When we hook up interrupts (in the next patch), interrupts for the media GT are still processed as part of the primary GT's interrupt flow. As such, we should share the same IRQ lock with the primary GT. Let's convert gt->irq_lock into a pointer and just point the media GT's instance at the same lock the primary GT is using. v2: - Point media's gt->irq_lock at the primary GT lock properly. (Daniele) - Fix jump target for intel_root_gt_init_early errors. (Daniele) Cc: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Signed-off-by: Matt Roper <matthew.d.roper@intel.com> Reviewed-by: Daniele Ceraolo Spurio <daniele.ceraolospurio@intel.com> Link: https://patchwork.freedesktop.org/patch/msgid/20220906234934.3655440-14-matthew.d.roper@intel.com Signed-off-by: Joonas Lahtinen <joonas.lahtinen@linux.intel.com>
319 lines
8.1 KiB
C
319 lines
8.1 KiB
C
// SPDX-License-Identifier: MIT
|
|
/*
|
|
* Copyright(c) 2020 Intel Corporation.
|
|
*/
|
|
#include <linux/workqueue.h>
|
|
#include "intel_pxp.h"
|
|
#include "intel_pxp_irq.h"
|
|
#include "intel_pxp_session.h"
|
|
#include "intel_pxp_tee.h"
|
|
#include "gem/i915_gem_context.h"
|
|
#include "gt/intel_context.h"
|
|
#include "i915_drv.h"
|
|
|
|
/**
|
|
* DOC: PXP
|
|
*
|
|
* PXP (Protected Xe Path) is a feature available in Gen12 and newer platforms.
|
|
* It allows execution and flip to display of protected (i.e. encrypted)
|
|
* objects. The SW support is enabled via the CONFIG_DRM_I915_PXP kconfig.
|
|
*
|
|
* Objects can opt-in to PXP encryption at creation time via the
|
|
* I915_GEM_CREATE_EXT_PROTECTED_CONTENT create_ext flag. For objects to be
|
|
* correctly protected they must be used in conjunction with a context created
|
|
* with the I915_CONTEXT_PARAM_PROTECTED_CONTENT flag. See the documentation
|
|
* of those two uapi flags for details and restrictions.
|
|
*
|
|
* Protected objects are tied to a pxp session; currently we only support one
|
|
* session, which i915 manages and whose index is available in the uapi
|
|
* (I915_PROTECTED_CONTENT_DEFAULT_SESSION) for use in instructions targeting
|
|
* protected objects.
|
|
* The session is invalidated by the HW when certain events occur (e.g.
|
|
* suspend/resume). When this happens, all the objects that were used with the
|
|
* session are marked as invalid and all contexts marked as using protected
|
|
* content are banned. Any further attempt at using them in an execbuf call is
|
|
* rejected, while flips are converted to black frames.
|
|
*
|
|
* Some of the PXP setup operations are performed by the Management Engine,
|
|
* which is handled by the mei driver; communication between i915 and mei is
|
|
* performed via the mei_pxp component module.
|
|
*/
|
|
|
|
struct intel_gt *pxp_to_gt(const struct intel_pxp *pxp)
|
|
{
|
|
return container_of(pxp, struct intel_gt, pxp);
|
|
}
|
|
|
|
bool intel_pxp_is_enabled(const struct intel_pxp *pxp)
|
|
{
|
|
return pxp->ce;
|
|
}
|
|
|
|
bool intel_pxp_is_active(const struct intel_pxp *pxp)
|
|
{
|
|
return pxp->arb_is_valid;
|
|
}
|
