - 1);
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}
void intel_vrr_enable(struct intel_encoder *encoder,
const struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl;
if (!crtc_state->vrr.enable)
return;
trans_vrr_ctl = VRR_CTL_VRR_ENABLE |
VRR_CTL_IGN_MAX_SHIFT | VRR_CTL_FLIP_LINE_EN |
VRR_CTL_PIPELINE_FULL(crtc_state->vrr.pipeline_full) |
VRR_CTL_PIPELINE_FULL_OVERRIDE;
intel_de_write(dev_priv, TRANS_VRR_VMIN(cpu_transcoder), crtc_state->vrr.vmin - 1);
intel_de_write(dev_priv, TRANS_VRR_VMAX(cpu_transcoder), crtc_state->vrr.vmax - 1);
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), trans_vrr_ctl);
intel_de_write(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder), crtc_state->vrr.flipline - 1);
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), TRANS_PUSH_EN);
}
void intel_vrr_send_push(const struct intel_crtc_state *crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
if (!crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder),
TRANS_PUSH_EN | TRANS_PUSH_SEND);
}
void intel_vrr_disable(const struct intel_crtc_state *old_crtc_state)
{
struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
if (!old_crtc_state->vrr.enable)
return;
intel_de_write(dev_priv, TRANS_VRR_CTL(cpu_transcoder), 0);
intel_de_write(dev_priv, TRANS_PUSH(cpu_transcoder), 0);
}
void intel_vrr_get_config(struct intel_crtc *crtc,
struct intel_crtc_state *crtc_state)
{
struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
u32 trans_vrr_ctl;
trans_vrr_ctl = intel_de_read(dev_priv, TRANS_VRR_CTL(cpu_transcoder));
crtc_state->vrr.enable = trans_vrr_ctl & VRR_CTL_VRR_ENABLE;
if (!crtc_state->vrr.enable)
return;
if (trans_vrr_ctl & VRR_CTL_PIPELINE_FULL_OVERRIDE)
crtc_state->vrr.pipeline_full = REG_FIELD_GET(VRR_CTL_PIPELINE_FULL_MASK, trans_vrr_ctl);
if (trans_vrr_ctl & VRR_CTL_FLIP_LINE_EN)
crtc_state->vrr.flipline = intel_de_read(dev_priv, TRANS_VRR_FLIPLINE(cpu_transcoder)) + 1;
crtc_state->vrr.vmax = intel_de_read(dev_priv, TRANS_VRR_VMAX(cpu_transcoder)) + 1;
crtc_state->vrr.vmin = intel_de_read(dev_priv, TRANS_VRR_VMIN(cpu_transcoder)) + 1;
crtc_state->mode_flags |= I915_MODE_FLAG_VRR;
}