|
|
|
/* KCR register definitions */
|
|
#define KCR_INIT _MMIO(0x320f0)
|
|
/* Setting KCR Init bit is required after system boot */
|
|
#define KCR_INIT_ALLOW_DISPLAY_ME_WRITES REG_BIT(14)
|
|
|
|
static void kcr_pxp_enable(struct intel_gt *gt)
|
|
{
|
|
intel_uncore_write(gt->uncore, KCR_INIT,
|
|
_MASKED_BIT_ENABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
|
|
}
|
|
|
|
static void kcr_pxp_disable(struct intel_gt *gt)
|
|
{
|
|
intel_uncore_write(gt->uncore, KCR_INIT,
|
|
_MASKED_BIT_DISABLE(KCR_INIT_ALLOW_DISPLAY_ME_WRITES));
|
|
}
|
|
|
|
static int create_vcs_context(struct intel_pxp *pxp)
|
|
{
|
|
static struct lock_class_key pxp_lock;
|
|
struct intel_gt *gt = pxp_to_gt(pxp);
|
|
struct intel_engine_cs *engine;
|
|
struct intel_context *ce;
|
|
int i;
|
|
|
|
/*
|
|
* Find the first VCS engine present. We're guaranteed there is one
|
|
* if we're in this function due to the check in has_pxp
|
|
*/
|
|
for (i = 0, engine = NULL; !engine; i++)
|
|
engine = gt->engine_class[VIDEO_DECODE_CLASS][i];
|
|
|
|
GEM_BUG_ON(!engine || engine->class != VIDEO_DECODE_CLASS);
|
|
|
|
ce = intel_engine_create_pinned_context(engine, engine->gt->vm, SZ_4K,
|
|
I915_GEM_HWS_PXP_ADDR,
|
|
&pxp_lock, "pxp_context");
|
|
if (IS_ERR(ce)) {
|
|
drm_err(>->i915->drm, "failed to create VCS ctx for PXP\n");
|
|
return PTR_ERR(ce);
|
|
}
|
|
|
|
pxp->ce = ce;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void destroy_vcs_context(struct intel_pxp *pxp)
|
|
{
|
|
intel_engine_destroy_pinned_context(fetch_and_zero(&pxp->ce));
|
|
}
|
|
|
|
void intel_pxp_init(struct intel_pxp *pxp)
|
|
{
|
|
struct intel_gt *gt = pxp_to_gt(pxp);
|
|
int ret;
|
|
|
|
if (!HAS_PXP(gt->i915))
|
|
return;
|
|
|
|
mutex_init(&pxp->tee_mutex);
|
|
|
|
/*
|
|
* we'll use the completion to check if there is a termination pending,
|
|
* so we start it as completed and we reinit it when a termination
|
|
* is triggered.
|
|
*/
|
|
init_completion(&pxp->termination);
|
|
complete_all(&pxp->termination);
|
|
|
|
mutex_init(&pxp->arb_mutex);
|
|
INIT_WORK(&pxp->session_work, intel_pxp_session_work);
|
|
|
|
ret = create_vcs_context(pxp);
|
|
if (ret)
|
|
return;
|
|
|
|
ret = intel_pxp_tee_component_init(pxp);
|
|
if (ret)
|
|
goto out_context;
|
|
|
|
drm_info(>->i915->drm, "Protected Xe Path (PXP) protected content support initialized\n");
|
|
|
|
return;
|
|
|
|
out_context:
|
|
destroy_vcs_context(pxp);
|
|
}
|
|
|
|
void intel_pxp_fini(struct intel_pxp *pxp)
|
|
{
|
|
if (!intel_pxp_is_enabled(pxp))
|
|
return;
|
|
|
|
pxp->arb_is_valid = false;
|
|
|
|
intel_pxp_tee_component_fini(pxp);
|
|
|
|
destroy_vcs_context(pxp);
|
|
}
|
|
|
|
void intel_pxp_mark_termination_in_progress(struct intel_pxp *pxp)
|
|
{
|
|
pxp->arb_is_valid = false;
|
|
reinit_completion(&pxp->termination);
|
|
}
|
|
|
|
static void pxp_queue_termination(struct intel_pxp *pxp)
|
|
{
|
|
struct intel_gt *gt = pxp_to_gt(pxp);
|
|
|
|
/*
|
|
* We want to get the same effect as if we received a termination
|
|
* interrupt, so just pretend that we did.
|
|
*/
|
|
spin_lock_irq(gt->irq_lock);
|
|
intel_pxp_mark_termination_in_progress(pxp);
|
|
pxp->session_events |= PXP_TERMINATION_REQUEST;
|
|
queue_work(system_unbound_wq, &pxp->session_work);
|
|
spin_unlock_irq(gt->irq_lock);
|
|
}
|
|
|
|
static bool pxp_component_bound(struct intel_pxp *pxp)
|
|
{
|
|
bool bound = false;
|
|
|
|
mutex_lock(&pxp->tee_mutex);
|
|
if (pxp->pxp_component)
|
|
bound = true;
|
|
mutex_unlock(&pxp->tee_mutex);
|
|
|
|
return bound;
|
|
}
|
|
|
|
/*
|
|
* the arb session is restarted from the irq work when we receive the
|
|
* termination completion interrupt
|
|
*/
|
|
int intel_pxp_start(struct intel_pxp *pxp)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (!intel_pxp_is_enabled(pxp))
|
|
return -ENODEV;
|
|
|
|
if (wait_for(pxp_component_bound(pxp), 250))
|
|
return -ENXIO;
|
|
|
|
mutex_lock(&pxp->arb_mutex);
|
|
|
|
if (pxp->arb_is_valid)
|
|
goto unlock;
|
|
|
|
pxp_queue_termination(pxp);
|
|
|
|
if (!wait_for_completion_timeout(&pxp->termination,
|
|
msecs_to_jiffies(250))) {
|
|
ret = -ETIMEDOUT;
|
|
goto unlock;
|
|
}
|
|
|
|
/* make sure the compiler doesn't optimize the double access */
|
|
barrier();
|
|
|
|
if (!pxp->arb_is_valid)
|
|
ret = -EIO;
|
|
|
|
unlock:
|
|
mutex_unlock(&pxp->arb_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void intel_pxp_init_hw(struct intel_pxp *pxp)
|
|
{
|
|
kcr_pxp_enable(pxp_to_gt(pxp));
|
|
intel_pxp_irq_enable(pxp);
|
|
}
|
|
|
|
void intel_pxp_fini_hw(struct intel_pxp *pxp)
|
|
{
|
|
kcr_pxp_disable(pxp_to_gt(pxp));
|
|
|
|
intel_pxp_irq_disable(pxp);
|
|
}
|
|
|
|
int intel_pxp_key_check(struct intel_pxp *pxp,
|
|
struct drm_i915_gem_object *obj,
|
|
bool assign)
|
|
{
|
|
if (!intel_pxp_is_active(pxp))
|
|
return -ENODEV;
|
|
|
|
if (!i915_gem_object_is_protected(obj))
|
|
return -EINVAL;
|
|
|
|
GEM_BUG_ON(!pxp->key_instance);
|
|
|
|
/*
|
|
* If this is the first time we're using this object, it's not
|
|
* encrypted yet; it will be encrypted with the current key, so mark it
|
|
* as such. If the object is already encrypted, check instead if the
|
|
* used key is still valid.
|
|
*/
|
|
if (!obj->pxp_key_instance && assign)
|
|
obj->pxp_key_instance = pxp->key_instance;
|
|
|
|
if (obj->pxp_key_instance != pxp->key_instance)
|
|
return -ENOEXEC;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void intel_pxp_invalidate(struct intel_pxp *pxp)
|
|
{
|
|
struct drm_i915_private *i915 = pxp_to_gt(pxp)->i915;
|
|
struct i915_gem_context *ctx, *cn;
|
|
|
|
/* ban all contexts marked as protected */
|
|
spin_lock_irq(&i915->gem.contexts.lock);
|
|
list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
|
|
struct i915_gem_engines_iter it;
|
|
struct intel_context *ce;
|
|
|
|
if (!kref_get_unless_zero(&ctx->ref))
|
|
continue;
|
|
|
|
if (likely(!i915_gem_context_uses_protected_content(ctx))) {
|
|
i915_gem_context_put(ctx);
|
|
continue;
|
|
}
|
|
|
|
spin_unlock_irq(&i915->gem.contexts.lock);
|
|
|
|
/*
|
|
* By the time we get here we are either going to suspend with
|
|
* quiesced execution or the HW keys are already long gone and
|
|
* in this case it is worthless to attempt to close the context
|
|
* and wait for its execution. It will hang the GPU if it has
|
|
* not already. So, as a fast mitigation, we can ban the
|
|
* context as quick as we can. That might race with the
|
|
* execbuffer, but currently this is the best that can be done.
|
|
*/
|
|
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it)
|
|
intel_context_ban(ce, NULL);
|
|
i915_gem_context_unlock_engines(ctx);
|
|
|
|
/*
|
|
* The context has been banned, no need to keep the wakeref.
|
|
* This is safe from races because the only other place this
|
|
* is touched is context_release and we're holding a ctx ref
|
|
*/
|
|
if (ctx->pxp_wakeref) {
|
|
intel_runtime_pm_put(&i915->runtime_pm,
|
|
ctx->pxp_wakeref);
|
|
ctx->pxp_wakeref = 0;
|
|
}
|
|
|
|
spin_lock_irq(&i915->gem.contexts.lock);
|
|
list_safe_reset_next(ctx, cn, link);
|
|
i915_gem_context_put(ctx);
|
|
}
|
|
spin_unlock_irq(&i915->gem.contexts.lock);
|
|
}
|